
Metadata Organization and Query Optimization for
Large-scale Geo-tagged Video Collections

He Ma, Sakire Arslan Ay
School of Computing
National University of

Singapore
Singapore 117417
[mahe, dcssakir]

@comp.nus.edu.sg

Roger Zimmermann
School of Computing
National University of

Singapore
Singapore 117417

rogerz@comp.nus.edu.sg

Seon Ho Kim
Integrated Media Systems

Center
University of Southern

California
Los Angeles, CA 90089
seonkim@usc.edu

ABSTRACT
Currently a large number of user-generated videos are pro-
duced on a daily basis. It is further increasingly common
to combine videos with a variety of meta-data that increase
their usefulness. In our prior work we have created a frame-
work for integrated, sensor-rich video acquisition (with one
instantiation implemented in the form of smartphone ap-
plications) which associates a continuous stream of location
and direction information with the acquired videos, hence
allowing them to be expressed and manipulated as spatio-
temporal objects. In this study we propose a novel multi-
level grid-index and a number of related query types that
facilitate application access to such augmented, large-scale
video repositories. Specifically our grid-index is designed to
allow fast access based on a bounded radius and viewing
direction – two criteria that are important in many applica-
tions that use videos. We present performance results with
a comparison to a multi-dimensional R-tree implementation
and show that our approach can provide significant speed
improvements of at least 30%, considering a mix of queries.

1. INTRODUCTION
Due to the recent developments in the video capture tech-

nology, a large number of user-generated videos are pro-
duced everyday. For example, the smartphones, which are
carried by users all the time, have become extremely pop-
ular in capturing and sharing online videos due to their
handiness, enhanced quality of images and wireless band-
width. Moreover, a number of sensors (e.g., GPS and com-
pass units) have been cost-efficiently deployed on video cam-
eras. Consequently, some critical meta-data, especially ge-
ographical properties of video scenes can be captured while
being recorded. This association of video scenes and their
geographic meta-data has raised interesting research issues,
for example, the captured sensor meta-data can be utilized
to aid in indexing and searching of geo-tagged videos at the
high semantic level preferred by humans.

In the presence of a huge size video depository such as
YouTube, effectively and efficiently searching such a repos-
itory for meaningful results is still a challenging problem.
Current video search techniques that annotate videos based
on the visual content are struggling to achieve satisfactory
results in user-generated online videos, particularly in accu-
racy and scalability. Alternatively, utilizing related meta-
data of videos, especially geographical properties from vari-

ous sensors, has been introduced and received attention from
the multimedia community. Compared to visual content, the
meta-data occupies much less space, which makes searching
among large scale of videos practical. Furthermore, utiliz-
ing these meta-data helps easily access to individual frames
instead of viewing the whole video clip.

In our earlier work [3], we proposed to model the viewable
scene area (i.e., field of view) of video frames as a pie-shaped
geometric figure using geospatial sensor data, such as cam-
era location and direction. This approach converts the con-
tent of video into a series of spatial objects. Consequently,
the challenging video search problem is transformed into a
known spatial data selection problem. The objective then
is to index the spatial objects and to search videos based
on their geographic properties. Our previous study demon-
strated the effectiveness of geographic sensor meta-data for
searching a huge amount of videos.

For a practical implementation of search engine with a
large amount of geo-tagged videos and their associated geospa-
tial meta-data, there remain some other critical issues to be
resolved. For example, the performance of searching sensor
meta-data should efficiently handle large video depositories
(such as YouTube). So, there should be a study of high per-
formance index structure which can effectively harness the
captured geospatial meta-data. To our knowledge, there has
been no such study for geo-tagged video search.

R-tree [10] (and/or its variance [21, 5]) has been the choice
of index structure to index geometric figures. However, its
performance deteriorates as the number of figures indexed
increases greatly. For example, YouTube archived 13 million
hours of videos in a single year (2010) and ever growing in
even faster way [1]. Assuming all videos in a huge deposi-
tory are represented using sensor meta-data, i.e., streams of
geospatial objects, R-tree may suffer significantly to provide
enough search performance due to its increased heights.

An important observation is that the geo-space is bounded
while the number of videos is almost un-bounded. Based on
this observation, we propose a new multi-level grid-based
index structure for geo-tagged video search by fully utilizing
their geographic properties. Specifically, this index struc-
ture is created to allow efficient access of FOVs based on
their distance to the query location and the cameras view-
ing direction. In searching videos through their geographic
coverages, distance and direction are two important criteria
that can help to improve query functionality. We introduce a
number of related query types which support better human

perception of images in resulting videos.
One of the unique query types proposed in this work is

Nearest Video Segments query (k-NVS). This query retrieves
the k closest video segments that show a given query point.
k-NVS query can significantly enhance human perception
and decision in identifying requested video images, espe-
cially when search results return a large number of videos
in a highly populated area. Moreover, the query can addi-
tionally specify a bounded radius range to get the closest
video segments that show the query point from a distance
within a given radius range. Alternatively, the query may
specify a certain viewing direction to specifically retrieve the
k closest segments that show the query point from that di-
rection, which is critical in human perception of objects. An
example application that can utilize k-NVS is automatically
building panoramic (360 degree) view of a point-of-interest
(i.e., a query point). The application needs to search for
the nearest videos that look at the query point from differ-
ent viewing directions and that are within a certain distance
from it. Similarly, k-NVS can serve as a useful feature for
video browsing applications. For example, on a map-based
interface the videos that show important landmarks from
the users viewing point can be quickly retrieved as the user
navigates by issuing continuous k-NVS queries.

In the remaining sections of the manuscript we describe
our geo-tagged video indexing and searching approach, and
report on an extensive experimental study with synthetic
datasets. The results we have obtained illustrate that the
three-level grid index structure supports new geospatial video
query features. It efficiently scales to large datasets and sig-
nificantly speeds up the query processing (compared to the
R-tree) for finding the related video segments, especially for
queries with direction. The rest of this paper is organized
as follows. Section 2 provides the background information
and summarizes the related work. Section 3 details the pro-
posed data structure. Section 4 introduces the new query
types and details the query processing algorithms. Section 5
reports the results on the performance evaluations of the
proposed algorithms. Finally, Section 6 concludes the pa-
per.

2. BACKGROUND AND RELATED WORK

2.1 Modeling of Camera Viewable Scene
The camera viewable scene is what a camera in geo-space

captures. This area is referred to as camera field-of-view
(FOV in short) with a shape of pie-slice [3]. The FOV cov-
erage in 2D space can be defined with four parameters: cam-

era location P , camera orientation vector
−→
d , viewable angle

α, and maximum visible distance RV (see Figure 1). The
location P of camera is the < latitude, longitude > coordi-
nate read from a positioning device (e.g., GPS). The camera

viewing direction vector
−→
d is obtained based on the orien-

tation angle (θ), which can be acquired from a digital com-
pass. The camera viewable angle (α) is calculated based on
the camera and lens properties for the current zoom level [9].
The visible distance RV is the maximum distance at which
a large object within the camera’s FOV can be recognized.
Then, the camera viewable scene at time t is denoted by the
tuple FOV (P 〈lat, lng〉 , θ, α, RV). These P , θ, α, and RV

values, i.e., the geospatial meta-data, can be acquired from
the attached sensors during the video capture.

Figure 1: Illustration of the FOV model in 2D

2.2 Related Work
Associating geo-location and camera orientation informa-

tion for video retrieval has become an active topic. Re-
searches [22, 18] associating geographic information always
helped on video applications. Hwang et al. [11] and Kim et
al. [12] proposed a mapping between the 3D world and the
videos by linking the objects to the video frames in which
they appear. Their work used GPS location and camera ori-
entation to build links between video frames and world ob-
jects. Liu et al. [14] presented a sensor enhanced video anno-
tation system (referred to as SEVA). Navarrete and Blat [15]
utilized geographic information to segment and index video.
Our prior work [3] proposed a viewable scene model to link
the video content and sensor information. However, none of
the above methods addresses indexing and searching issues,
on the large scale.

Our approach represents each video frame as a spatial
object. There exist two categories of spatial data index-
ing methods: data-driven structures and space-driven struc-
tures [20]. The R-tree family (including R-tree [10], R+-
tree [21], R∗-tree [5]) belongs to the category of data-driven
structures. Guttman [10] proposed the R-tree, which is a dy-
namic tree data structure, as an extension of the ubiquitous
B-tree in multi-dimensional space, for spatial data indexing.
Each node in the R-tree is represented as a bounding rectan-
gle. To access a node of the indexed collection, one typically
follows a path from the root down to one or several leaves,
testing each bounding rectangle at each level for either con-
tainment or overlap. However, these methods are designed
mainly for supporting efficient query processing when the
construction and the maintenance of the data structure is
computationally expensive. The space-driven structures in-
clude methods such as the grid file [16], quadtree [8], and
Voronoi diagram [19]. Recent researches use either the grid
structure [6], the skip quadtree [7] or Voronoi diagram [17]
to process multiple types of queries. However, these data
structures consider spatial objects as points or small rect-
angles, and none of them are appropriate to index our FOV
model.

Our prior work [13] proposed a vector-based approxima-
tion model to efficiently index and search videos based on the
FOV model. It mapped an FOV to two individual points in
two 2D subspaces using a space transformation. This model
works well on supporting the geospatial video query features,
such as point query with direction and bounded distance
between the query point and camera position. However,
it does not investigate query optimization issues. Vector
model works effectively for basic query types, such as point
and range query, however does not support the k-NVS query.
Moreover, there was no consideration in scalability. Next we
will introduce the proposed three-level index structure.

3. GRID BASED INDEXING OF CAMERA
VIEWABLE SCENES

We present our design of the memory-based grid structure
for indexing the coverage area of the camera viewable scenes.
The proposed structure constructs a three-level index, where
the first level indexes the video FOVs according to location,
the second level indexes them based on the distance to the
overlapping cell, and the third level builds an index based on
FOV direction. The proposed three-level index structure is
illustrated in Figure. 2. The collections of cells at the first,
second, and third levels are denoted by C`1, C`2, and C`3,
respectively. Note that, each level of the index structure
stores only the ID numbers of the FOVs for the efficient
search of the video scenes. The actual FOV meta-data (i.e.,
P , θ, α, and RV values) are stored in a MySQL database
where the meta-data for a particular FOV can be efficiently
retrieved through its ID number. Figure. 3 illustrates the
index construction with an example of a short video file. In
Figure. 3 (c), only the index entries for the example video
file are listed.

C
l1 C

l1(m,n)

C
l2

s=4

(0
o
; x

o
) (0

o
; x

o
)

FOVV1
(1)

…

…

FOVV1
(1)n̂

…

FOVV2
(2)n̂

FOVV2
(1)

…

FOVVj
(j)n̂

FOVVj
(1)

…

…
FOVV (1)

m̂

C
l3

(360-x
o
;360

o
)

(0
o
; x

o
)

(x
o
; 2x

o
)

…

…

(360-x
o
;360

o
)

(0
o
; x

o
)

(x
o
; 2x

o
)

…

…

…

…m̂

FOVV ()n̂
m̂ m̂

FOV meta-data

Figure 2: Three-level grid data structure.

The first level organizes the embedding geo-space as a uni-
form coarse grid. The space is partitioned into a regular grid
of M ×N cells, where each grid cell is an δ × δ square area,
and δ is a system parameter that defines the cell size of the
grid. A specific cell in the first-level grid index is denoted by
C`1(row, column) (assuming the cells are ordered from the
bottom left corner of the space). The 2D geographical cov-
erages of the FOVs are indexed in this coarse grid structure.
Specifically, FOVs are mapped to the grid cells that overlap
with their coverage areas and each grid cell maintains the
IDs of the overlapping FOVs. In Figure. 3, the set of FOVs
that overlap with the first-level cells are listed in the first
table.

The second-level grid index organizes the overlapping FOVs
at each first-level cell based on the distance between the
FOV camera locations and the center of the cell. To con-
struct the second-level grid, each C`1 cell is further divided
into s × s subcells of size

(
δ
s
× δ

s

)
, where each subcell is

denoted by C`2(f, g) (see Figure. 2). s is a system parame-
ter and defines how fine the second-level grid index is. For
each first level grid cell C`1(m, n), we maintain the range of
the second-level subcells, covering the region in and around
C`1(m, n) and containing all the FOVs that overlap with
the cell C`1(m, n). In Figure. 2, the shaded region at C`2

shows the range of C`2 subcells corresponding to the first-
level cell C`1(m, n). Note that the FOVs whose camera lo-
cations are at most RV away from cell C`1(m, n), will also
be included in that range. In the example shown in Fig-
ure. 3, the second-level range for C`1(m, n) includes all sub-
cells C`2(1, 1) through C`2(8, 8). While the first-level cells
hold the list of the FOVs whose viewable scene areas overlap
with the cell, the second-level subcells hold the list of FOVs
whose camera locations are within those subcells. For ex-
ample in Figure. 3, the second table lists the non-empty
second-level subcells and the set of FOV IDs assigned to
them. In order to retrieve the FOVs closest to a particu-
lar query point in the cell C`1(m, n), first, the second-level
cell C`2(f, g) where the query point resides is obtained, and
then the FOV IDs in and around subcell C`2(f, g) are re-
trieved. The second-level index enables the efficient retrieval
of closest FOVs in the execution of k-NVS (k Nearest Video
Segments) queries.

The first- and second-level grid cells hold the location and
distance information only, therefore cannot fully utilize the
collected sensor meta-data, such as direction. Direction can
be an important cue in retrieving the most relevant video
results when the videos showing the query location from
a certain viewpoint are of higher interest. To support the
directional queries we construct a third-level in the index
structure that organizes the FOVs based on the viewing di-
rection. The 360 ◦ angle is divided into x ◦ intervals in clock-
wise direction, starting from the North (0 ◦). We assume an
error margin of ±ε◦ around the FOV orientation angle θ◦.
Each FOV is assigned to one or two of the view angle in-
tervals that its orientation angle margin (θ◦±ε◦) overlaps
with. ε value can be customized based on the application.
In Figure. 3, the third table lists the third-level index entries
for the example video for x=45 ◦ and ε=15 ◦.

For a video collection with about 2.95 million FOVs, the
index size for the three-level index structure is measured as
1.9GB. As the dataset size gets larger the index size grows
linearly. For example, for datasets with 3.9 million and 5.4
million FOVs, the index size is measured as 2.5GB and 3.3
GB, respectively. In our experiments in Section 5, we report
the results for a dataset of 5.4 million FOVs. Next we will
describe the query processing for various query types.

4. QUERY PROCESSING
We represent the coverage of a video clip FOVvj as a series

of FOVs where each FOV corresponds to a spatial object.
Therefore the problem of video search is transformed into
finding the spatial objects in the database that satisfy the
query conditions. In searching video meta-data, unlike a
general spatial query, the query may enforce additional ap-
plication specific parameters. For example, it may search
with a range restriction for the distance of the camera loca-
tion from the query point, which is interpreted as the query
with bounded radius. Or the query may ask only for the
videos that show the query location from a certain view-
point, then it may restrict the FOV direction to a certain
angle range around the specified viewing direction, which
is interpreted as the query with direction. In this section
we introduce several new spatial query types for searching
camera viewable scenes. We will formulate these query types
in Section 4.1. All the queries work at the FOV level. In
Section 4.2 we will provide the details about the query pro-
cessing and present the algorithms of the proposed queries.

C
l1

C
l1(m,n) C

l1(m,n+1)C
l1(m,n-1)

C
l1(m+1,n) C

l1(m+1,n+1)C
l1(m+1,n-1)

FOV2
FOV3

FOV4

FOV5

FOV6

FOV1

C
l1(m,n-1) FOV1, FOV2, FOV3

C
l1(m,n)

FOV1, FOV2, FOV3,

FOV4, FOV5, FOV6

C
l1(m,n+1) FOV6

C
l1(m+1,n) FOV6

C
l1(m+1,n+1) FOV6

C
l2(4,2) FOV2, FOV3

C
l2(4,4) FOV4

C
l2(5,1) FOV1

C
l2(5,4) FOV5

C
l2(6,6) FOV6

0o-45o FOV6

C
l2

C
l2(8,8)

C
l3

FOV2
FOV3

FOV4

FOV5

FOV6

FOV1

x =45o

45o-90o
FOV2, FOV3, FOV4,

FOV5,FOV6

90o-135o FOV1, FOV2, FOV3

ε =15o
C

l2(1,1) s=4

C
l3

(a) First-level grid. (b) Second-level grid. (c) Index tables.

Figure 3: Index construction example.

In Section 4.3 a motivated example will be presented to show
the possible application of these stated query types.

4.1 Query Definitions
Let FOVvj = {FOVvj (i), i = 1, 2, ..., n̂j} be the set of

FOV objects for video vj and let FOV={FOVvj , j = 1, 2, ..., m̂}
be the set of all FOVs for a collection of m̂ videos. Given
FOV, a query q returns a set of video segments

{
V Svj (s, e)

}
,

where V Svj (s, e)=
{
FOVvj (i), s ≤ i ≤ e

}
is a segment of

video vj which includes all the FOVs between FOVvj (s)
and FOVvj (e).

Definition 1 Point Query with Bounded Radius (PQ-R):
Given a query point q in geo-space and a radius range from
MINR to MAXR, the PQ-R query retrieves all video seg-
ments that overlap with q and whose camera locations are
at least MINR and at most MAXR away from q, i.e.,
PQ-R(q,MINR,MAXR) :
q × FOV →

{
V Svj (s, e), where ∀j ∀i s ≤ i ≤ e ,

such that FOVvj (i) ∩ q 6= ∅ and

MINR ≤ dist(P (FOVvj (i)), q) ≤ MAXR

}
,

where P returns the camera location of an FOV and func-
tion dist calculates the distance between two points.

Definition 2 Point Query with Direction (PQ-D):
Given a query point q in geo-space and viewing direction
β, the PQ-D query retrieves all FOVs that overlap with q
and that were taken when the camera was pointing towards
β with respect to the North. The PQ-D query exploits the
cameras’ bearing to retrieve the video frames that show the
query point from a particular viewing direction. Since slight
variations in the viewing direction does not significantly al-
ter the human perception, using only a precise direction
value β may not be practical in video search. Therefore
a small angle margin ε around the query view direction is
introduced, and the query searches for the video segments
whose directions are between β − ε and β + ε.
PQ-D(q,β):
q × FOV →

{
V Svj (s, e), where ∀j ∀i s ≤ i ≤ e ,

such that FOVvj (i) ∩ q 6= ∅ and

β − ε ≤ D(FOVvj (i)) ≤ β + ε
}
,

where D returns an FOV’s camera direction angle with re-
spect to North.

Definition 3 Range Query with Bounded Radius (RQ-R):
Given a rectangular region qr in geo-space and a radius range
from MINR to MAXR, the RQ-R query retrieves all video
segments that overlap with qr and whose camera locations
are at least MINR and at most MAXR away from the bor-
der of qr. RQ-R definition is very similar to PQ-R query,
therefore we omit further details here.

Definition 4 Range Query with Direction (RQ-R):
Given a rectangular region qr in geo-space and a viewing di-
rection β, the RQ-D query retrieves all video segments that
overlap with region qr and that show it with direction β.

Definition 5 k-Nearest Video Segments Query (k-NVS):
Given a query point q in geo-space, the k-NVS retrieves
the closest k video segments that show the query point q.
The returned video segments are ordered from closest to the
farthest based on their distance to q.
k-NVS(q,k):
q × FOV → {(V Svj (s1, e1), .., V Svj (sk, ek)),

where ∀st, et(t = 1, .., k) and ∀j∀i st ≤ i ≤ et,
such that FOVvj (i) ∩ q 6= ∅ and

dist(V Svj (st, et), q) ≤ dist(V Svj (st+1, et+1), q)
}
,

The function dist calculates the minimum distance be-
tween the camera locations of a video segment and the query
point.

Definition 6 k-Nearest Video Segments Query with bounded
Radius (k-NVS-R):
The k-NVS-R query is similar to the k-NVS and PQ-R
queries. Given a query point q in geo-space and a radius
range from MINR to MAXR, the k-NVS-R query retrieves
the closest k video segments that show the query point q
from a distance between MINR to MAXR. Similar to the
k-NVS query, the returned video segments are ordered from
the closest to the farthest based on their distance to q.

Definition 7 k-Nearest Video Segments Query with Direc-
tion (k-NVS-D):
The k-NVS-D query is also similar to the k-NVS and PQ-D
queries. Given a query point q in geo-space and a viewing
direction β, the k-NVS-D query retrieves the closest k video
segments that show the query point q with the direction β.

4.2 Algorithm Design

The query processing is performed in two major steps. In
the first step, the FOVs (i.e., the video frames) that satisfy
the query conditions in the set FOV are retrieved. The re-
turned FOVs are grouped according to the video files that
they belong to. And in the second step, the groups of ad-
jacent FOVs from the same videos are post processed to re-
trieve as the video segments in the query results. We argue
that, the length of the resulting video segments should be
larger than a certain threshold length for visual usefulness.
For some query types, such as RQ-R and RQ-D queries, the
number of consecutive FOVs that match the query require-
ments is usually large enough to form a reasonable length
video segment, therefore this post processing step is straight-
forward. However, for more restricted queries such as k-NVS
query, often the formed video segments may contain only a
few FOVs. Therefore this post processing step may add ad-
ditional video frames to the video segments according to the
requirements of the search application.

Next we will further elaborate on these two major steps of
the query processing. In Section 4.2.1, we will describe the
retrieval of the FOVs that match the query requirements for
each of the proposed query types. In Section 4.2.2, we will
describe a simple approach for the post processing of the
retrieved FOVs to form the resulting video segments.

4.2.1 Query Processing: Retrieval of Matching FOVs
In this section, we will present the algorithms for run-

ning the proposed query types on our three-level grid struc-
ture. We will describe these queries under three groups:
Point query (PQ-R and PQ-D), Range query (RQ-R and
RQ-D) and k-NVS query (k-NVS and k-NVS-D). Within
each query group, we will further elaborate on the direction
and bounded radius queries.

We retrieve the FOVs that match the query requirements
in two steps: a filter step followed by a refinement step.
First, in the filter step, we search the three-level index struc-
ture starting from the first level and then moving down to
the second and third level, if needed. We refer to the set
of FOVs resulting set from the filter step as the candidate
set. In the refinement step, an exhaustive method is carried
out to check whether an FOV actually satisfies the query
conditions.

xQFOV1

FOV2

MINR
MAXR

Figure 4: Illustration of the function applyRadius

Point Query.
The video segments that show a certain object of inter-

est at a specific location can be retrieved through the point
query. When the object size is small, it would be preferred
to retrieve the close-up views of the object, with a reasonable

size for better visual perception. The PQ-R query searches
the video frames with a certain radius range restriction for
the distance of the camera locations from the query point,
according to the required level of details in the video. Addi-
tionally, the camera viewing direction when the query object
appears in the video can be an important factor for the im-
age perception of the observer. For example, an object’s
images from a certain viewing direction (e.g. the frontal
view, when the object is viewed from the North) can be of
higher importance. The PQ-D query can exploit the col-
lected camera directions for querying video segments when
the camera is pointing towards the requested direction (e.g.,
North).

Algorithm 1: Point query with bounded radius (PQ-R) and

direction (PQ-D).

Input: query type: q type (PQ-R, or PQ-D), query
point: q〈lat, lng〉,

(for PQ-R) min and max radius: MINR, MAXR,
(for PQ-D) viewing direction : β
Output: vector segments 〈vj , V S(st, et)〉

1 C`1 = getCellID(q); /* First-level cell */

/* Point Query with bounded Radius */

2 if q type is PQ-R then
3 C`2 = getSubCellID(q); /* Second-level cell */

4 subCellsInR = applyRadius(q, C`2, MINR,
MAXR);

5 candidateFOV s = fetchData(subCellsInR);
6 res = refinementStep(candidateFOV s);

7 end
/* Point Query with Direction */

8 if q type is PQ-D then
9 C`3 = getDirCellID(C`1,β,ε); /* Third-level cell

*/

10 candidateFOV s = fetchData(C`3);
11 res = refinementStep(candidateFOV s);

12 end
13 segments = getVideoSeg(res,q type);
14 return segments

Algorithm 1 formalizes the query execution for point queries
PQ-R and PQ-D. When processing the point query, we first
calculate the first-level cell ID C`1 where the query point
is located. For typical point query (PQ), the candidate
FOVs would include all FOVs indexed at the cell C`1. For
the Point Query with bounded Radius (PQ-R), we addition-
ally apply the distance condition given by the radius range
(MINR, MAXR). The function applyRadius reduces the
search area for the candidate FOVs in the second-level index
by eliminating the subcells outside of the radius range (see
Algorithm 2). In function applyRadius, we first retrieve the
C`2 subcell where query point q is located. Then find out all
the second-level subcells around C`2, which are within dis-
tance range MINR to MAXR from the query point. Since
this function works on subcell level, it takes all the subcells
in the shadow region into account. For example, in Fig-
ure 4, according to the minimum (MINR) and maximum
(MAXR) distance conditions, only the FOVs locating be-
tween the two dot circles will be returned. In this example,
both video frames FOV 1 and FOV 2 overlap with q. How-
ever, since the location of FOV 2 is outside of the shadow
region, it won’t be returned by the function applyRadius,
and therefore FOV 2 will not be included in the candidate
set. For the Point Query with Direction (PQ-D), we check

the third–level index cell to find cells that cover the query
angle range given by (β-ε, β+ε). We return the FOVs in-
dexed in the cells {C`3(h1), ..., C`3(h2)} where β-ε falls into
the angle range of C`3(h1) and β+ε falls into the angle range
of C`3(h2). As an example, let us assume that the 360 ◦

viewing angle range is divided into x = 45 ◦ intervals in the
third-level index. When β = 0 ◦ (i.e., North) and ε = 5 ◦,
we would retrieve the FOVs in the third-level cells C`3(7)
and C`3(0) as the candidate FOVs.

Algorithm 2: applyRadius()

Input: query point: q〈lat, lng〉,
min and max radius: MINR, MAXR,
first–level cell: C`1, second–level cell: C`2

Output: set of second-level cells: checkRadius
1 distClose = compMinDist(q, C`2);
2 while distClose ≤ MAXR do
3 distFar = compMaxDist(q, C`2);
4 if distFar ≥ MINR then
5 checkRadius.add(getCellsAtDist(q,distClose));
6 end
7 distClose += GRIDSIZE/s;

8 end
9 return checkRadius

After the candidate FOVs are retrieved, we run the re-
finement step (through the function refinementStep) to get
the actually matching FOVs. For each FOV in the candi-
date set we check whether the FOV overlaps with q. In the
refinement step of PQ-R query, we also check whether the
distance between the camera location and the query point
is within radius range (MINR, MAXR). While for PQ-D
query, we check whether the viewing direction of the cam-
era falls into the angle range (β-ε, β+ε). These FOVs, along
with their video file ids (vj) are stored in the vector res.

Algorithm 3: refinementStep()

Input: query type: q type (PQ-R, or PQ-D)
FOV candidate set: vector candidateFOV s,
(for PQ-R) min and max radius: MINR, MAXR

Output: vector res 〈vj , FOV.id〉
1 for all the FOV s in the candidateFOV s do
2 if q type is PQ-R then
3 distP2P = dist(q, FOV .P);
4 if distP2P ≥ MINR AND distP2P ≤ MAXR

then
5 if pointInFOV(q, FOV) then
6 res.push(〈FOV.vj , FOV.id〉);
7 end

8 end

9 end
10 if q type is PQ-D then
11 if FOV.θ ≥ β − ε AND FOV.θ ≤ β + ε then
12 if pointInFOV(q, FOV) then
13 res.push(〈FOV.vj , FOV.id〉);
14 end

15 end

16 end

17 end

The last step in the point query processing is the gener-
ating of resulting video segments from the retrieved FOVs.
The function getSegments organizes the group of consecu-
tive FOVs from the same video as video segments V Svj (st, et),

where st is the starting FOV ID and et is the ending FOV ID
for the segment. The details of the getSegments function is
explained in Section 4.2.2.

Range Query.
When the search application asks for the videos that show

a large region in geo-space, rather than a point location, it
may issue a range query. The queried region is estimated
with a bounding rectangle. Similar to the PQ-R query, the
closeness to the query region, therefore the level of details
in the video, can be customized through the RQ-R query.
Additionally, the RQ-D query retrieves videos of the query
region from different view points.

Algorithm 4: Range query with bounded radius (RQ-
R) and direction (RQ-D).

Input: query type: q type (RQ-R, or RQ-D)
query rectangle: qr〈lat1, lng1; lat2, lng2〉,
(for RQ-R) min and max radius: MINR, MAXR,
(for RQ-D) viewing direction : β
Output: vector segments 〈vj , V S(st, et)〉

1 C`1 = getCellID(qr)
/* Range Query with bounded Radius */

2 if q type is RQ-R then
3 cellsInR = applyRadius(qr, C`1, MINR, MAXR);
4 for each cell C`1(m, n) in cellsInR do
5 overlapArea = compOverlap(C`1(m, n),qr);
6 if overlapArea ≥ φ then
7 candidateFOV s.append(fetchData(C`1(m, n)));

8 end
9 else

10 subCellsInR =
applyRadius(overlapArea,C`2,MINR,MAXR);

11 candidateFOV s.append(fetchData(subCellsInR));

12 end

13 end

14 end
/* Range Query with Direction */

15 if q type is RQ-D then
16 for each cell C`1(m, n) in cellsInR do
17 overlapArea = compOverlap(C`1(m, n),qr);
18 if overlapArea ≥ φ then
19 C`3 = getDirCellID(C`1(m, n),β,ε);
20 end
21 else
22 subCells =

applyRadius(overlapArea,C`2,0,RV);
23 C`3 = getDirCellID(subCells,β,ε);

24 end
25 candidateFOV s.append(fetchData(C`3));

26 end

27 end
28 res = refinementStep(candidateFOV s);
29 segments = getVideoSeg(res,q type);
30 return segments

In the range query processing, a naive approach is to ac-
cess only to the first-level index to get the candidate FOVs.
Since the first-level grid cells are larger, each FOV appears
only in a few C`1 cells. When the overlap area between the
C`1 cell and the query rectangle is large, using the first-

level index is more efficient, since the duplicate FOV IDs in
the candidate set is minimized. On the other hand, if the
query rectangle overlaps with a small percentage of the C`1

cell, the retrieved candidate set will have many false posi-
tives due to FOVs covering parts of the C`1 cell but not the
query region. Therefore, in our range query processing algo-
rithm, we use a hybrid approach where we try to cover the
query region with a mixture of C`1 and C`2 cells. We try to
minimize the uncovered regions in cells (i.e., minimizing the
false positives) and at the same time, we also minimize the
duplicate FOV IDs in the candidate set, by using as many
C`1 cells as possible. The goal is to reduce the size of the
candidate set, so that the time required to process and sort
the FOVs in the refinement step is minimized.

Algorithm 4 formalizes the query execution for the range
queries RQ-R and RQ-D. In Algorithm 4 we first find out
which cells will be accessed from the first-level and second-
level indexes. Among the C`1 cells that overlap with qr, we
choose the cells whose overlap areas are larger than a certain
threshold value φ. If the overlap area is less than φ, we
cover the overlap region with the C`2 subcells. Recall that
the second-level subcells hold the list of the FOVs whose
camera locations are within those subcells. Therefore, to
retrieve the candidate FOVs from a C`2(m, n) subcell, we
need to search for the neighboring subcells around it, and
find out the FOVs in those subcells which overlap with the
C`2(m, n). After finding out the cells and subcells that we
would retrieve the candidate FOVs from, the rest of the
query processing is similar to PQ-R and PQ-D queries.

Figure 5: Illustration of k-NVS query

k-NVS Query.
Typical kNN queries consider only the distance between

a query point and the objects in the database. In our geo-
tagged video search system, we consider not only the dis-
tance between the query point and cameras in the database,
but also the visibility of the query point from the camera
location. Here, we propose the k-Nearest Video Segments
query as, “For a given point q in geo-space, find the nearest
k video segments that overlap with q.” Taking Figure 5 as
an example, the camera locations of the video segment V1 at
time t is closer to the query point q than that of V2. Due to
the camera’s location and viewing direction, the FOVs of V1

cannot cover q while the FOVs of V2 can. In typical kNN
queries, V1 will be selected before V2 because V1 is closer to
q. However, in the k-NVS query, V2 will be selected as the
nearest neighbor instead of V1 because of the visibility. The
k-NVS query can be utilized in various video search appli-
cations to continuously retrieve the most related videos that
show a frequently updated query point. Additional radius
range and viewing direction requirements can be added to

the query through the k-NVS-R and k-NVS-D queries.

Algorithm 5: k-Nearest Video Segments Queries: k-
NVS, k-NVS-R, and k-NVS-D

Input: query point: q〈lat, lng〉, number of output
video segments: k,

(for k-NVS-R) min and max radius: MINR, MAXR,
(for k-NVS-D) viewing direction : β,
Output: vector segments

〈
V Svj (st, et)

〉
1 C`1 = getCellID(q), C`2 = getSubCellID(q);
2 priority queue sortedFOV s 〈 FOV ID, distance to q 〉

= ∅;
3 if q type is k-NVS-R then
4 subCellsInR=applyRadius(q,C`2,MINR,MAXR);
5 end
6 else
7 subCellsInR = applyRadius(q, C`2, 0, RV);
8 end
9 i=0; distClose=δ/s;

10 while not enough FOV s AND nextSubCells=
getNeighbors(q,subCellsInR,i++) is not empty do

11 candidateFOV s = fetchData(nextSubCells);
12 for all the FOV s in the candidateFOV s do
13 distP2P = dist(q, FOV);
14 if q type is k-NVS then
15 if pointInFOV(q, FOV) then
16 sortedFOV s.push(〈FOV ID, distP2P 〉);
17 end

18 end
19 if q type is k-NVS-R then
20 if distP2P ≥ MINR AND

distP2P ≤ MAXR AND pointInFOV(q,
FOV) then

21 sortedFOV s.push(<
FOV ID, distP2P >);

22 end

23 end
24 if q type is k-NVS-D then
25 if FOV.θ ≥ β − ε AND FOV.θ ≥ β + ε then
26 sortedFOV s.push(<

FOV ID, distP2P >);

27 end

28 end

29 end
30 while sortedFOV s.top() ≤ distClose AND

numsegments < k do
31 topFOV = sortedFOV s.pop();
32 if isNewSegment(topFOV ,res) then
33 numsegments++;
34 end
35 res.push(topFOV);

36 end
37 i++; distClose+ = δ/s;

38 end
39 segments = getVideoSeg(res,q type);
40 return segments

Algorithm 5 formulates the k-NVS query processing. We
first retrieve the C`2 cell where the query point is located
and, similar to the PQ-R query, we find out the neighboring
subcells around C`2 from which the FOVs can see q. For
the k-NVS-R query, the search range around the C`2 cell

is (MINR, MAXR) whereas for the k-NVS and k-NVS-D
queries search range is (0, RV). For the the k-NVS queries,
we need to return only the closest k video segments. There-
fore, in order to find the candidate FOVs, we gradually
search the neighboring subcells in the search range, start-
ing with the closest subcells. As shown in Algorithm 5, we
first retrieve the candidate FOVs in the subcells closest to
C`2 (within distance 0 or MINR). And at each round we
increase the search distance by δ/s and retrieve the FOVs
in the next group of cells within the enlarged distance (δ/s
is the size of a second-level subcell). We apply the refine-
ment step on these candidate FOVs and store them in pri-
ority queue, in which the FOVs are sorted based on their
distance to q in ascending order. The refinement steps for
the k-NVS-R and k-NVS-D queries are similar to PQ-R and
PQ-D queries. After each round of candidate retrieval, the
candidate FOVs are organized as videos segments, i.e., the
consecutive FOVs from the same video file are grouped to-
gether. The search for candidate FOVs ends either when the
number of video segments reaches k or when there are no
more subcells that need to be checked. The output of the
algorithm is the list of the retrieved video segments, ordered
from closest to the farthest.

4.2.2 Query Processing: Returning Video Segments
As explained in Section 4.2.1, in query processing after re-

trieving the FOVs that satisfy the query requirements, the
groups of adjacent FOVs from the same videos are returned
as the resulting video segments. The length of the returned
segments may vary extensively for different query types. For
example for the range query, when the query region expands
to a large area, the number of consecutive FOVs that over-
lap with the query region is usually large. However for more
selective queries, such as k-NVS query, the length of an indi-
vidual segment can be as short as a few seconds. In Table 1,
we report the number of FOVs returned from the k-NVS
query and the number of video segments that these FOVs
form for different values of k. The average segment length
for k=20 is around 3 seconds, with a maximum segment
length of 20 seconds. As the k value increases, the segment
lengths also get longer. Practically, for visual clarity, the
length of the resulting video segments should be larger than
a certain threshold length. Depending on the requirements
of the video search application, the query processing unit
should customize the creation of the returned segments.

Table 1: Statistics for k-NVS queries with different
k values

k # of FOVs # of Segments Segment Max Length
20 109847 35391 20
50 212746 56664 50
100 291957 72179 71
150 318504 77096 89
200 326110 78523 89
300 327541 78796 89

In our current implementation, for the point and range
queries, the returned FOVs are post-processed to find out
the consecutive FOVs that form the segments. If two sepa-
rate segments of the same video file are only a few seconds
apart, they are merged and returned as a single segment.
For the k-NVS query, the video segments are formed simul-
taneously as the closest FOVs are retrieved. For each video
segment the video ID, the starting and ending FOV IDs and

the segments distance to the query point are maintained, i.e.,
〈vj , st, et, dist〉. When the next closest FOV is retrieved, if it
is adjacent to one of the existing segments it is merged with
it, otherwise a new segment is formed. The st, et, and dist
values are updated accordingly. For example, we assume
that the returned segments should be at least 20 seconds
long. Therefore the short segments are expanded to 20 sec-
onds. The segment’s starting and ending offsets are adjusted
so that the dist value for the segment is minimized.

4.3 Motivated Example
With the development of digital cameras and mobile de-

vices, people always want to search for videos that show
what is happening during a special event. In this case, an
event reviewing system could be used. People always cap-
ture their own videos from a special location and upload
to video searching engines (such as Youtube). Hence, users
may suffer from reviewing all these videos to know what
happened. Therefore, automatically generating video cover-
ing both detail and the whole perspective would be helpful
for users to know the event. In such kinds of applications,
queries with restriction of either the viewing direction or
bounded radius can be applied for generating videos. For
example, users want to search for what was happening at
Marina Bay area during National Day in Singapore this year.
In this case, we can firstly search for all the videos capturing
that area at that special time. After that, video segments
are split and classified according to different viewing direc-
tions and distance ranges from the query location. Based
on these video segments, a reviewing video can be gener-
ated with high semantics.

5. EXPERIMENTAL EVALUATION

5.1 Synthetic Data Generation
Due to the difficulty of collecting large set of real videos,

synthetic dataset for moving cameras with positions inside
a 75km × 75km region in the geo-space is used to test the
performance of the grid-based index structure. We gener-
ate camera trajectories using the Georeferenced Synthetic
Meta-data Generator [4]. The generated synthetic meta-
data exhibit equivalent characteristics to the real world data.
The camera’s viewable angle is 60 ◦ and the maximum vis-
ible distance is 250m [3]. In the experiments, we chose
100 randomly-distributed center points within the area and
generate 5500 moving cameras around these center points.
Hence each one of the cameras is traced for 1000 seconds,
with snapshot of one frame per second, due to the sampling
rate of GPS and the compass. Therefore we have a dataset
with about 5.4 million video frames. The center points are
randomly distributed in the experiment region, which are
used as the initial positions of the camera location. Subse-
quently, the cameras start to move inside the region under a
maximum speed limit, as well as a viewing direction rotation
limit. The speed of the cameras, and the position of cen-
ter points, affect the final distribution of the frames. Faster
movement causes the frames distributed uniformly through-
out the region which is the contrast to slower movement. To
simulate real-world case, we set the maximum speed of mov-
ing cameras as 60km/h, with the average speed as 20km/h.
Besides the speed limit, we also set the camera’s maximum
rotation limit as 30 ◦ per second, which guarantees that the
camera rotates smoothly and not jump from one direction

to another, the same as what people do when they are cap-
turing videos. With restriction to these limitations, unex-
pected data (e.g., the object’s speed is larger than the speed
threshold, viewing direction rotates over the rotation limit
and etc.) are thrown away from the dataset. The parame-
ters used are summarized in Table 2.

Table 2: Parameters of the Synthetic Dataset
Parameter Value

of Center points 100
Speed Limit 60km/h

Average Speed 20km/h
Rotation Limit 30 ◦/s
of Cameras 5500
of Snapshots 1000

of FOVs 5405051
viewable angle of FOV (α) 60 ◦

visible distance of FOV (RV) 250m

5.2 Experimental Settings
For all the experiments we constructed a local MySQL

database and stored all the FOV meta-data, as well as the
index structure tables. All the experiments were conducted
on a server with two quad core Intel(R) Xeon(R) X5450
3.0GHz CPUs and 16GB memory running under Linux Red-
Hat 2.6.18. All the comparisons used in the experiments
are based the geo-coordinates (latitude and longitude). The
experiment results reported here show the cumulative num-
ber of FOVs returned for 10000 randomly generated queries
within the experiment region. In our experiments, we mainly
measure the Processing Time(PT for short) and the number
of Page Access(PA for short). PT includes the total amount
of time for searching for the candidate set through the in-
dex structure in the filter step and the time for using the
exhaustive method to process overlap calculation in the re-
finement step. We assume that even if the index structure
was in memory, when we access to it, we count PA as it
is on disk. Additionally, we set the buffer size as one page
large. Therefore, when there is no page hit in the buffer,
PA will be increased by one. This also helps to analyze the
performance if the index structure is disk-based instead of
memory-based. In our experiments, we try to fully utilize
the space inside each one page by storing as many nodes as
possible for both the grid-based approach and R-tree. The
page has empty space only when there exists no exact match
between the page space and the node size.

In the next two experiments, we process the typical queries
without any distance or direction condition as preliminary
experiments to decide the basic parameters: the value of
the grid size δ and the overlap threshold φ. In the following
experiments, if not specifying, the default value of k is 20,
and query rectangle size is 250m× 250m. When generating
the moving objects, the maximum viewable distance(RV) of
the camera is set as 250m. As shown in Figure 6, grid with
size equalling to RV /2 or RV performs better than greater
sizes. The performance of grid-based index structure with
size of RV is better in some cases while worse in others
compared to that of RV /2. Since our structure is mainly
designed for k-NVS query, we set δ equalling to RV .

As well as the grid size, the overlap threshold φ for range
query also affects the performance of the grid-based index

 0

 1k

 2k

 3k

 4k

 5k

 6k

 7k

 8k

point range k-NVS

pr
oc

es
si

ng
 ti

m
e

(m
s)

different types of queries

RV/2
RV

2RV
4RV

(a) processing time

 0

100k

200k

300k

400k

500k

point range k-NVS

pa
ge

 a
cc

es
se

s

different types of queries

RV/2
RV

2RV
4RV

(b) page accesses

Figure 6: Effect of grid size

 0

 1k

 2k

 3k

 4k

 5k

 6k

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
oc

es
si

ng
 ti

m
e

(m
s)

value of φ

R-tree
Grid

(a) processing time

 0

100k

200k

300k

400k

500k

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pa
ge

 a
cc

es
se

s

value of φ

R-tree
Grid

(b) page accesses

Figure 7: Effect of φ on range query performance

structure. As presented in section 4.2.1, both the first-(C`1)
and second-level(C`2) indices are loaded into memory. To
decide the value of φ, we ran a series of typical range queries
without distance and direction conditions. As shown in Fig-
ure 7, PA of grid-based index structure is smaller than that
of R-tree when φ is smaller than 40%. Moreover, the grid
approach is faster than R-tree for most of the cases, and
we achieve the fastest performance at value of 30%. Con-
sequently, φ is chosen as 30%. The parameters used in the
experiment are summarized in Table 3.

Table 3: Experiment Parameters and Their Values
Parameter Value
Page Size 4096
Cache Size 4096

Non-Leaf Node Size(2D R-tree) 64
Leaf Node Size (2D R-tree) 36

Non-Leaf Node Size (3D R-tree) 80
Leaf Node Size (3D R-tree) 52

C`1 Node Size 68
C`2 Node Size 36
C`3 Node Size 4

FOV Meta-data Size 32
Grid Size δ 250m

s 4
Angle Error Margin ε 15 ◦

Overlap Threshold φ 30%

5.3 Comparison
R-tree is one of the basic index structures for spatial data

which is widely used. In our experiments, we insert the
Minimum Bounding Rectangle (MBR for short) of all FOVs
into R-tree and process all types of queries based on R-
tree [2] implemented by Melinda Green for comparison. To
our best knowledge, this implementation achieves the best
performance compared to others. We use Equation 1 to
calculate the MBR of an FOV with geo-coordinates. The
parameter σx and σy denotes the factor of converting dis-
tance to geo-coordinate difference in the x-axis or y-axis di-

rections, respectively. The query procedure is to search for
all the FOVs whose MBRs overlap with the query input in
the filter step and hence to use the exhaustive method to
calculate the actual overlap in the refinement step. Conse-
quently, some of the parameters (e.g., value of k for k-NVS
query, distance condition, etc.) have no effect on PA for
R-tree.

MBR.left = min(lng, lng ± RV × sin (θ ± α/2)/σx)
MBR.right = max(lng, lng ± RV × sin (θ ± α/2)/σx)
MBR.bottom = min(lat, lat ± RV × cos (θ ± α/2)/σy)

MBR.ceil = max(lat, lat ± RV × cos (θ ± α/2)/σy)
(1)

5.3.1 Effect of distance condition
We study the effect of the distance condition by varying

the radius range from 25m to 250m. For each one of the
radius range, we start from the minimum distance condi-
tion MINR equalling to 0m until the maximum distance
condition MAXR reaching 250m. The results shown in Fig-
ure 8 are the averages of the different radius ranges. Since
the RV of an FOV is set as 250m when generating the syn-
thetic data, the last point with radius range of 250m is the
result of processing queries without distance condition. Fig-
ures 8 (a), (b) and (c) illustrate the processing time of PQ-R
query, RQ-R query and k-NVS-R query respectively, while
Figures 8 (d), (e) and (f) illustrate PA for each type of query.
In general, the performance of our grid-based index struc-
ture works better than R-tree on both PT and PA. Figures 8
(a) and (b) show that PT for radius range of 250m is a lit-
tle shorter than that of 225m. The reason is that all the
subcells in the second-level index C`2 needs to be checked
for large radius range and this costs extra PT compared to
queries without distance condition. As shown in Figures 8
(d), (e) and (f), PA remains the same because R-tree finds
out all the FOVs whose MBRs overlap with the query in the
filter step, regardless of the radius range. The PA grows as
the radius range becomes larger.

5.3.2 Effect of direction condition
We proceed to evaluate the efficiency of our grid-based

index structure with directional queries. In this experiment,
the query datasets are the same as those used in queries
without direction condition, except the additional viewing
direction constraint. As presented in Table 3, the angle
margin ε in this experiment is 15◦. The 2D and 3D R-trees
used in Figure 9 denote the R-tree for processing queries
without direction condition and queries with direction con-
dition, respectively. Figure 9 (a) shows that, in the pro-
cessing of PQ-D query and k-NVS-D query, PT of R-tree is
almost two times of that without direction condition. The
reason for this is that searching one more dimension in R-
tree slows down the performance of R-tree. The situation
is different for RQ-D query because of less number of can-
didates obtained from the filter step so that the refinement
step costs less time. On the contrary, the grid-based ap-
proach directly accesses the third-level (C`3) cell to narrow
down the search for a small amount of meta-data within a
short time. Figure 9 (b) shows that PA in R-tree for pro-
cessing queries with direction is over eight times larger than
the typical ones while the grid-based approach shrinks to
about half. Because most of PA is to memory pages, the
difference in PT which is not that large as PA. Comparing
queries with and without direction condition between R-tree
and the grid-based approach, our algorithm significantly im-

 0

 1k

 2k

 3k

 4k

 5k

 6k

 7k

point range k-NVS

pr
oc

es
si

ng
 ti

m
e

(m
s)

different types of queries

2D R-tree
3D R-tree

Grid(directional query)
Grid

(a) processing time

0.0

500.0k

1.0M

1.5M

2.0M

2.5M

point range k-NVS

pa
ge

 a
cc

es
se

s

different types of queries

2D R-tree
3D R-tree

Grid(directional query)
Grid

(b) page accesses

Figure 9: Effect of direction condition

 0

 1k

 2k

 3k

 4k

 5k

 6k

 7k

 8k

 100 150 200 250 300 350 400 450 500

pr
oc

es
si

ng
 ti

m
e

(m
s)

size of query rectangle(m)

R-tree
Grid

(a) processing time

 0

 50k

100k

150k

200k

250k

300k

350k

400k

 100 150 200 250 300 350 400 450 500

pa
ge

 a
cc

es
se

s

size of query rectangle(m)

R-tree
Grid

(b) page accesses

Figure 10: Effect of rectangle size on range query
performance

proves the performance for directional queries.

5.3.3 Effect of query rectangle size
We next study the effect of the query rectangle size to

range query. The query rectangle size varies from 125m to
500m, which is from half to two times of the grid size δ.
Larger area contains more number of videos and thus leads
to longer processing time and more number of accesses. As
expected, the result in Figure 10 shows that PT and PA
increases with the query rectangle size. From Figure 10(a),
PT increases slower using the grid-based approach, which
means that our approach performs even faster for large query
area than R-tree. However, Figure 10(b) shows that as the
query area grows, the difference in number of page accesses
between these two methods gets smaller. Since users are
always interested in what happened at special places or small
regions, our grid-based approach is better than R-tree.

5.3.4 Effect of k value
To test the performance of the grid-based approach with

different values of k for k-NVS query, we calculate PT and
PA using the same query points. The results in this experi-
ment are discrete FOVs (not video segments). Figure 11(a)
shows the comparison in PT and Figure 11(b) shows the
comparison in PA. As k increases, PT increases for the grid-
based index at the beginning and keeps nearly unchanged
when k is larger than 200, which is closed to the maximum
number of FOVs found in PQ. PT for R-tree is almost the
same with different k values because all the results are found
and sorted once. When k is larger than 150, PA for the grid-
based approach is almost the same since the searching radius
is enlarged to the maximum according to the design of the
structure. From the gap in Figures 11(a) and (b) between
the R-tree and our approach, we can infer that even if the
dataset is large and k is big, the grid-based index structure
performs better than R-tree.

6. CONCLUSIONS
In this study we proposed a novel multi-level grid-based

index structure and a number of related query types that

0.0

200.0

400.0

600.0

800.0

1.0k

1.2k

 25 50 75 100 125 150 175 200 225 250

pr
oc

es
si

ng
 ti

m
e

(m
s)

radius range(m)

R-tree
Grid

(a) processing time for PQ-R query

 0

 1k

 2k

 3k

 4k

 5k

 25 50 75 100 125 150 175 200 225 250

pr
oc

es
si

ng
 ti

m
e

(m
s)

radius range(m)

R-tree
Grid

(b) processing time for RQ-R query

0.0

200.0

400.0

600.0

800.0

1.0k

1.2k

 25 50 75 100 125 150 175 200 225 250

pr
oc

es
si

ng
 ti

m
e

(m
s)

radius range(m)

R-tree
Grid

(c) processing time for k-NVS-R query

 0

 50k

100k

150k

200k

250k

 25 50 75 100 125 150 175 200 225 250

pa
ge

 a
cc

es
se

s

radius range(m)

R-tree
Grid

(d) page accesses for PQ-R query

 0

 50k

100k

150k

200k

250k

300k

350k

400k

 25 50 75 100 125 150 175 200 225 250

pa
ge

 a
cc

es
se

s

radius range(m)

R-tree
Grid

(e) page accesses for RQ-R query

 0

 50k

100k

150k

200k

250k

 25 50 75 100 125 150 175 200 225 250

pa
ge

 a
cc

es
se

s

radius range(m)

R-tree
Grid

(f) page accesses for k-NVS-R query

Figure 8: Effect of distance condition

0.0

200.0

400.0

600.0

800.0

1.0k

1.2k

 0 50 100 150 200 250 300

pr
oc

es
si

ng
 ti

m
e

(m
s)

value of k

R-tree
Grid

(a) processing time

 0

 50k

100k

150k

200k

250k

 0 50 100 150 200 250 300

pa
ge

 a
cc

es
se

s

value of k

R-tree
Grid

(b) page accesses

Figure 11: Effect of value of k on k-NVS query per-
formance

facilitate application access to such augmented, large-scale
video repositories. Our experimental results show that this
structure can significantly speed up the query processing, es-
pecially for directional queries, compared to the typical spa-
tial data index structure R-tree. The grid-based approach
successfully supports new geospatial video query types such
as queries with bounded radius or queries with direction re-
striction. We also demonstrate how to form the resulting
video segments from the video frames retrieved.

7. REFERENCES
[1] http://www.youtube.com/t/press_statistics.

[2] http://superliminal.com/sources/RTreeTemplate.zip.

[3] S. Arslan Ay, R. Zimmermann, and S. Kim. Viewable Scene
Modeling for Geospatial Video Search. In ACM Int’l
Conference on Multimedia, pages 309–318, 2008.

[4] S. Arslan Ay, R. Zimmermann, and S. H. Kim. Generating
Synthetic Meta-data for Georeferenced Video Management. In
ACM SIGSPATIAL Int’l Conference on Advances in
Geographic Information Systems (GIS), 2010.

[5] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The
R∗-tree: An Efficient and Robust Access Method for Points
and Rectangles. In ACM SIGMOD Int’l Conference on
Management of Data, pages 322–331, 1990.

[6] H. Chon, D. Agrawal, and A. Abbadi. Range and KNN Query
Processing for Moving Objects in Grid Model. Mobile Networks
and Applications, 8(4):401–412, 2003.

[7] D. Eppstein, M. Goodrich, and J. Sun. The Skip Quadtree: A
Simple Dynamic Data Structure for Multidimensional Data. In
Annual Symposium on Computational Geometry, 2005.

[8] R. Finkel and J. Bentley. Quad Trees: A Data Structure for
Retrieval on Composite Keys. Acta informatica, 4(1):1–9, 1974.

[9] C. Graham. Vision and Visual Perception. 1965.

[10] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial
Searching. In ACM SIGMOD Int’l Conference on
Management of Data, 1984.

[11] T. Hwang, K. Choi, I. Joo, and J. Lee. MPEG-7 Metadata for
Video-based GIS Applications. In IEEE Int’l Geoscience and
Remote Sensing Symposium, 2004.

[12] K. Kim, S. Kim, S. Lee, J. Park, and J. Lee. The Interactive
Geographic Video. In IEEE Int’l Geoscience and Remote
Sensing Symposium (IGARSS), volume 1, pages 59–61, 2003.

[13] S. Kim, S. Arslan Ay, B. Yu, and R. Zimmermann. Vector
Model in Support of Versatile Georeferenced Video Search. In
ACM Int’l Conference on Multimedia, 2010.

[14] X. Liu, M. Corner, and P. Shenoy. SEVA: Sensor-Enhanced
Video Annotation. In ACM Int’l Conference on Multimedia,
pages 618–627, 2005.

[15] T. Navarrete and J. Blat. VideoGIS: Segmenting and Indexing
Video Based on Geographic Information. In 5th AGILE
Conference on Geographic Information Science, pages 1–9,
2002.

[16] J. Nievergelt, H. Hinterberger, and K. Sevcik. The Grid File:
An Adaptable, Symmetric Multikey File Structure. ACM
Transactions on Database Systems (TODS), 9(1):38–71, 1984.

[17] S. Nutanong, R. Zhang, E. Tanin, and L. Kulik. The
V∗-Diagram: A Query-dependent Approach to Moving KNN
Queries. Proceedings of the VLDB Endowment,
1(1):1095–1106, 2008.

[18] N. O’Connor, T. Duffy, C. Gurrin, H. Lee, D. Sadlier,
A. Smeaton, and K. Zhang. A Content-Based Retrieval System
for UAV-like Video and Associated Metadata. In Airborne
Intelligence, Surveillance, Reconnaissance (ISR) Systems and
Applications. SPIE, 2008.

[19] A. Okabe. Spatial Tessellations: Concepts and Applications
of Voronoi Diagrams. John Wiley & Sons Inc, 2000.

[20] P. Rigaux, M. Scholl, and A. Voisard. Spatial Databases with
Application to GIS. SIGMOD Record, 32(4):111, 2003.

[21] N. Roussopoulos, C. Faloutsos, and S. Timos. The R+-tree: A
Dynamic Index for Multi-dimensional Objects. In Int’l
Conference on Very Large Databases (VLDB), pages 507–518,
1987.

[22] Z. Zhu, E. Riseman, A. Hanson, and H. Schultz. An Efficient
Method for Geo-referenced Video Mosaicing for Environmental
Monitoring. Machine Vision and Applications, 16(4):203–216,
2005.

