
Multimedia Systems (2006) 11(6): 497–512
DOI 10.1007/s00530-006-0030-4

REGULAR PAPER

Leslie S. Liu · Roger Zimmermann

Adaptive low-latency peer-to-peer streaming and its application

Published online: 12 April 2006
c© Springer-Verlag 2006

Abstract Peer-to-peer (P2P) streaming is emerging as a
viable communications paradigm. Recent research has fo-
cused on building efficient and optimal overlay multicast
trees at the application level. A few commercial products are
being implemented to provide voice services through P2P
streaming platforms. However, even though many P2P pro-
tocols from the research community claim to be able to sup-
port large scale low-latency streaming, none of them have
been adopted by a commercial voice system so far. This gap
between advanced research prototypes and commercial im-
plementations shows that there is a lack of a practical and
scalable P2P system design that can provide low-latency ser-
vice in a real implementation. After analyzing existing P2P
system designs, we found two important issues that could
lead to improvements. First, many existing designs that aim
to build a low-latency streaming platform often make the un-
reasonable assumption that the processing time involved at
each node is zero. However in a real implementation, these
delays can add up to a significant amount of time after just a
few overlay hops and make interactive applications difficult.
Second, scant attention has been paid to the fact that even in
a conversation involving a large number of users, only a few
of the users are actually actively speaking at a given time. We
term these users, who have more critical demands for low-
latency, active users. In this paper, we detail the design of
a novel peer-to-peer streaming architecture called ACTIVE.
We then present a complete commercial scale voice chat sys-
tem called AudioPeer that is powered by the ACTIVE pro-
tocol. The ACTIVE system significantly reduces the end-
to-end delay experienced among active users while at the
same time being capable of providing streaming services to
very large multicast groups. ACTIVE uses realistic process-
ing assumptions at each node and dynamically optimizes the
streaming structure while the group of active users changes
over time. Consequently, it provides virtually all users with

L. S. Liu (B) · R. Zimmermann
Computer Science Department, University of Southern California,
Los Angeles, California 90089, USA
E-mail: [lleslie, rzimmerm]@usc.edu

the low-latency service that before was only possible with a
centralized approach. We present results from both simula-
tions and our real implementation, which clearly show that
our ACTIVE system is a feasible approach to scalable, low-
latency P2P streaming.

Keywords Peer-to-peer streaming · Application level
multicast · Tree optimization · Floor control

1 Introduction

The expanding capabilities of the Internet to handle digital
media streams is enabling new applications and transform-
ing existing applications in many areas. Currently peer-to-
peer architectures (P2P) have become a popular platform for
very scalable applications, many of which were only viable
using a centralized server just few years ago. This advance
is made possible with the great improvements both in terms
of the computing power of the personal computers used by
regular consumers and the fast growing availability of broad-
band connections. In the last few years many P2P protocols
have been designed and implemented. Since we are focusing
on issues about latency performance, we surveyed many P2P
system designs and applications for low-latency streaming.
One interesting finding is as follows: on one hand there are
many proposed P2P designs that claim to be scalable and
suitable for streaming, on the other hand the few success-
ful P2P based commercial applications are not using these
proposed designs, and most of them sacrifice scalability in
exchange for low latency. We conclude that currently there
is no practical P2P design that can satisfy both scalability
and low-latency.

Large scale low-latency streaming is very useful in many
areas such as emergency communications, battlefield moni-
toring and multiuser chat room used in distance education.
There are two major challenges in these applications: low-
latency and scalability. In this paper, we will present a novel
design called adaptive core-based tree for interactive virtual

498 L. S. Liu, R. Zimmermann

environments (ACTIVE)1 [1] that fuses these two features
under one umbrella. Furthermore, a commercial level audio
chat room that is built on the ACTIVE technology is also
presented to show the feasibility of our design. The reason
we chose a multiparty audio chat room to test our ACTIVE
protocol is: multi-user audio conference is very demand-
ing in terms of both delay and scalability. Previous research
has concluded that a round trip time (RTT) latency of more
than 200 ms will make a voice conversation difficult. This
amount of delay can easily be exceeded when using tradi-
tional multi-hop P2P architecture. Also, our audio system
is used in distance education classroom, which each room
could concurrently be used by hundreds of students from
all around the country. To the best of our knowledge, cur-
rent popular audio systems, such as iChat and Skype, cannot
support audio groups of this size.

In order to provide low-latency streaming in a scalable
P2P architecture, our ACTIVE protocol addresses two major
issues that have not been seriously discussed before. First,
most existing P2P solutions ignore the processing delay in-
troduced at each intermediate node when they optimize the
P2P streaming structure. However, in an overlay network
the application-layer processing time is usually much larger
than the processing time in the physical network routers.
Since the processing delay is introduced at each interme-
diate node when propagating data through the overlay path,
these relay latencies can add up to a significant amount after
just few overlay hops. For example, we measured the pro-
cessing delay at each overlay node in an application called
AudioPeer [2] that uses ACTIVE for distance online educa-
tion and we found that the average processing delay at each
node is approximately 30 ms. Compared with the two to
ten milliseconds physical network latency between the hosts
we tested, this contributes a significant amount to the over-
all end-to-end delay. The average end-to-end delay in tradi-
tional P2P systems quickly exceeds the threshold for inter-
active scenarios when the group size grows. This explains
why full-connected (i.e., mesh) designs dominate P2P sys-
tems which require low-latency performance. However, full-
connected designs suffer from certain limitations. Since ev-
erybody is connected to everybody else, the system is not
scalable. With today’s advanced computer technology, this
design may be capable of providing service to group sizes of
tens, but not hundreds or thousands of participants. Second,
even though the total number of users in P2P groups is often
large, frequently only a small fraction of these users are in-
teracting with other users at any given time. We call them ac-
tive users. For example, in a large online classroom for dis-
tance education, the number of users joining a session could
be in the hundreds, but the number of active users (e.g., the
instructor plus the students who are asking questions), is
limited to a few participants. This phenomenon provides us
with an opportunity to optimize the P2P structure for better
end-to-end delay among this relatively small group. To the
best of our knowledge, no existing P2P architecture has been
designed to take advantage of this opportunity.

1 Adaptive Core-based Tree for Interactive Virtual Environments

Our ACTIVE protocol is capable of providing inter-
active streaming services to large groups. ACTIVE con-
tributes the following new ideas to P2P architectures. First,
it distinguishes active users from passive users so that an
intelligent optimization can be performed on this subgroup
instead of the whole group. Second, it dynamically adapts
the P2P structure to maintain delay service quality for active
users. Finally, it uses a dynamic floor control mechanism to
allow a growing number of active users grows as the size of
the multicast group increases. The floor control constraint
can be adjusted while the system is running to dynamically
allow more or less active participants. By dynamically op-
timizing the P2P structure, ACTIVE can significantly re-
duce the end-to-end delay among active users and at the
same time, provide streaming service to very large multicast
groups. In ACTIVE, virtually all users are provided with the
low-latency service that before was only possible in a cen-
tralized or full-connected approach.

The rest of this paper is organized as follows: Sect. 2
lists some of the related work. Section 3 describes the de-
sign of ACTIVE in detail, which is followed by Sect. 4
on how we simulate and evaluate the performance of AC-
TIVE. Section 5 introduces a multiuser audio chat room us-
ing ACTIVE as the streaming protocol and the user feed-
back is discussed on Sect. 6. Finally we draw conclusions in
Sect. 7 and show our gratitude in Sect. 7.

2 Related work

Many P2P architectures (e.g., Narada [3], Yoid [4],
HMTP [5], NICE [6], OMNI [7], SCRIBE [8], CAN-
Multicast [9], Zigzag [10], Skype [11] and Ostream [12])
have been proposed or adapted for streaming media services.
However, due to the long end-to-end delay in overlay net-
works, these designs either make the impractical assump-
tion that the processing delay on relay nodes is ignorable
and hence failed to provide low latency service for real ap-
plications, or manage to provide low-latency streaming by
using a full-connected architecture that is not very scalable.

Narada [3] is a mesh-based approach for many-to-many
streaming. It constructs a tree whenever a sender wants
to transmit a media stream to receivers. Due to the heavy
control overhead, Narada does not scale well to large P2P
groups. NICE [6] is designed to support a large streaming
receiver set and its multi-layered design reduces the control
overhead. A similar design is proposed in Banerjee et al. [7],
which additionally tries to optimize the overall end-to-end
delay among all streaming receivers. Zigzag [10] optimizes
the performance of NICE by constraining the control over-
head to a constant value. In these three designs, all peers
are considered to have the same delay requirement and opti-
mization is performed to reduce the delay among all peers,
not among active users as in ACTIVE. The failure to distin-
guish between active and passive users makes it problematic
for them to achieve low latency performance in an multi-hop
architecture design. SCRIBE [8] and CAN-multicast [9] are

Adaptive low-latency peer-to-peer streaming and its application 499

based on Distributed Hash Tables (DHT), which are used
to generate node identifiers and then create a multicast tree.
In these approaches, the multicast path between nodes is
determined by the current topology of the multicast mem-
bers, hence the delay between users cannot be reduced dy-
namically, as in ACTIVE, by optimizing the tree connec-
tions. Skype [11], which is also based on peer-to-peer tech-
nology, is emerging as a popular online audio conferencing
application. Skype can provide low-latency audio service,
but with a limitation on how many users can participate
in the same room. Ostream [12] is designed to utilize the
strong buffering capacities on the multicast overlay nodes
and thus reduce the network bandwidth requirement for on-
demand media distribution. Due to the delay introduced by
the buffering at intermediate nodes, Ostream is not suitable
for an interactive live streaming environment such as an au-
dio chat room.

3 The design

The design of ACTIVE is comprised of five components:
(a) classification of active and passive users, (b) the Credit
Point system, (c) tree construction and maintenance, (d) tree
optimization, and (e) the embedded floor control mecha-
nism. We will now describe these five components in turn.
Some of the frequently used terms and their definitions are
listed in Table 1.

There are two major performance challenges for all P2P
streaming systems: high scalability and low latency. High
scalability refers to the ability to provide streaming services
to large multicast groups without causing congestion on the
physical network. Except for a few early designs [3], most

Table 1 List of terms used in this paper and their respective definitions

Term Definition Units

V Set of all users on current multicast group, |V | is the total number of all users
A Set of all active users on current multicast group, |A| is the total number of active users
G Application level complete graph containing all nodes in V
E Set of edges that connect all nodes in V , E = V × V
|Ei, j | The physical network delay between host i and host j
NA′ Maximum number of active users allowed
P The application-layer processing delay. Also called relay delay. ms
T Current multicast tree that connects all nodes in V
R System optimization frequency control parameter Hz
Om System wise control overhead for operation M
Ii Idle time at host i s
K Degree limit of T , maximum number of children allowed for each node in V
F System floor control parameter
Di, j Overlay data delivery path from host i to host j
|Di, j | Overlay end-to-end delay from host i to host j ms
DA System wise average end-to-end delay among all active nodes in A ms
DA(i) Average end-to-end delay from host i to all other active users ms
DV System wise average end-to-end delay among all nodes in V ms
DV (i) Average end-to-end delay from host i to all other host in V ms
H O Pi, j Number of intermediate relay nodes between host i and host j
CPi Credit Point assigned to node i
CPt System wide CP threshold that allows a user to switch to active mode
RDP-AU Ratio of average overlay delay for active nodes compared to MST tree result
RDP-ALL Ratio of average overlay delay for all nodes compared to MST tree result

current P2P architectures scale well to very large groups.
Traditionally, P2P systems have been used for distributing
stored content, where latency is not a critical design issue.
However, when P2P technology is adapted for live stream-
ing, low latency becomes an essential requirement. Tree-
based approaches are very popular among systems designed
for low-latency applications because the minimum spanning
tree (MST) is proven to be able to provide the minimum end-
to-end delay among all nodes. Since most multicast tree de-
signs impose a degree limit K at each node, the MST prob-
lem becomes NP-hard [13]. The performance of all existing
tree-based solutions is bound by the performance of the op-
timal tree constructed with the MST algorithm.

Distinguishing active users is crucial to providing low-
latency streaming service. Existing systems are building
their overlay topologies to closely match an MST tree. How-
ever, as illustrated in Fig. 1a–c a MST tree linking all multi-
cast nodes cannot guarantee the minimum delay among ac-
tive users, where low latency is critical. Figure 1b shows
that when the application layer processing delay is 30 ms
at each node, the average overlay delay among active nodes
is 123.33 ms. Shown in Fig. 1c, the delay in the ACTIVE
generated tree is only 83.33 ms.

When the application processing delay P is added to the
networking delay, the average latency in overlay P2P sys-
tems quickly rises above the threshold for a smooth inter-
active experience when the group size increases. This oc-
curs even if an optimal tree is built with the MST algorithm.
The application processing delay P is determined by vari-
ous factors, e.g., the operating system, the CPU speed, and
the available memory. Figure 1d shows the processing de-
lay at two of the intermediate nodes of an audio conference
application using ACTIVE.

500 L. S. Liu, R. Zimmermann

C

F E

D

B

A

60 10

30

40

30

50

30

20

50

Physical Network for Node A to F

a.

40

30 20

A

B

FC

D

E

10

30

b. MST: W = 130

Average Delay For B, C, F = 123.33 ms , P=30ms

B

C

AD

F

E

30 80

80 30 70

c. ACTIVE: W = 290

Average Delay For B, C, F = 83.33 ms, P=30ms

Active Nodes

Active Nodes

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

R
el

ay
 P

ro
ce

ss
in

g
D

el
ay

 (
m

ill
i-s

ec
)

Time (sec)

avg = 34ms at peer 1
avg = 54ms at peer 2

(a)-(c) MST vs. ACTIVE (d) Application-layer Processing Delay

Fig. 1 Examples

The goal of ACTIVE is to provide low latency stream-
ing service to large multicast groups. ACTIVE extends the
P2P service to the interactive domain where centralized ap-
proaches are still dominant. In this report, we present how
ACTIVE brings together the best features of both central-
ized and distributed systems, namely low latency and high
scalability.

To this end, ACTIVE builds a core-based tree T that in-
cludes all group members, and dynamically optimizes the
tree to minimize the average delay among active users.
Applications that leverage the ACTIVE streaming service
are responsible to inform their ACTIVE module when the
user switches between active and passive mode. Based on
the provided information, ACTIVE will automatically con-
struct, maintain and optimize the overlay topology to satisfy
the performance requirements.

3.1 Problem formulation

3.1.1 Network model

The physical network consists of routers connected via links,
and end-hosts that are connected to these routers through
access connections. The delay between end-hosts and their
accessing router is smaller than the average delay between
routers. This models both the characteristics of a intra-
domain and inter-domain network.

Subsequently, the overlay network is built from end-
hosts and on top of the physical network topology. The over-
lay network can be modelled as a complete directed graph,
denoted by G = (V, E). V denotes the set of all end hosts
and E = V ×V refers to the set of connections. Ei, j denotes
the directed edge from host i to host j , while |Ei, j | repre-
sents the physical network delay between host i and j . We
assume symmetric links, i.e., |Ei, j | = |E j,i |.

The multicast tree T is a subset of G and represents the
P2P topology. The data delivery path Di, j consists of all the

intermediate nodes on T from host i to host j and all the
edges connecting them. |Di, j | represents the overlay end-to-
end delay between host i and host j on T . It is calculated as
shown in Eq. (1), where Pk denotes the processing delay at
each of the intermediate node K on the path from host i to
host j .

|Di, j | =
j∑

k=i

Pk +
∑

Em,n∈Di, j

|Em,n| (1)

For a distributed application, the processing delay Pk ac-
counts for a large component of the overall delay. In turn,
the processing delay is determined by a lot of factors, e.g.,
streaming type, compression algorithm, computing power of
the peer machine, etc. We model the processing delay at a
audio stream mixing node that use the GSM.610 audio codec
in Eq. (2).

Pk = Trecv_buffer + Tdecode_buffer + Tmix_processing

+ Tencode_buffer + Tsend_buffer (2)

We can see that in a peer-to-peer network, Pk is usually not
the same because of the varying computing power at each
node. The decode/encode buffer delay is defined by the com-
pression algorithm and the receive/send buffer is defined by
the application’s network module. For example, there is a
34 ms processing delay on average in one of our test nodes
illustrated in Fig. 1d.

3.1.2 Solution objective

Recall that the objective of ACTIVE is to minimize the av-
erage delay among active users, DA, in a given multicast
group V . This problem can be formally stated as degree-
bound minimum spanning tree problem: For a given graph
G and user set V , find a tree T ′, where T ′ ⊆ G, so that the
degree constraint is satisfied at each node and

∑
i, j∈A |Di, j |

is minimized.

Adaptive low-latency peer-to-peer streaming and its application 501

The degree-bound minimum spanning tree problem is
NP-hard, so we propose a heuristic solution which is de-
scribed in detail in Sect. 3.3. As a basis of the proposed
solution, we designed a distributed score computing algo-
rithm termed Credit Point system, which is described next.

3.2 Credit point system

As an integral part of the design of ACTIVE, we introduce
a credit point (CP) system. From the observation of the dy-
namics of active users in a large online audio conference
system, we conjecture that the number of active users grows
sub-linearly with the size of the group. In our CP system,
the total number of credit points grows logarithmically with
the group size. As we will see soon, the credit points con-
trol the total number of active users in the system and how
ACTIVE optimizes the tree. The CP system provides some
key features of ACTIVE and works as follows.

Each node is assigned a CP value when it joins the mul-
ticast tree T , with a value ranging from zero to one. If the
degree limit of T is denoted K , then the formula for CP as-
signments is as follows:

CProot = 1
CPChild = CPParent/K , K ≥ 2 (3)

Once a node i is assigned its CPi , it will keep the value until
there is a topology change. As mentioned earlier, ACTIVE
distinguishes the nodes in V as active users A and passive
users V − A. A user can switch from active to passive status,
or vice versa. CPi is used to validate these transitions in a
distributed manner. CPt denotes the system-wide threshold
for switch transitions, and the validation condition is shown
in Eq. (4).

CPi ≥ CPt, i ∈ V (4)

If Eq. (4) is satisfied, node i can switch from passive to
active mode. Since nodes in active mode usually generate
more data for delivery, Eq. (4) is also called the Floor Con-
trol Equation. In ACTIVE, there is no constraint for switch-
ing from active to passive mode. The total number of active
nodes |A| is bound by CPt and degree K . If we denote NA′
as the maximum number of active nodes allowed, then the
following equation illustrates how NA′ is constrained by CPt
and K :

|A| ≤ NA′ = K − CPt

CPt × (K − 1)
, K ≥ 2, 0 < CPt < 1

(5)

The degree limit K is usually stable for a multicast config-
uration, but the threshold CPt should change according to
the size of the group. If we denote F as the dynamic floor
control parameter with a value ranging from 0 to 1, ACTIVE
calculates CPt based on following equation:

CPt = F

logk |V | , 0 < F < 1 (6)

By substituting Eq. (6) into Eq. (5), we arrive at an equation
to calculate NA′ from V directly: NA′ = K×logk |V |−F

F×(K−1)
. This

shows that the maximum number of active users NA′ is a
logarithmic function of the total number of users |V |.

The complexity of the CP system is low and, since the
active user set A is usually only a small subset of V , AC-
TIVE is able to achieve close to optimal performance in
most cases (described in Sect. 4.2).

3.3 Heuristic solution

Finding an optimal solution for degree-bound minimum
spanning tree is NP-hard, therefore we propose a heuris-
tic solution which can be computed in a fast and distributed
fashion. The basic idea is as follows: Since the number of
active users is relatively small even in a large group, form-
ing a cluster among active users in which every active user
is directly connected to another active user will effectively
reduce the number of intermediate nodes, thus reducing the
processing delay introduced by these nodes. This solution is
formally stated as follows.

3.3.1 Heuristic solution to solve degree-bound minimum
spanning tree problem

For ∀i, j ∈ A, HOP′ ← max(|HOPi, j |). Find a subtree
T ′ (T ′ ⊆ T , A ⊂ T ′), so that the following condition is
satisfied:

⎧
⎨

⎩
HOP′ ≤ logk

1

CPt2
− 1

∀i ∈ A, ∃ j : |HOPi, j | = 0, j ∈ A, j �= i
(7)

The above algorithm is designed to be efficient and min-
imize the control overhead by avoiding an exhaustive search
for an optimal result. An efficient solutions is desirable for
the following reasons. First, while a complex heuristic al-
gorithm may generate better results in a static topology, it
must restart the compute process whenever there is a topol-
ogy change. P2P systems are highly dynamic environments
where the overlay topology is frequently changing, and a
complex algorithm may need a long time to reach its result.
Second, the novel design of distinguishing active users from
passive users makes ACTIVE able to establish very low-
latency service among active users, thus reducing the need
to compute an optimal result. In Sect. 4 we show that AC-
TIVE can even generate better performance among active
users compared with the MST solution.

Note that even though the goal of the optimization pro-
cess is to reduce the delay among active users, in our pro-
posed heuristic solution we do not need to measure the de-
lay among active users in order to achieve our performance
goal, thus reducing the control overhead in our system.

502 L. S. Liu, R. Zimmermann

3.4 Tree construction

The construction of an ACTIVE system is formally the pro-
cess of building a multicast tree. Tree maintenance is re-
quired to repair the tree when there is an error in the tree
topology. In this section, we focus on the construction and
maintenance procedures of the multicast tree T . Tree opti-
mization in ACTIVE is discussed in Sect. 3.5.

3.4.1 Join

During the join process, ACTIVE uses a heuristic Shortest
Path Tree (SPT) algorithm (Algorithm 1) to construct the
tree. A new node starts the join process by contacting a
rendez-vous point (RP) node. Such a bootstrapping tech-
nique is widely used in peer-to-peer applications. The RP
node could be a dedicated, well-known service or just any
node that participates currently in the P2P multicast group,
as long as the new node knows the RP’s network address.
After joining the P2P system, a node runs independently of
the RP node.

Algorithm 1 JOIN
Require: R P is online
1: L ← candidate nodes from R P
2: while L �= ∅ do
3: C ← nearest node in L
4: if C is ok to join then
5: setup connection with C
6: parent← C
7: break while loop
8: else
9: L ← add new candidate nodes referred by C
10: remove C from L
11: end if
12: end while

A new node obtains a list of candidate parents L during
the join process. The new node finds its nearest neighbor by
sending out request messages simultaneously to all candi-
date nodes in list L . A candidate node will immediately reply
once it receives the request message. The new node recodes
L in the order in which it receives the response messages and
the first responding node C in L will be considered the near-
est node. Node C will be chosen as the candidate parent and
a setup process immediately follows. If an error is causing
a setup failure (e.g., C exceeds its degree limit or suddenly
goes offline), the new node will remove this candidate from
L , choose the next node C ′ at the head of list L and starts
the above process again.

3.4.2 Leave

A leaving node must perform a few steps, as shown in
Algorithm 2, to ensure that after its departure the multicast
tree T is loop-free and all nodes are reachable through
T . Failure to finish these steps is considered an error in

ACTIVE and its impact is discussed in Sect. 3.4.3. The
only exception occurs when the current node has no child
nodes. In this case, the node can simply disconnect from the
service.

Algorithm 2 LEAVE
1: inform all neighbor nodes that N is leaving
2: if N is the core
3: C ′ ← nearest neighbor node
4: setup C ′ as the new core
5: inform all other neighbor nodes to set C ′ as

parent
6: else
7: if N has child node then
8: N ′ ← N ’s parent
9: inform all child nodes to set N ′ as parent
10: end if
11: end if
12: disconnect from the service

3.4.3 Error detection and recovery

In a tree-based architecture there are two types of errors in
the topology: loops and tree splits. ACTIVE uses different
mechanisms to detect these two errors.

A tree split can be easily detected at the nodes which lost
connections to their parents or children. To avoid redundant
message exchanges, we use an asymmetric scheme: a lost
connection to the parent is considered an error at the chil-
dren nodes but a lost connection to a child node is not an
error at the parent node. This rule makes it a child node’s re-
sponsibility to repair the tree and find a new parent when the
connection is broken. Detecting a connection error is sim-
ple in ACTIVE because it utilizes the TCP protocol in or-
der to stream to nodes behind NAT devices, and TCP will
automatically detect and report disconnection errors. The
process of finding a new parent is different from the join
process and can be done without help from the RP server.
As mentioned in Sect. 3.4.1, each node saves a list of us-
able candidate parent nodes L during the join procedure.
When a node loses the connection to its parent, L will be
used to find a new parent, following the process described in
Algorithm 3. Note that the rejoin process is different from
the join process. First, when initially joining, a node tries
to find the closest node in L , while with rejoin a node is
attached to the first usable node in L . Second, the rejoin pro-
cess is independent of the RP server, which is required as
a starting point in the initial join process. These differences
are designed to make the rejoin process in ACTIVE fast and
scalable.

Whenever a node i changes its parent, we consider this
to be a topology change in the multicast tree. Node i will
send out update messages to its direct child nodes, which
will update their local information and in turn forward
the update message to their child nodes. If this change at
node i forms a loop, the update message from node i will
eventually be forwarded back to itself, and a loop error is

Adaptive low-latency peer-to-peer streaming and its application 503

detected. Once node i detects a loop, it will disconnect from
the parent and start the rejoin process. Note that in the rejoin
process, the new parent must have an equal or bigger CP
value than CPi . This will avoid node i to form another loop
by joining the nodes in the subtree rooted at itself, where
every node has a smaller CP value.

Algorithm 3 REJOIN
1: L ← the candidate node list built in JOIN process
2: while L �= ∅ do
3: C ← first node in L that has bigger or equal CP
4: if C is ok to join then
5: setup connection with C
6: parent← C
7: break while loop
8: else
9: L ← add new candidate nodes referred by C
10: remove C from L
11: end if
12: end while

Note that ACTIVE is an event-driven protocol and there
is no message flooding at any time during tree construction,
tree maintenance or tree optimization.

3.5 Tree optimization

The delay among active users is gradually decreased by exe-
cuting a tree optimization algorithm. The optimization func-
tion is run at each node and triggered by the users’ requests
to become active. For example, in an audio conferencing ap-
plication, speakers are active users, and passive users can
become active either manually, e.g., by pressing a button, or
automatically when there is a voice input detected. The lo-
cal node will determine whether the request can be granted
based on Eq. (4). If the request can not be granted, the opti-
mization process is triggered.

3.5.1 Clustering active users

The clustering is achieved by moving the active nodes
gradually towards the root of the tree until Eq. 4 is satisfied.
This move is accomplished by exchanging an active child
node with its non-active parent or another higher-level node
(Algorithm 4). It is worth mentioning that even though the
complete optimization may take as long as a few seconds,
each step only requires a few milliseconds to setup the new
streaming connections. The loss of data during these steps
is so small that it does not affect the playback quality. In
fact, in the audio conferencing application that runs on the
ACTIVE protocol, we cannot detect any audible glitches
during the optimization.

Algorithm 4 OPTIMIZE
1: AGAIN:
2: P ← parent of local host i
3: IP ← idle time at P
4: if IP ≤ R−1 then
5: return
6: end if
7: //First Phase
8: while P is not active do
9: if P is core then
10: ask P to set local host i as parent
11: setup local host i as core
12: else
13: P ′ ← the parent of P
14: ask P to set local host i as its parent
15: ask P ′ to set local host as new child
16: P ← P ′
17: setup connection with P ′
18: end if
19: end while
20:
21: //Second Phase
22: IF CPi ≥ CPt then
23: send update message to all children nodes
24: return
25: else
26: L ′ ← all passive node immediate connected

to A
27: remove all host j from L ′ if CP j ≤ CPi or

CP j = 1
28: if L ′ = ∅ then
29: send update message to all children nodes
30: return
31: else
32: C ← first node in L ′
33: P ′ ← the parent of C
34: ask C to set P as its parent
35: ask P ′ to set local host as new child
36: P ← P ′
37: setup connection with P ′
38: end if
39: end if
40: goto AGAIN:

The optimization algorithm first observes the idle time
IP at the parent node to see if it has been idle for long
enough. The system optimization frequency control param-
eter R determines how frequently a reconstruction can be
performed on a parent node. If IP ≤ R−1, the optimization
is canceled. For example, in a system with R = 0.1, a node
would need to continuously remain idle for 10 s before an-
other node can exchange position with it. As shown in Algo-
rithm 4, the rest of the optimization procedure is performed
in two phases. In the first phase, the active node i gradually
moves towards the root until its parent is also an active node.
In the second phase, ACTIVE condenses the cluster of active
users further if necessary.

504 L. S. Liu, R. Zimmermann

If the optimization function returns without being able to
find a better position for node i , it means there are currently
too many active users in this multicast group, and node i
will be denied to switch to active status. This also functions
as part of the floor control mechanism in ACTIVE, which is
discussed next.

3.6 Floor control

A floor control mechanism is of practical importance for
large scale streaming systems because too many active users
may saturate system resources or degrade the overall stream-
ing quality. For example, if too many people are talking si-
multaneously in an audio chat room, the conversation will
become incomprehensible.

ACTIVE implements a dynamic floor control function
(Eq. (5)) to control the total number of active users. The
maximum number of active users NA′ gradually increases
along with the size of the group |V |. In Eq. (6), F is called
the floor control parameter. A system administrator can dy-
namically change F to lower or raise the threshold CPt, and
thus control the total number of active users in the system.
We reformat Eq. (5) as follows:

NA′ = K × logk |V | − F

F × (K − 1)
(8)

If the system requires that all users can be active at the
same time, the floor control mechanism can be conveniently
disabled by setting F to the value of F ′ calculated in Eq. (9).
It is not hard to prove that in this case Eq. (4) is always
satisfied.

F ′ = K × logk |V |
|V | × (K − 1) + 1

(9)

3.7 Control overhead analysis

We define the control overhead O for an operation M as
the total number of messages received at all involved end-
hosts multiplied by the frequency of this operation. Since
floor control is performed along with tree optimization, there
is no floor control overhead added to the ACTIVE system.

Many existing P2P protocols depend on a refreshment
based mechanism to maintain their service. For example, in
the NICE protocol, each node i needs to send out a Heart-
Beat message periodically to all other nodes in the same
cluster. This process continues to consume network band-
width as long as the node is in the system. If we denote the
refreshment period as h, and N ′ as the average number of
nodes receiving the refreshment message, the control over-
head Or for all refreshment based protocols is:

Or = |V | × N ′

h
(10)

ACTIVE uses the CP system to distribute the computation
for tree maintenance and optimization. Because ACTIVE is
an event-driven system, in the worst case messages are re-
quired to be sent to all nodes in V . If the operation hap-
pens with the same frequency as in the refreshment-based
approach, the control overhead in ACTIVE is:

OA = |V |
h

(11)

Equation (11) shows that given the same event fre-
quency, ACTIVE achieves a much smaller control overhead
compared with refreshment based designs.

4 Performance evaluation

We evaluated our ACTIVE design with simulations in an
NS-2 environment [14]. The ACTIVE code used in the sim-
ulation is the same as the one used in the audio chat room
application running on Windows. Only minor changes were
made to compile the code in a Linux environment. A module
to collect the actual delay among nodes was also added. In
the simulation we compared ACTIVE’s performance to trees
generated by Prim’s minimum spanning tree algorithm [15]
with the same physical network topologies. The generated
MST trees are the optimal solution for all existing tree-based
designs (e.g., [3–6]) which assume no application-layer pro-
cessing delay at each node. Note that these MST trees are
not the optimal solutions for ACTIVE.

4.1 Performance metrics

In our performance evaluation, the MST tree is used as the
performance baseline. Here we introduce two terms to de-
scribe the performance: RDP-AU and RDP-ALL. RDP de-
notes the relative delay penalty, which is the ratio of the
average overlay delay in ACTIVE to the average overlay
delay in MST. RDP-AU is the RDP calculated only for all
active nodes and RDP-ALL is calculated for all multicast
nodes. Smaller RDP values indicate better performance and
an ACTIVE tree outperforms the MST tree if its RDP-AU is
smaller than 1. Note that RDP-ALL is never less than 1.

In the NS2 environment, each node i can easily calculate
the overlay delay to another node j by comparing the global
time-stamp of a packet received from node j to the current
system global time. The average overlay delay at node i to

all active nodes can be calculated as DA(i) =
∑

j∈A |Di, j |
|A|−1 or

DV (i) =
∑

j∈V |Di, j |
|V |−1 to all nodes in V . All nodes report their

DV (i) and DA(i) to the RP server, where the overall average
delay is calculated by using the following equations:

DA =
∑

i∈A |DA(i)|
|A| , i ∈ A (12)

DV =
∑

i∈V |DV (i)|
|V | , i ∈ V (13)

Adaptive low-latency peer-to-peer streaming and its application 505

To measure the performance of ACTIVE, we need to
measure the actual delay in our performance evaluation ex-
periments. An delay monitoring module is added to AC-
TIVE to collect such data. Each active node sends out up-
date messages to other nodes to calculate the overlay delay
when overlay topology changes. In the NS-2 environment,
there exists a global system timer that every node can ac-
cess. This makes the delay measurements easy and accurate.
When a node i sends out an update message, it stamps the
message packet with its sending time. The update packet is
forwarded at each node that receives it, after adding the pro-
cessing delay P . Each node, e.g., host j , upon receiving an
update message, can simply subtract the sending time from
current system time and obtain |Di, j |, the overlay delay be-
tween host i and host j . As each node knows if its remote
nodes are active or passive by using the information con-
tained in the update messages, it can calculate DA(i) and
DV (i) as follows.

DA(i) =
∑

j∈A |Di, j |
|A| − 1

, i �= j (14)

DV (i) =
∑

j∈V |Di, j |
|V | − 1

, i �= j (15)

Each node will send its DA(i) and DV (i) to RP server node,
where the system wide DA and DV are calculated:

DA =
∑

i∈A |DA(i)|
|A| , i ∈ A (16)

DV =
∑

i∈V |DV (i)|
|V | , i ∈ V (17)

For a given network topology, |Ei, j | is fixed between any
host i and host j . Also, for a given multicast tree T , the hop
distance between any two hosts is also a constant. When we
take a snapshot of the system topology at a particular time,
DA and DV are linear function of P. Our experimental results
show this relationship in Fig. 2.

4.2 Simulation setup

The router-level physical network is generated according
to the Transit-Stub graph model, using the Georgia Tech
Internetwork Topology Models (GT-ITM). Delay between
routers is randomly distributed from 5 to 35 ms. Each end-
host node is randomly attached to one of the routers with an
access delay of 0.5 ms. Figure 3 shows one of the topolo-
gies we generated with 400 participants and 20 active users.
In addition, based on the measurement we conducted with
the audio application (Fig. 1d), we used the average value
P = 30 ms as the processing delay at each node to simplify
the simulation. However, using this specific value does not
affect the final conclusion of our simulation results.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250 300

A
ve

ra
ge

 D
el

ay
 (

m
s)

Application-layer Processing Delay: P (ms)

 36 Users, 4 Active Users

Active Users
All Users

Fig. 2 Example: DA and DV vs. P

Fig. 3 Network topology (400 users)

4.3 Simulation results

ACTIVE achieved dramatic performance improvements
over other existing systems in our simulation. We ran 2000
iterations of the simulation with uniformly distributed user
groups ranging in size from 4 to 400 and active user groups
ranging in size from 4 to 20. Figure 4a shows that compared
with the MST solution, ACTIVE achieves a smaller delay
among active users in 97% of the 2000 simulations we con-
ducted. If we consider R D P-AU = 1.5 as an evaluation
threshold for good overlay delay performance, then in an as-
tounding 99.95% of all cases ACTIVE delivered good per-
formance.

For reference purposes, we also calculated the average
delay among all users. As illustrated in Fig. 4b, ACTIVE
delivered good performance in 72.75% of all cases. It is in-
teresting to see that in 1.90% of the cases, ACTIVE can,
surprisingly, provide better performance than the MST tree.
After investigating the cause, we found that these counter-
intuitive results are not incorrect. For all leaf nodes, which

506 L. S. Liu, R. Zimmermann

 0

 20

 40

 60

 80

 100

 120

 0.01 0.1 1 10

N
um

be
r

of
 In

te
ra

tio
ns

RDP-AU of ACTIVE

RDP-AU: ACTIVE

97%

99.95%

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0.1 1 10

N
um

be
r

of
 In

te
ra

tio
ns

RDP-ALL of ACTIVE

RDP-ALL: ACTIVE

72.75%

(a) for active users (b) for all users

Fig. 4 Delay performance of ACTIVE

will not perform any forwarding job, the application pro-
cessing delay will not be counted for the overall delay. This
means that the more leaf nodes are in the overlay tree, the
less overall delay we can achieve. The MST algorithm only
guarantees to generate a tree with minimum tree weight, not
the minimum number of leaf nodes. Hence, in some rare
cases, ACTIVE can outperform MST.

4.3.1 Experimental scenario

To show how tree optimization in ACTIVE reduces the de-
lay among active users over time, we divided our simulation
iterations into three phases: A, B and C. In phase A, the AC-
TIVE protocol did not identify any active users, and no op-
timization was performed; in phase B, active users started to
emerge at random times, and optimization was dynamically
invoked to optimize the tree. In phase C, all active users were
identified and optimization completed, hence the multicast
tree became stable.

We chose three iterations from the 2000 simulations as
examples to illustrate how ACTIVE optimizes the delay per-
formance among active users over the time (Fig. 5a–c). In
all these three iterations, ACTIVE has a smaller application
level delay DA than the MST when the simulation finishes
phase B and reaches phase C. It is very important to recog-
nize that by having a close performance compared to MST,
as shown in Fig. 5a and c, ACTIVE out-performs other exist-
ing algorithms which consider MST as the optimal solution.
Also illustrated in these figures, the average overall end-to-
end delay had not been significantly changed during the op-
timization process. Our experimental results show that while
DA is reduced by 50% or more, DV remains almost the same
in most cases, or is even reduced in some cases.

It is also worth noting that while ACTIVE has been
deployed for practical use, the MST algorithm is compu-
tationally too complex to be used in any real-time sys-
tem. The computation complexity of Prim’s algorithm is
O(|E | + |V | log |V |).

5 Application using ACTIVE

Educational tools that utilize the Internet to reach off-
campus students are becoming more popular and many
educational institutions are exploring their use. Here we
describe a multiuser audio chat system called AudioPeer.
AudioPeer is built on the ACTIVE protocol, it is designed
to foster collaboration and interactive learning between stu-
dents, teaching assistants and instructors. The AudioPeer
system provides an interactive platform where groups of stu-
dents can discuss assignments, teaching assistants can con-
duct lab sessions and professors can answer questions from
students during lectures. The decentralized nature of the Au-
dioPeer system avoids bottlenecks and allows it to scale to
large groups of participants.

A multiuser audio chat system involves numerous tech-
nical challenges that need to be addressed to build such an
application. The number of participants in a chat session
may be several dozens, with each student needing to hear
and possibly talk to any other person in the session. Ad-
ditionally, the end-to-end audio latency needs to be kept
sufficiently low such that natural interaction is possible.
Hence, we aim for our system to be scalable, practical (e.g.,
work with different types of network connections), integrat-
able with other distance education components, and exten-
sible with new features (e.g., speaker recognition). In the
following subsections, we will describe the system archi-
tecture of AudioPeer, its multiple components and how it
integrates with the existing distance education infrastructure
called DEN [16] at our university.

5.1 System architecture

AudioPeer is a P2P based audio chat system applica-
ble to, for example, distance education. As illustrated in
Fig. 6, users are connected to each other in a decentralized

Adaptive low-latency peer-to-peer streaming and its application 507

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140

A
ve

ra
ge

 D
el

ay
 (

m
s)

System Running Time (ms)

400 Users, 20 Active Users

ACTIVE: Activer Users
ACTIVE: All Users
MST: Active Users

Phase A B c

(a) Large group.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 20 40 60 80 100 120 140

A
ve

ra
ge

 D
el

ay
 (

m
s)

System Running Time (ms)

36 Users, 4 Active Users

ACTIVE: Active Users
ACTIVE: All Users
MST: Active Users

Phase A B C

 0

 50

 100

 150

 200

 20 40 60 80 100 120 140

A
ve

ra
ge

 D
el

ay
 (

m
s)

System Running Time (ms)

4 Users, 4 Active Users

ACTIVE: Active Users
ACTIVE: All Users
MST: Active Users

Phase A B C

(b) Medium group. (c) Small group.

Fig. 5 Examples of average delays for three different groups

fashion. Every user is regarded as a connecting node in the
streaming topology and all nodes are connected to form
a shared-multicast tree. Voice streams are merged at each
node to maintain a fixed bandwidth requirement regardless
of the number of users in the system. As most P2P de-
signs do, AudioPeer also contains centralized components,
namely the website and the rendezvous point server. How-
ever, these centralized parts serve principally as the boot-
strap point and do not affect the scalability of the overall
streaming.

5.1.1 Website

AudioPeer is currently designed as a web-based system.
This enables us to deploy and upgrade the system in a fast
and easy way. Also, since most of DEN’s functions are also
web-based, this approach makes AudioPeer an integrated
component of the DEN website.

Figure 7 shows a screen shot of the current AudioPeer
homepage. It provides simple but detailed step-by-step in-
structions on how to setup the AudioPeer plug-in for new Fig. 6 AudioPeer architecture

508 L. S. Liu, R. Zimmermann

Fig. 7 AudioPeer official website

users. On the right side of the homepage, we list the cur-
rently available chat sessions. Return users can simply click
on these links to join an on-going session. This website
serves as the bootstrap point that we can find in most P2P
system designs. Additionally the website provides a link to
a questionnaire where users can provide us with feedback.
We will discuss the user feedback data later.

5.1.2 Client software

The core component of the AudioPeer system is the client
program. Currently the implementation is based on Mi-
crosoft ActiveX technology, which enables us to integrate
our client software seamlessly with almost any website and
run it on any web browser that support ActiveX technology,
such as Internet Explorer and the newly popular FireFox
browser.

We wrap our ActiveX control with a HTML based inter-
face (as shown on Fig. 8) and use Javascript to connect the
web interface with our ActiveX control. The majority area
of the interface is taken up by a text chatting window which
allows users to communicate with text in addition to voice.
On the right side is a panel which shows the list of users cur-
rently in this chat room. The icons to the right of their names
indicate the current status of the users (speaking or mute).
Users can start talking with a click of a button at the bottom
of the window. We also implemented our own silence detec-
tion algorithm, which proved to be very effective. If a user
remains silent for more than three minutes, he/she will be
automatically muted by the system so that other users who
are speaking can get a chance to move to a better position
with lower latency with respect to other speakers.

Fig. 8 AudioPeer client interface

Another important function provided by each client is
audio stream merging. As mentioned before, AudioPeer is
designed to support large size audio chat group without lin-
ear growth in the network bandwidth. This great feature is
achieved through audio merging at every node on the peer-
to-peer network. The details of audio processing in Au-
dioPeer is discussed in Sect. 5.2.

5.1.3 Rendezvous Point Server

Most P2P systems provide peers with a bootstrap server to
start the service. This server is usually called Rendezvous
Point Server (RP server). In the AudioPeer system design,
the functions of the RP server is minimized to just store ses-
sion information and record user activities for administrative
and research purposes.

The session information is stored in a MySQL database
and made available through website links. As we have dis-
cussed before, users can simply click a link on the web-
site to start the chatting experience. After clicking a link for
one chat room, the information about the session is retrieved
from the database and inserted into the AudioPeer ActiveX
control, which will use these information to start the join
process, mostly without further help from the RP server.

The RP database also persistently stores a variety of
system-wide information including: debugging and history
information, user and session management data, demo-
graphic user and course information, stored media descrip-
tions for recorded sessions, and interactive user information
such as user ratings of the system. These collected data are
very useful not only for research, but also for administrative
purposes. In the following section, we will discuss the use
of the data from the RP database to visualize the ongoing
system architecture.

Adaptive low-latency peer-to-peer streaming and its application 509

Fig. 9 Administration control interface (ACI)

5.1.4 Administration control interface

We have implemented an administration control interface
(ACI) to efficiently visualize the peer-to-peer overlay net-
work in real-time for administrative purposes (Fig. 9). This
tool is implemented with Visual C++ with OpenGL libraries
running on the Windows operating system.

Many useful system parameters are displayed on-the-
fly along with the 3D representation of the current stream-
ing tree topology. ACI is an information visualizer that also
allows active management. Besides functionalities such as
displaying system-wide information about individual nodes,
sessions and courses, ACI can also issue direct system com-
mands to individual nodes and sessions to govern the system
at large. For example, ACI can force a node to leave, mute,
relocate to another chat room if necessary, or merge two chat
rooms into one.

ACI provides a 3D control interface for the AudioPeer
system, in which there could be many concurrent chat
sessions. We concluded that by using a 3D visualization,
system administrators can gain a much better perception of
the system structure compared with a 2D version. Also a 3D
representation allows us to display more information in the
same area, which becomes an important feature for a large
scale system.

Table 2 Audio types supported

Supported audio media types

Compression type Uncompressed Compressed

Audio format PCM PCM GSM.610 MPEG Layer3
Bits per sample 8 16 8 16
Channels Mono Stereo Mono Stereo
Sampling rate (kHz) 8/16 48 8 48
Delivery rate (kbps) 64/128 1.536 13 56
Usage method LAN LAN Dial-up modem Cable modem, DSL
Latency requirement Low Low Low High
Audio quality Medium High Low High

5.2 Audio mixing

The audio mixing algorithm focuses on minimizing the net-
work utilization for our audio conferencing application. Un-
like in video conferencing, it is possible to aggregate the un-
compressed audio sources through simple arithmetic calcu-
lations, preserving the original audio bandwidth.

Each peer node is equipped with an audio mixing mod-
ule that relays the incoming audio from remote nodes to the
outgoing connections. We use a software-based audio mix-
ing algorithm called decode-mix-encode [17]. A linear mix-
ing algorithm requires all the input audio bitstreams to be
uncompressed for simple arithmetic additions and subtrac-
tions. Thus, all incoming encoded bitstreams are decoded
into their uncompressed form, and the resulting uncom-
pressed bitstreams are merged into a mixed bitstream. This
stream is later used when constructing the outgoing streams
for each respective remote node.

Table 2 lists the currently supported audio media types
and their characteristics: high-quality, low latency (PCM
stereo); medium-quality, low latency (PCM mono); low-
quality, low latency (GSM.610); and high-quality, high la-
tency (MPEG-1 Layer 3).

5.3 Implementation of ACTIVE protocol

ACTIVE is an application-level multicast protocol designed
to serve as a reliable audio streaming platform that provides
minimal overall end-to-end delay among active nodes. Aim-
ing at high scalability and low latency, the ACTIVE proto-
col dynamically maintains a shared multicast tree among all
peer nodes. For space reasons we restrict our discussion of
the ACTIVE protocol implementation to those issues that
have not been discussed before in Sect. 3 and also in rela-
tively high-level description.

We implemented the ACTIVE protocol using C/C++.
At any given moment, a user can be in either of follow-
ing states: Idle, Joining, Select, Setup, Joined, Leaving, Re-
cover and Core (Fig. 10). We use TCP instead of UDP as
streaming transportation protocol. The reason is that a lot of
remote users now connect from behind a network address
translation (NAT) device such as a home DSL modems to

510 L. S. Liu, R. Zimmermann

Fig. 10 AudioPeer state diagram

the Internet, which complicates the building of a peer-to-
peer network using UDP without a centralized server. We
also include network time protocl (NTP) functionality in our
client software to synchronize our system in a distributed
fashion.

6 User feedback and measured delay

In this section we present some feedback we obtained from
the users who used our AudioPeer system for various pur-
poses. We also present some preliminary data measuring the
actual end-to-end delay in our system in Sect. 6.2.

Table 3 Statistic of user groups

No. Question Options Feedback (%)

1. Gender Male 73.33
Female 26.76

2. Position Student 100
Others 0

3. Age range 18–22 40
23–27 60

4. How many hours per week do you use computers? 0–40 33.3
41–80 53.3
81+ 13.4

5. How many hours per week do you use email? 0–10 40
11–20 46.7
21+ 13.4

6 How many hours per week do you use online chat systems (e.g., instant messenger) 0–5 46.7
6–10 26.7
11–20 13.3
21+ 13.3

7. What is the purpose of your use of Audiopeer? Chat with friends 26.7
Educational use 60
Others 13.3

8. How many people did you chat with using audiopeer? One other person 20
Two or more 80

9. Did you talk to two or more people at the same time? Yes 46.7
No 53.3

6.1 User feedback

We deployed our AudioPeer system to diverse user groups
for testing in 2004 and early 2005. We collected feedback
from users via online questionnaires. In Tables 3 and 4 we
present the results of one questionnaire we handed out to
a class of about 160 students in the Fall of 2004. Table 3
shows the statistics of the user group and the detailed ques-
tion and feedback are listed on Table 4. As we can see, the
average rating of AudioPeer system is about 4–5 on a scale
of 7. Many users found Audiopeer very easy to use, but we
realized as a work in progress, we need to put more effort on
the audio quality, which is part of our future work.

6.2 Measured end-to-end delay

We present some preliminary results from experiments mea-
suring the end-to-end audio delay between two AudioPeer
clients in a LAN/WAN environment and identify the pri-
mary causes of any delays. We performed our experiments
on a Windows platform. Note that all results are subject to
improvements due to changes in audio I/O drivers, operating
system support, and specialized hardware.

The end-to-end audio delay is modeled as the summa-
tion of the capture interval, the play-out delay, and any net-
work latency. With our experiments, we identified the two
primary components of the end-to-end audio delay: the cap-
ture interval and minimum play-out delay. The capture in-
terval, in milli-seconds (ms), is the time period between suc-
cessive callback functions to collect the audio samples from
the audio driver. If the capture interval is 20 ms, a callback
function is invoked every 20 ms to transmit the captured au-
dio samples from the driver to the application. The minimum

Adaptive low-latency peer-to-peer streaming and its application 511

Table 4 User feedback

No. Question Feedback (scale 1–7)

1. Once you had learned how to operate AudioPeer, did you find it easy to use? 5.06
2. Did you find AudioPeer a useful way to communicate? 4.4
3. Was AudioPeer helpful in your communications? 4.53
4. Do you find AudioPeer an efficient way to communicate? 4.2
5. Were you frustrated by any delays caused by communicating with AudioPeer? 5.2
6. Did you like communicating using AudioPeer? 4.2
7. Did you enjoy communicating using AudioPeer? 4.13
8. Did you find AudioPeer fun to use? 4.13
9. Did AudioPeer make you feel connected to other people? 4.4
10. Did AudioPeer make you feel that people were at hand to answer your questions? 4.4

play-out delay, also represented in milli-seconds, is the time
used to pre-load the audio samples for smooth audio play-
out and to compensate for network jitters and slightly irreg-
ular capture intervals.

6.2.1 Experimental setup

The Windows multiMedia extension (MME) API was used
for waveform capture and playback. To precisely measure
the end-to-end audio delay, we used an audio split cable.
The two inputs of the cable were connected to the origi-
nal audio source and the receiving AudioPeer. The output
was recorded on another machine and the maximum delay
offset between the two inputs was computed using cross-
correlation in MATLAB. We repeated this experiment ten
times with the same configuration to reduce the statistical
variations.

Figure 11a shows the minimally required play-out delay
as a function of the capture interval with no audio dropouts.
We set the play-out delay as a multiple of the capture inter-
val. We observe that the minimum play-out delay increases
as the capture interval increases and also the CPU is more
heavily loaded as the capture interval decreases. If the cap-
ture interval rises above 30 ms, the play-out delay linearly

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60

m
in

im
um

 p
la

yo
ut

 d
el

ay
 (

m
s)

capture interval (ms)

computed playout delay (2 * capture interval)
measured minimum playout delay

 50

 60

 70

 80

 90

 100

 110

 120

 40 50 60 70 80 90 100

m
ea

su
re

d
on

e-
ho

p
en

d-
to

-e
nd

 d
el

ay
 (

m
s)

preloaded playout delay (ms)

capture interval = 10 ms

measured delay
computed delay (= capture interval + playout delay)

(a) minimum play-out delay (b) one-hop end-to-end delay

Fig. 11 Measured delay in AudioPeer

increases by a factor of two. However, the minimum play-
out delay levels off at 40 ms.

Figure 11b shows the measured end-to-end latency when
the capture interval is 10 ms with varying play-out delays. In
a LAN environment the network transmission delay was less
than 1 ms and the capture interval and play-out delay would
be expected to dominate the end-to-end delay. Our expec-
tation is confirmed in Fig. 11a where the play-out delay is
greater than or equal to 70 ms. The small distance between
the two curves is caused by the network delay and system
overhead. For play-out delays in the range of 40–60 ms an
additional 10 ms delay is introduced whose cause is still un-
der investigation.

From these two figures we find that the optimal capture
interval and the play-out delay are 10 and 40 ms, respec-
tively. Thus, the minimum one-hop audio delay is 60 ms in
a LAN environment. Accordingly, any multi-hop end-to-end
audio delay can be roughly represented as minimum one-hop
audio delay (=60 ms) + end-to-end network delay. Note that
placing mixing modules at intermediate relay nodes may add
additional processing delays.

Next, we also measured the end-to-end audio delay
in a WAN environment between the USC campus in Los
Angeles and Information Sciences Institute in Arlington,
Virginia. We placed a loop-back module at the east coast

512 L. S. Liu, R. Zimmermann

site to receive audio packets and reflect them back to the
sender. The average round trip time (RTT) was measured
at 70 ms with a small variance. The end-to-end audio delay
in the WAN environment exactly matches that of the LAN
environment plus the one-way network transmission delay.

These encouraging results show the feasibility of a
medium-sized application-level audio chat service in a com-
modity Windows environment. Similar results have also
been confirmed by other research groups [18, 19].

7 Conclusions

We proposed a novel P2P streaming architecture called AC-
TIVE with the innovative feature of distinguishing active
users from other users in a multicast group. Our analysis
and experiments show that this approach achieves the scal-
ability of P2P topologies while at the same time signifi-
cantly reducing the delay among active users in an interac-
tive streaming environment. This performance improvement
is achieved without significantly increasing the delay among
all other multicast members. We also tested our ACTIVE
protocol in a multiuser audio conferencing application and
therefore its feasibility has also been demonstrated. We plan
to implement and deploy ACTIVE with other applications,
for example video streaming, in the future.

Acknowledgements We wish to express our appreciation to the many
wonderful people who helped us design, implement and improve our
system. We acknowledge (in no particular order) the help of Beomjoo
Seo, Kamel Oral Cansizlar, Yuli Huang, and Margaret McLaughlin.
Many of their thoughts and comments have been incorporated into
this work. The ACTIVE and AudioPeer research was made possible
by NSF grants MRI-0321377 and Cooperative Agreement No. EEC-
9529152, and by an unrestricted cash gift by the Lord Foundation.

References

1. Zimmermann, R., Liu, S.: Active: adaptive low-latency peer-
to-peer streaming. Multimedia Computing and Networking
(MMCN). San Jose, CA (2005)

2. Zimmermann, R., Seo, B., Liu, L.S., Hampole, R.S., Nash, B.: Au-
diopeer: a collaborative distributed audio chat system. Distributed
Multimedia Systems, San Jose, CA (2004)

3. Chu, Y. hua, Rao, S.G., Seshan, S., Zhang, H.: Enabling con-
ferencing applications on the internet using an overlay multicast
architecture. In: ACM SIGCOMM 2001. ACM, San Diago, CA,
(2001)

4. Francis, P.: Yoid: Your own Internet distribution. Available online
at http://www.aciri.org/yoid/ (2000)

5. Zhang, B., Jamin, S., Zhang, L.: Host multicast: a framework for
delivering multicast to end users. In: Proceedings of IEEE Info-
com. New York (2002)

6. Banerjee, S., Bhattacharjee, B., Kommareddy, C.: Scalable Ap-
plication Layer Multicast, Technical report, UMI-ACS TR-2002
(2002)

7. Banerjee, S., Kommareddy, C., Kar, K., Battacharjee, B., Khuller,
S.: Construction of an efficient overlay multicast infrastructure for
real-time applications. In: IEEE INFOCOM 2003 (2003)

8. Castro, M., Druschel, P., Kermarrec, A., Rowstron, A.: SCRIBE:
a large-scale and decentralized application-level multicast infras-
tructure. IEEE J. Select. Areas Commun. (JSAC) (2002)

9. Ratnasamy, S., Handley, M., Karp, R., Shenker, S.: Application-
level multicast using content-addressable net-works. In: the 3rd
International Workshop on Networked Group Communication
(2001)

10. Tran, D.A., Hua, K.A., Do, T.T.: A peer-to-peer architecture for
media streaming. J. Select. Areas Commun.(JSAC) (Special Issue
on Advances in Service Overlay Networks) (2003)

11. SkyPe, http://www.skype.com
12. Cui, Y., Li, B., Nahrstedt, K.: Ostream: asynchronous streaming

multicast in application-layer overlay net-works. IEEE J. Select.
Areas Commun. (JSAC) 22(1), 191–196 (2004)

13. Blum, M., Chalasani, P., Coppersmith, D., Pulleyblank, B.,
Raghavan, P., Sudan, M.: The minimum latency prob-lem. In:
ACM Symposium on Theory of Computing (1994)

14. NS, the Network Simulator.: Information about NS is availabale
at http://www.isi.edu/nsnam/ns/

15. Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms.
MIT Press, Cambridge, MA (1997)

16. USC Distance Education Network.: Information about DEN is
availabale at http://den.usc.edu/

17. Singh, K., Nair, G., Schulzrinne, H.: Centralized conferencing us-
ing SIP. In: Internet Telephony Workshop (2001)

18. Koguchi, K., Jiang, W., Schulzrinne, H.: QoS measurement of
VoIP end-points. In: IEICE Group meeting on Network Systems
(2002)

19. MacMillan, K., Droettboom, M., Fujinaga, I.: Audio latency mea-
surements of desktop operating systems. In: International Com-
puter Music Conference (ICMCŠ01) (2001)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

