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ABSTRACT

Videos recorded with current mobile devices are increasingly
geotagged at fine granularity and used in various location-
based applications and services. However, raw sensor data
collected is often noisy, resulting in subsequent inaccurate
geospatial analysis. In this study, we focus on the challeng-
ing correction of compass readings and present an automatic
approach to reduce these metadata errors. Given the small
geo-distance between consecutive video frames, image-based
localization does not work due to the high ambiguity in the
depth reconstruction of the scene. As an alternative, we col-
lect geographic context from OpenStreetMap and estimate
the absolute viewing direction by comparing the image scene
to world projections obtained with different external cam-
era parameters. To design a comprehensive model, we fur-
ther incorporate smooth approximation and feature-based
rotation estimation when formulating the error terms. Ex-
perimental results show that our proposed pyramid-based
method outperforms its competitors and reduces orienta-
tion errors by an average of 58.8%. Hence, for downstream
applications, improved results can be obtained with these
more accurate geo-metadata. To illustrate, we present the
performance gain in landmark retrieval and tag suggestion
by utilizing the accuracy-enhanced geo-metadata.

CCS Concepts

eNetworks — Sensor networks; eComputing method-
ologies — Scene understanding;

Keywords
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1. INTRODUCTION

Online video content is continuing to experience rapid
growth. Uploading, sharing, and viewing videos on the web
have become an everyday activity in people’s lives. With
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the ubiquity of sensor-equipped smartphones and tablets, it
is increasingly common for users to take images or record
videos together with the geographic properties of the cam-
era (e.g., location and viewing direction). The presence of
the geospatial contextual information has opened up new op-
portunities in video management systems. This is especially
the case with fine-grained contextual information where ev-
ery video frame is tagged. A great number of applications,
such as navigation systems [32], travel recommendation [15],
and video tagging [23], can benefit from the geo-metadata
by utilizing it as an alternative or supplement to the tra-
ditional content analysis approaches. However, the use of
geographic information is sometimes hampered by the pres-
ence of inaccuracies in the raw sensor data. While for GPS
this issue has been extensively studied [3, 4], only a few ef-
forts have been made on the correction of orientation data
acquired from digital compasses and accelerometers [18, 20].
The difficulty level of this problem is especially high since (a)
unlike GPS, a compass sensor does not provide any accuracy
bounds, and (b) from our empirical observations compass er-
rors can sometimes be very high (up to 180°). Although the
Structure from Motion (SfM) technique can be applied for
camera pose determination, robust estimation results usu-
ally rely on the significant overlap and the large baseline
(geo-distance between camera locations) among the images
to perform 3D reconstruction [12, 22, 29]. Moreover, such
methods do not make full use of the geographic priors in
the metadata while reconstructing the scenes and therefore
result in high computational costs. In this study we argue
that, with the rapid growth of spatial data available online,
web images are no longer the only data source that may
be utilized. Buildings and other objects within a scene can
be efficiently collected from geographic information services
(GIS). Thus, we propose to use the scene context obtained
from GIS instead of the 3D models reconstructed from large
scale images to geo-register video frames to world maps.

In recent years, spatial data have become increasingly
available on the Internet. Online mapping services enable
users not only to consume but also contribute geospatial in-
formation voluntarily. For instance, OpenStreetMap (OSM)
is an open project that provides user-generated maps of the
world. In the early stage of its development, issues such
as important landmarks missing or height information of
buildings unavailable hindered its utilization in geo-based
applications. But as the data contribution growth has con-
tinued to rise quickly [5], the map data has been greatly
enriched. Nowadays, users can even build three dimensional
city models from it easily [28]. It is reasonable to assume
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Figure 1: The overall architecture of the proposed automatic geo-metadata correction framework. Raw sensor data is enhanced
to provide more accurate geographic information to downstream applications.

that the quality of the spatial data will continue to improve
over time. Numerous techniques and solutions can benefit
from the valuable information that geo-information services
provide about the world.

Figure 1 illustrates the overall architecture of our pro-
posed automatic geo-metadata correction framework. In
this study, we mainly focus on the camera orientation cor-
rection and formulate the task as an optimization problem
by leveraging a set of complementary data sources. First of
all, constrained by the geographic priors of the sensor read-
ings, the optimized camera parameters should be near the
corresponding input data. Next, we extract local visual de-
scriptors such as SIFT to perform feature matching between
consecutive frames for relative rotation estimation. Accord-
ing to Olsson and Enqvist [19], although frames have short
baselines that increase the ambiguity in depth determina-
tion, it does not have much impact on the rotation estimates.
Finally, with the geographic context derived from OSM, we
geo-register the frames to the world coordinate system by
quantifying the distance between the pixel semantic labels
and the 3D projection of the scene. Two distance metrics
have been designed and implemented in our system, namely
the pixel-based and the pyramid-based measure that encode
the spatial information of the semantic labels with differ-
ent granularity. By minimizing the formulated objectives,
we process the raw sensor data to provide more accurate
geographic information as an input for downstream appli-
cations. Take video annotation as an example, we present
a simple approach that can effectively suggest tags to the
region of interest in the spatial domain. Here we summarize
the contributions of our work as follows:

e We propose to utilize the geographic context derived
from OSM for video sensor data correction. Earlier meth-
ods only perform feature-based matching with 3D models
reconstructed from large scale images.

e We build a comprehensive model to formulate the error
terms, which incorporates smooth approximation, rota-
tion estimation, pixel labeling and 3D projection.

e We automatically optimize the geo-metadata while main-
taining an excellent balance between accuracy and effi-

ciency compared to existing methods.

e We present the applications of tag suggestion and land-
mark retrieval with accuracy-enhanced geographic meta-
data and demonstrate the performance gain.

The rest of the paper is organized is follows. We first
report the related work in Section 2 and present the sys-
tem overview in Section 3. Next we introduce the objectives
for geo-metadata optimization in Section 4. Applications
are presented in Section 5, which benefit from the accuracy-
enhanced camera parameters. Finally, we evaluate the effec-
tiveness of our proposed algorithm in Section 6. Section 7
concludes and suggests future work.

2. RELATED WORK

In multimedia, a significant number of techniques benefit
from the presence of geographic metadata associated with
images and videos [24, 1]. However, such solutions may
sometimes face performance issues due to the occurrence
of GPS and compass errors [30, 31]. Traditionally, raw GPS
trajectories are usually processed by standard smoothing
techniques [4] and map matching algorithms [3]. To pro-
duce more precise geographic context, the determination of
camera viewing direction has attracted much research atten-
tion in recent years. Several content-based computer vision
techniques have been proposed based on local feature ex-
traction and matching. Luo et al. [17, 18] estimated the
viewing directions of world’s photos by reconstructing the
scenes using a normalized 8-point algorithm. Based on the
assumption that the camera location extracted from the ge-
ographic metadata is correct, they further geo-registered the
photos on Google Maps to assist users in exploring places
of interests around the world. Park et al. [20] proposed to
utilize both Google Street View and Google Earth satellite
images to determine the camera orientation of a geotagged
image. Kroepfl et al. [9] presented a method to geo-locate a
photo and then estimate the viewing direction by register-
ing the image onto street level panoramas. However, these
methods usually require a large image database to perform
reliable object matching. Their effectiveness can sometimes
be influenced by the limitations of the data sources, e.g.,



Table 1: A comparison with the previous work.

‘Work Me?;c(l)ata FZ;E?; ‘?ﬁ]’:g:sry Ccflint Factors with major influences
SfM reconstruction v v Large scale images required, high
[12, 22, 24] computational cost for 3D scene reconstruction
Image-based matching v v Limited availability of Street Views
[9, 20] or panoramas with precisely geocoded tags
Location-constrained v Noise in the geolocation derived from the
geo-registration [17, 18] metadata, especially when the baseline is small
Geocontext-aware sensor v v Availability of the spatial data required
data correction, proposed for the geographic context derivation of the world

Street Views are only applicable for photos taken on or near
road networks [27].

It is one of the central problems in photogrammetry to
determine the relative position and orientation among a set
of images. Horn [7] presented an iterative method to solve
the least-squares problem with more than five correspon-
dences. Snavely et al. [24] computed sparse 3D model of
a scene and determined the relative camera viewpoints of
photographs for interactive 3D browsing. However, these
approaches have not dealt with the geo-registration of cam-
era poses with respect to world maps. Benefiting from the
developed Structure from Motion (SfM) reconstruction ap-
proaches, image-based localization using 3D models of ur-
ban scenes has been extensively studied in recent years [13,
29]. Sattler et al. [22] utilized 3D scenes reconstructed from
Flickr images, and showed that direct 2D-to-3D matching of-
fered considerable potential for accurate image localization.
Similarly, Li et al. [12] estimated camera poses with respect
to a large geo-registered 3D point cloud. Aided by advanced
matching techniques, system reliability and efficiency have
been further improved. However, such methods might some-
times be limited by their feasibility as the 3D reconstruction
step usually requires extensive image collections with large
baselines and sufficient overlaps.

As illustrated in Table 1, we have compared our method
with the related work in terms of feature sources and bot-
tleneck factors. To the best of our knowledge, there are
basically no algorithms designed for efficient compass data
correction. The existing techniques mostly focus on camera
orientation determination where good accuracies rely on the
robust feature matching with extensive computational costs.
Moreover, it can be easily seen that the proposed method is
the first attempt to consider the geographic context derived
from OSM for fine-grained video geo-registration.

3. SYSTEM OVERVIEW

As an overview, we first describe the principles that we
have followed in the system design. Next we give a formal
description of the inputs and introduce the coordinate sys-
tems we have adopted in our framework.

3.1 Design Principles

Our objective is to minimize the errors in the geo-metadata
recorded by sensors. To achieve this goal, we have formu-
lated design principles by utilizing a set of complementary
data sources as follows:

Prior knowledge:
The geographic metadata recorded by GPS, compass and
accelerometer. Goal: the optimized locations and orienta-
tions should not drift too far away from the input priors.
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Figure 2: Illustrations of the coordinate systems used in our
framework.

Visual content:
The visual clues extracted from frames. Goal: the relative
orientation between frames should be consistent with the
rotation matrix estimated by keypoint matching.

Geographic context:
The 3D scene built from OpenStreetMap. Goal: video
content should be aligned with the 3D scene in respect of
the corresponding external camera parameters.

To follow the above criteria, we begin by describing the
problem formally.

3.2 Problem Description

Given a sequence of video frames, S = {s1, s2, ..., S }, and
its associated sensor readings. The video geo-metadata cor-
rection problem is formulated as finding the optimal location
L ={l1,ls,...,1n} and viewing direction D = {d1,d2,...,dn}
sequences that simultaneously satisfy the aforementioned
design principles. Note that L and D have the same form
with the input priors L? and D? derived from the raw sensor
data, both of which are formatted as introduced below.

In our framework, we use three coordinate systems to de-
scribe the location of a point as shown in Figure 2. The
image coordinate system is defined to be located at the cen-
tre of the image with x and y axes pointing to right and
down, respectively. The origin of the camera coordinate
system is located f units before the image plane along the z
axis where f is the focal length. The world coordinate sys-
tem is placed at the geo-coordinates of the first input frame
s1 with x axis pointing to the east and y axis pointing to
the south. Subsequently, we interpret the raw sensor read-
ings associated with a frame s; into the location lf and the
viewing direction d? with respect to the world coordinate
system. The camera location prior LP = {I7 18 ... IP} is



given by 17 = [2?,y?, 2P]" where z¥ and y? are the UTM co-
ordinates converted from latitude and longitude tuples and
2P is related to altitude setting to 1.5 m above ground by
default. The camera orientation prior D? = {d7,d5,...,dh}
is presented by d¥ = [a?,87,7"]" which are the angles of
yaw (also known as heading), pitch and roll that describe
the rotations of the coordinate system around z, y, and x
axis, respectively. For example, a positive yaw rotates the
camera to the right, the angle of which always equals to the
compass reading.

To follow the design principles, we quantify the error terms
in the energy function through various distance metrics and

discuss the optimization strategy in Section 4.

4. VIDEO GEOREGISTRATION

We start with the introduction of the camera model that
we adopt in the framework. To describe the relations be-
tween different coordinate systems, we introduce how to
compute the external camera parameters based on the raw
sensor data and present the formulas for coordinate trans-
formations between different systems. With the above pre-
liminary knowledge, we describe the formulated objectives
for error minimization in the raw geo-metadata.

4.1 Camera Model

Without loss of generality, we assume the intrinsic pa-
rameter matrix of a camera to be K = diag([f, f,1]). The
focal length f is either known for calibrated cameras or can
be effectively estimated by content-based approaches [6, 2].
For a 3D point p in the world coordinate system, its cor-
responding image projection g can be computed based on
a rotation matrix R and a translation vector 7' using the
pinhole camera model:

A m =K (Rp+T) (1)

where \ denotes the depth factor. The rotation R and trans-
lation T" can be derived from L and D, which are the location
and viewing direction sequences that need to be optimized.
In linear algebra, a rotation matrix is a matrix that is used
to perform a rotation in Euclidean space. Using the right

hand rule, the three basic rotation matrices that rotate a
vector around X, y, or z axis by an angle of 6 are given by

Ry (0) = Ry(0) = R:(0) =

1 0 0 cosf 0 —sinf cosf sinf 0
0 cosf sinf 0 1 0 —sinf cosf O

0 —sinf cosf sinf 0 cosf 0 0 1

Recall that for the i-th input frame s;, the camera view-
ing direction d; = [as, Bi,7:] | is given by yaw, pitch, and
roll, which are the Tait-Bryan angles representing intrin-
sic rotations about z — 3’ — z”/. Subsequently, the rota-
tion of the camera coordinate system with respect to the
world coordinate system can be obtained from the above
three elemental intrinsic rotations using matrix multiplica-
tion: R (vi)Ry(Bi)R=(as). According to this change in the
coordinate system (also known as passive transformation),
the rotation matrix R; is computed as

Ri = (Ras(7i)Ry(Bi)R=(wi)) (2)

Comparatively, the calculation of translation T; is quite
straightforward, which is simply T; =11 — l;.

4.2 Energy Definition

Given a video sequence associated with geographic meta-
data, we are interested in finding the optimal locations L
and viewing directions D that minimize the following en-
ergy function:

E= NlEn.pp'roz + ,U/2E’V‘Ot(lti0’ﬂ + /«L3Edirection (3)

where Eappror keeps the outputs from drifting away from
the priors too much. FErotation and FEgirection control the
errors of relative rotation and absolute viewing direction,
respectively. Parameters p1, po and ps are balancing factors
that control the weights assigned to different objectives.

4.2.1 Smooth Approximation

We formulate the approximation requirement as Eappros =
B et Ediree . The smoothing cubic spline algorithm [21]
loc

is adopted to process the locations Eg)0r = L(t, )+ L(t,y)
and function L(-) is given by

L(t,z) = pz (W)Qm—p) [ staar

ty

where ¢ is a sequence of timestamps and S, (¢) is a set of cubic
polynomials to fit the observations ¢ and x. The parameters
o; can be used to change the weight of each point in the
error term. We set it to the accuracy measure associated
with GPS that indicates the degree of closeness between the
GPS reading and the true location. For the approximation
of camera viewing direction, we try to minimize the distance
between the target D and the input prior DP described by
the sum of L? norms, which is

Eapion = > ldi — | ()

=1

4.2.2 Relative Rotation

Next we discuss how to estimate the error of relative ro-
tations, Frotation- For a 3D point p in the world coordinate
system, let ¢°* and ¢°+! denote its projections on two con-
secutive frames s; and s;4+1, respectively. If the frames are
sampled at a relatively high frequency (e.g., 5 fps), it is rea-
sonable for us to assume that frames s; and s;1 are taken
at the same location. Therefore, according to Eq. 1 we have

Si+1

i1 [q 1 ] = KRy R7'KT! -\ {qli} (6)

Given a set of matched keypoints ¢°* and ¢°*+' by feature
matching, we are able to rewrite Eq. 6 into a set of linear
equations of the form A;e; = 0, where e; is a vector con-
sisting of the entries of matrix K R;t1 Ri_lK*l. Recall that
Ri = (R.(vi)Ry(Bi)R-(i)) ", so vector e; can be written in
the form of the camera focal length f and the target viewing
direction d;. Therefore, we seek to optimize the sequence of
camera orientations D by minimizing the sum of ||A4;e;]|2
over the input frames

n—1
Erotation = Z ||Ale7«”2 (7)
i=1

For the keypoint detection and matching, we use SIFT as
the visual feature [14]. It provides a local descriptor for each



keypoint including its location, scale and orientation. There-
after, we match the keypoints between consecutive frames
by first querying for the nearest neighbors, followed by us-
ing a minimal solver in conjunction with RANSAC to filter
out possible outliers. The set of geometrically consistent
matches that have been found as described above is used to
construct matrices A; in Eq. 7.

4.2.3 Absolute Viewing Direction

To quantify the error of the absolute viewing direction of
a camera is less straightforward and requires additional in-
formation of the scene where the video was taken. Recently,
image-based localization techniques [12, 22] have been pro-
posed that match photos to pre-built 3D models of the world.
Although promising performance gains have been reported,
the construction of 3D scenes usually relies on large amounts
of high quality input images. Here we argue that photos are
no longer the only data source that can be utilized. To facil-
itate solving problems in computer vision, efforts have been
made on building 3D world by extending OSM [28]. Aided
by the pre-built 3D world, the scene captured in an image
can be well estimated based on the camera parameters de-
rived from the geo-metadata.

Alternatively, we can also try to understand an image
scene based on the content by semantic pixel labeling, e.g.,
the SuperParsing method [25]. As shown in Figure 3, it
annotates every pixel with a semantic label (e.g., building,
water, road, and etc.), which provides a good outline of the
semantic classes and their distributions in the image. On
the other hand, as we mentioned before, a scene can be la-
beled based on 3D projection techniques. OSM uses tags,
such as building, road, etc., to indicate the category of an
object. Therefore, the semantic labels can be derived from
the 2D projections of the world on the image plane. We il-
lustrate this idea in Figure 3 by giving two examples, namely
the Marina Bay Sands hotel and the Marina Bay Reservoir.
If the input of camera location and orientation is close to
the ground truth, the 3D projection results should be well
aligned with the semantics derived from the content. This
observation provides us a simple but effective solution to
estimate the absolute viewing direction of a camera.

For a frame s;, let Label.(s;) and Label,(s;) denote the
semantic labels derived from the image content and the
world projection, respectively. Considering the orientation
of a camera is a continuous variable that has the form of
di = [ou,Bi,v]", it may not be feasible to compute the
distance between Label.(s;) and Label,(s;) every time we
change the camera parameters for optimization. Therefore,
we alternatively choose to sample a set of virtual scenes
S” = {si, $3, ..., 1, } with fixed camera parameters as refer-
ences, based on which the absolute viewing direction error
of frame s;, denoted by E3: can be estimated as a

direction’
weighted sum using the following equation

E oction = Z wj; - Dist (Labelc(si), Labelp(s;)) (8)

Jj=1

where w;; denotes the weight of the j-th reference scene s
with respect to frame s;. Without loss of generality, the
reference scenes S can be selected by sampling uniformly
in each of the six dimensions of the camera pose. w;; should
be defined based on the similarity of the camera parameters
between s; and s7, as scenes that are taken within a small
area pointing to similar directions can be considered as good
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Figure 3: Scene understanding by semantic pixel labeling
and 3D projection based on camera pose and OSM data.

representatives for each other. The details about how to
decide w;; will be discussed in Section 4.3, as it is related to
the selection of S” and the optimization strategy.

The next task for us is to compute the difference between
Label.(s;) and Labely(s}). We select a list of concepts in-
cluding building, water, road, sky and pedestrian to anno-
tate pixels. Both Label.(s:) and Label,(s}) are matrices
whose entries are integer numbers that serve as the index of
the pixel labels. Thus, they have the same size as the input
frame s;, denoted by height(s;) X width(s;). In our frame-
work, two distance measures are analyzed. The first one is
pixel-based. We count the number of pixels that are labeled
with the same concept in both Label.(s;) and Labely(s})
and normalize the value as follows

Dist (Labelc(s;), Label,(s}))
numofzeros(Labelc(s;) — Labely(s}))  (9)
height(s;) - width(s;)

where function numofzeros(M) returns the number of zero
entries in matrix M. This measure estimates the pixel-
wise distance between two label matrices, but the results
can be sometimes susceptible to small changes in camera
pose. Inspired by the spatial pyramid matching designed
for scene recognition based on local features [11], we also
implement a pyramid-based distance measure by partition-
ing the label matrix into increasingly fine cells and com-
puting histograms of concepts for each cell. More specif-
ically, we construct a spatial pyramid that has a total of
Lypyr levels. At level 1, = 1,2, ..., Ly, the label matrix is
partitioned into 2'7v~ =1 sub-regions. For each sub-region, a
histogram of concepts is generated by counting the number
of times that each label appears. Let hist'?v" (M) be the
vector formed by concatenating the histograms generated
on level [y, for a label matrix M. Intuitively, we would
like to penalize the features of larger cells because they pre-
serve decreasing spatial information. Therefore, we assign
weights m to histograms hist'»v~ (M) and concate-
nate the weighted histograms into a feature vector which is
hist(M) = (M5t QDT hisP(AOT || histB (DT 1T, Sub-
sequently, the distance between two label matrices can be

measured based on this pyramid-based feature as
Dist (Labelc(s;), Label,(s}))
hist(Labelc(s;)) " hist(Label,(s])) (10)
||hist(Labelc(s;))||2 - [|hist(Labely(s%))||2

J

=1-




We compare the performance of the above two distance
measures and the analysis results are discussed later in Sec-
tion 6. Finally, the absolute viewing direction error Egirection
in the energy function (see Eq. 3) is estimated by the sum,
Edirection = Z?:1 E;;rection'

4.3 Energy Minimization

Inference in our model can be conducted by adopting an
efficient two-stage optimization strategy [8]. First, we opti-
mize the location L by minimizing the energy term Eé%‘;m,;.
Next we optimize the viewing direction D by keeping the
previously estimated location L fixed.

According to Eq. 4, we smooth the GPS trajectories with
cubic splines. As it is a traditional method, here we focus on
discussing the optimization of the viewing direction D while
keeping the location L fixed. In order to simplify the cal-
culation of w;; in Eq. 8, we sample the virtual scenes S" at
the optimized locations in L instead of a uniform sampling
in the 3D space. As discussed before, w;; should be formu-
lated based on the similarity between the camera poses of
input frame s; and reference scene s7. Given the above sam-
pling strategy of S”, only the virtual scenes that are located
at I; will be considered while computing E}! . .. . In other
words, let [7 and dj denote the location and orientation as-
sociated with scene s7. The weight before normalization
is wi; = 0if Ij # l;. Otherwise, we define the orienta-
tion difference between d; and dj, Dist(d:,d}), to be the
degrees by which the unit vector along the z axis [0,0,1] "
rotates from one camera coordinate system to the other.
Thereafter, we convert distance to similarity using equation
wi; = 180 — Dist(d:, d}), and normalize the weights by the
softmax function,

exp Wi

j ij

(11)

The softmax function reduces the influence of reference
scenes whose camera pose greatly differs from the input
frame, and limits the weights to have a sum of one. After
the normalization, we use the simplex search algorithm [10]
to optimize the camera viewing directions D with the initial
point setting to the geographic priors DP derived from the
geographic metadata.

5.  ENHANCED VIDEO APPLICATIONS

For sensor-rich videos, advanced geo-based methods have
been proposed to facilitate fast video search and brows-
ing on the Internet [23]. Compared with compute-intensive
content-based techniques, geo-based methods have signifi-
cantly improved system efficiency by alternatively process-
ing the sensor metadata instead. With more accurate geo-
metadata, considerable performance gain can subsequently
be obtained in downstream applications. We present two
examples here, namely landmark retrieval and tag sugges-
tion.

5.1 Landmark Retrieval

With the geographic metadata associated with a frame,
a landmark’s visibility can be determined efficiently given
the height and the footprint of the target building [30]. As
aforementioned, such geometry information can be easily
collected from online mapping services. In terms of the cam-
era’s geometry, its viewable scene is usually characterized by

ALGORITHM 1: Tag suggestion processor.

Input: the region of interest to suggest tags ROI; the
set of nearby geographic objects GeoObjs; and
the accuracy-enhanced camera location L and
viewing direction D.

Output: the predicted list of tags Tags.

Candidates = projection(GeoObjs, L, D)

for i = 1 to length(Candidates) do

C = Candidates(i).region

distloc = ||centre(C) — centre(ROI)||
height(C)
height(ROI)

if distsize < 1 then distsize =

height(C)-width(ROI)

width(C)-height(ROT)
if distshape < 1 then distshape = m;
dist(i) = distloc - distsize - distshape

end

[mindist, idz] = min(dist)

Tags = Candidates(idz).tags

distsize =

1 .
distsize’

distshape =

the following five parameters: (1) camera position and view-
ing direction that are extracted from sensor metadata, (2)
horizontal and vertical viewable angles, and the far visible
distance that are estimated from camera optics. Thereafter,
for a queried landmark, its visibility can be easily computed
by geometry calculations and occlusion checks. As has been
pointed out [30], the effectiveness of such geo-based meth-
ods highly depend on the accuracy of the geo-metadata. By
simply reducing the noise in the raw sensor data, we will see
that significant improvements can be obtained without any
adaptation of the original method.

5.2 Tag Suggestion

Imagine that for interactive videos, users can draw rect-
angles to indicate their interests while watching a video.
The system should be able to immediately suggest a set
of tags describing the objects in the bounding box. This
functionality can be easily implemented by ranking the pro-
jections of nearby geographic objects with respect to the
input bounding box, using the distance measure described
in Algorithm 1.

Let ROI denote the region of interest specified by a user
or detected by automatic algorithms [33]. We first compute
a list of candidates by projecting the 3D models of GeoObjs
onto the image plane with projection(GeoObjs, L, D). Note
that each candidate has two attributes, the projection region
and the corresponding object names (tags). As the input
bounding box may cover multiple objects, we also check the
projections of possible groups formed by geographic objects
located close to each other. Next, for every candidate, we
compute the Euclidean distance between the centres of C'
and ROI and penalize the bounding boxes that differ in
shape or size compared to ROI. The weighting factor for
size difference is defined to be a division between the heights
with the numerator being whichever is bigger. The shape of
a bounding box is parameterized by the ratio of the height to
the width, and the difference is quantified in the same way
as for the size. Finally, we search for the candidate with the
minimum distance value and return the corresponding list
of tags to the users.



6. EVALUATION

We implemented our proposed algorithm and evaluated
its effectiveness. We proceed in three steps. The first part
introduces the dataset we collected and used for the experi-
ments. The second and third parts evaluate the performance
of the proposed model in geographic metadata correction
and downstream applications, respectively.

6.1 Experimental Setup

We evaluated our proposed algorithm on the publicly avail-
able geo-referenced video dataset [16] from the GeoVid*
website. Users can record and share videos using the GeoVid
smartphone applications, or explore the world by watching
videos via a web browser. Moreover, the GeoVid project
also provides APIs? for users to obtain public videos to-
gether with their corresponding geographic metadata.

To evaluate our approach, we manually annotated the
ground truth of camera poses and landmark visibility based
on map services (e.g., Google Maps and Google Street View).
We randomly selected ten sensor-rich videos taken in Sin-
gapore to carry out the experiments in Section 6.2. The
description of the dataset is illustrated in Table 2. The
average video duration of this dataset is 28 seconds. We
sampled frames every three seconds to let users perform the
ground truth annotation and interpolated the camera pa-
rameters between the sampled frames for later comparisons.
Additionally, we labeled the visibility of four landmarks on
8,430 frames sampled at 1 fps from 224 videos to perform the
retrieval evaluations in Section 6.2. Please note that we uti-
lized a larger test set of 224 videos in Section 6.2 due to the
following reasons: (1) it is easier to annotate the visibility of
a landmark in a frame than to determine the ground-truth
camera viewing direction; and (2) the improved results in
the downstream applications also indicate the effectiveness
of our proposed method and emphasize the importance of
geo-metadata correction.

Table 2: Georeferenced video dataset description.

Shortest Longest Average
20 sec 62 sec 28 sec
10 videos with 83 ground truth labels

Video duration

No. of videos

The dataset might still be small mostly because of the
effort needed to obtain the ground truth annotations, but its
size is comparable to other camera orientation determination
papers [20, 18]. Moreover, to the best of our knowledge,
this work is among the early efforts to solve the problem of
automatic geo-metadata correction for video sequences.

6.2 Geographic Metadata Correction

We processed the raw geo-metadata and present the er-
ror reduction results. The GPS accuracy of our test dataset
is good, as all the accuracy measures associated with GPS
(0i in Eq. 4) are less than or equal to five. Since this work
focuses on the correction of the orientation data, at the cur-
rent stage we simply processed locations by the traditional
smoothing technique with cubic splines. Here we report the
smoothing result on a more challenging dataset (the accu-
racy value maxz(o;) > 50) [26] in Table 3. The parameter p

"http://geovid.org/
Zhttp://api.geovid.org

in Eq. 4 was set to 0.6. We show the precision before and
after processing at different geographic margins of error.

Table 3: Precision comparison of raw and processed GPS
data.

Radius I0m 20m 30m 40m 50m
Raw Data 68.2% 91.0% 92.0% 92.9% 93.4%
Processed || 70.9% 92.0% 93.4% 94.5% 95.2%

As can be seen, there was an improvement on location ac-
curacy within all error margins. On average, the smoothing
splines were able to reduce the error per frame by 27.32%.
Further improvements can be obtained by applying more
advanced techniques, such as mapping GPS traces to road
maps [3]. Those approaches can be integrated into our
framework easily as we adopt a two-stage optimization strat-
egy by processing camera location and camera viewing di-
rection separately in different modules.

Next, we compared the camera orientation errors, and re-
port the results in Figure 4. For the content-based semantic
pixel labeling, we adopted the SuperParsing method pro-
posed by Tighe and Lazebnik [25]. Only the images that are
geographically close to the test videos are used for training,
in order to ensure the accuracy of this supervised image pars-
ing technique. Recall that the viewing direction of a camera
has the form of d = [, 3,7] . As most of the users hold the
camera perpendicular to the ground while taking a video,
the variations in pitch and roll are usually very small (i.e.,
B~ 0° and v = 90°). Therefore, we focus on evaluating the
correction of yaw, «, and define the error to be the absolute
angle difference between the measured and the true values
in degrees. In other words, let o and af denote the true and
the estimated camera heading for frame f;. The error ¢; is
computed as §; = min (|l — af||, 360 — || — af||). For an
input video, the orientation error is computed as the average

of its frames, i.e., E = 1 AT
n 1=
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Figure 4: Raw and processed camera orientation error com-
parison for individual videos.

Based on the measurement above, we compared our pro-
posed method with ViewFocus, which is the most related
to our work that determines the camera direction with the
existence of geo-metadata [17, 18]. Considering the base-
line between frames is usually small, we further optimized
the result of ViewFocus by conjunctively minimizing the dis-
tance to both the estimated external camera parameters and
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Figure 5: Effectiveness analysis of sensor data correction algorithms with or without geographic context and its connections

to the error patterns in the camera orientation readings.

the raw geographic priors (both location and orientation).
For the image-based methods discussed in the related work
(see table 1), it is difficult to perform a fair comparison due
to the lack of third-party auxiliary images. Moreover, such
techniques are not always applicable, as the appearance of
at least one geo-object in the content is required to perform
robust feature matching and 3D reconstruction. As shown in
Figure 4, raw data represents the geographic priors derived
from the input sensor readings. Pixel-based (see Eq. 9) and
Pyramid-based (see Eq. 10) indicate the distance measure
we used to quantify the difference between two label matri-
ces. The reference scenes S” were sampled at the optimized
locations of the input frames with viewing directions sam-
pled uniformly every 10 degrees. The balancing coefficients
in Eq. 3 were set to 1 =1, g2 = 0.02, and ps = 1000.

The average error reduction obtained by ViewFocus was
31.4%. Without considering the geo-context derived from
OSM, it was only able to work well on certain videos (e.g.,
video 4), while being less effective for the rest of the cases.
Actually the correction effectiveness of ViewFocus is related
to the error patterns of the geo-metadata. We will dis-
cuss this in the next paragraph by showing some examples.
Among the three approaches, the pyramid-based method is
the most effective and outperforms its competitors in eight
out of the ten cases. It obtained an average error reduction
of 58.8%, where the best and the worst cases were an 80.1%
and 36.2% error decrease, respectively. Compared with the
pixel-based distance measure, the pyramid-based approach
achieved an average of 27.6% improvement over the former.
This is mostly because the value of the pixel-based mea-
sure is susceptible to the changes in camera pose. Even a
small shift in camera orientation may have a big impact on
the result of the pixel-based distance measure. This might
cause some issues as we sampled the reference scenes S”
with a relatively coarse granularity. It is possible to further
improve the effectiveness by adopting a more fine-grained
sampling approach, but this will also increase the computa-

tional complexity. Comparatively, the pyramid-based mea-
sure achieved better results as it is less sensitive to camera
changes while encoding part of the spatial information of the
semantic labels into the distance calculation.

To better understand real world effects, we further ex-
amined the raw, the processed and the ground truth cam-
era orientation sequences in our test dataset. For the eight
videos where the average orientation error of the raw geo-
metadata was larger than five degrees (videos 2 and 6 were
excluded), we plotted the compass readings in the beginning
13 seconds of each video in Figure 5. The graphs were sorted
ascendantly according to EviewFocus — EPyramid, Which is
the difference between the orientation errors obtained by
the pyramid-based and the ViewFocus approach. In other
words, we show the plots with increasing effectiveness of the
former method w.r.t. the latter from Figure 5(a) to 5(h). As
can be seen, interestingly the videos in the first and the sec-
ond row exhibited different inaccuracy patterns of the raw
geo-metadata. While ViewFocus worked well on cases where
the raw compass readings were distributed around the truth
values and the inaccuracy mostly came from the relative ro-
tation errors (e.g., Figures 5(a)), it became highly ineffective
to handle the camera orientation shift without considering
the geographic context of the world. As shown in the sec-
ond row, the orientation shift resulted in the incorrectness of
the absolute orientation values while the relative rotations
stayed approximately accurate. By applying our proposed
optimization strategy, this kind of error can be effectively re-
duced by the third energy term, Fgirection, in Eq. 3, which
matches the image scene to the projections of the world.
Moreover, the second energy term FE,otqtion limits the error
of the relative rotation between consecutive frames. This
part is similar to ViewFocus, which is capable of correcting
the corrupted compass readings caused by sudden delays or
outliers. To summarize, our proposed model is more general,
which handles all error patterns effectively.



Table 4: Comparison of landmark retrieval effectiveness with raw and corrected geo-metadata.

(a) Singapore Flyer

(b) Esplanade

Precision Recall F-measure Precision Recall F-measure
Raw Data 0.6497 0.7099 0.6785 Raw Data 0.7740 0.9752 0.8630
Processed 0.7448 0.8827 0.8081 Processed 0.8324 0.9536 0.8889

(¢) Merlion (d) The Float @ Marina Bay

Precision Recall F-measure Precision Recall F-measure
Raw Data 0.9693 0.6819 0.8006 Raw Data 0.7773 0.7558 0.7664
Processed 0.9903 0.6873 0.8115 Processed 0.7769 0.8664 0.8192

Marina Bay Sands Hotel

Tower 1& 2 &3

Tag suggestion with raw geo-metadata:
Marina Bay Sands Hotel Tower 2
Marina Bay Sands Hotel Tower 3

Tag suggestion with corrected geo-metadata:
Marina Bay Sands Hotel Tower 1
Marina Bay Sands Hotel Tower 2
Marina Bay Sands Hotel Tower 3

(a)

Marina Bay Financial
Centre Tower 1 & 2 &3

Tag suggestion with raw geo-metadata:
Fullerton Bay Hotel

Marina Bay Tower

OUE Bayfront

Tag suggestion with corrected geo-metadata:
Marina Bay Financial Centre Tower 1

Marina Bay Financial Centre Tower 3

Marina Bay Residences

(b)

Figure 6: Illustrations of tag suggestion with raw and corrected geo-metadata. The ground truth annotations are marked in
italic. The input is the object-of-interest automatically detected by Edge Boxes with the highest objectness score.

6.3 Landmark Retrieval and Tag Suggestion

Geographic contextual information has long been utilized
as a supplement to content analysis. As an example, we
clean the geo-metadata by our proposed method and dis-
cuss the results on landmark retrieval (see Section 5.1) and
video tagging (see Section 5.2). We show that enhanced re-
sults can be obtained by simple techniques when the errors
in the metadata have been reduced and controlled within
reasonable margins.

We selected four landmarks, namely the Singapore Flyer,
the Esplanade, the Merlion, and the Float @ Marina Bay
to perform a landmark retrieval [30] experiment on 8430
frames. The precision, recall and F-measure obtained with
raw and corrected geo-metadata are reported in Table 4.
Note that the F-measure is a good indicator for the retrieval
effectiveness and the geo-metadata quality since it considers
both precision and recall. As can be seen, considerable im-
provements have been achieved in all cases. The errors in
the raw sensor data significantly hindered the retrieval of the
Singapore Flyer, as the F-measure was only reported to be
0.6785. In this case, the optimized geo-metadata obtained
the greatest performance gain of 14.6%, 24.3% and 19.1%
in terms of precision, recall and F-measure. Comparatively,
the frames that capture the rest of the three landmarks were
associated with less noisy geo-metadata. Under such cir-
cumstances, we were still able to improve the F-measure by
1.34% ~ 6.89% with the accuracy-enhanced geo-metadata.

Next, we show two examples of tag suggestion to region-of-
interest in Figure 6. Given the bounding box that indicates
a user’s interest, we suggested tags by predicting the geo-
graphic objects covered by the input region. As illustrated,
the precision of the suggested tags was improved after we
performed the geo-metadata correction. For relatively iso-
lated buildings, such as the one shown in Figure 6(a), the

annotation results tend to be more robust to the noise in the
geo-metadata. However, in areas where the building density
is high, a small error in camera viewing direction can some-
times cause serious performance issues. For example in Fig-
ure 6(b), the tags suggested using the raw geographic meta-
data are actually the names of some nearby buildings other
than the correct ones. Problems like this can be solved,
at least to some extent, by pre-processing the geographic
metadata with our proposed optimization technique.

To summarize, the above comparisons indicate the impor-
tance of conducting geo-metadata correction before utiliza-
tion. The proposed optimization method is orthogonal to
downstream video applications and can be applied as the
first step in geo-based video management systems.

7. CONCLUSION AND FUTURE WORK

We formulated the sensor data correction as an optimiza-
tion problem. To improve the efficiency and the feasibility
of the framework, we built 3D scenes based on OSM data.
Next, we projected the 3D models onto the image plane and
compared it to the image scene analyzed by pixel labeling.
This technique provided us with an efficient way to quantify
the absolute viewing direction error of a camera. By ana-
lyzing the real-world data, we draw a number of interesting
observations that we summarize as follows:

(i) The geo-metadata errors can be roughly divided into
two categories by checking if there are serious corruptions
in terms of the relative rotation. Content-based approaches
can effectively reduce rotation errors between consecutive
frames, but without the context of the scene it becomes
highly difficult to correct orientation shift where the relative
rotations are approximately accurate.

(i1) Most of the existing image-based methods are only ap-
plicable to photos that clearly capture at least one object in



order to perform robust keypoint matching and reconstruc-
tion. Comparatively, we geo-register cameras by conjunc-
tively considering the distribution of geo-objects and the ro-
tation consistency in the temporal domain. Good estimation
can be obtained as long as the landscape, where the video
was taken, is fairly diverse towards different directions.

(iii) One factor that may have an impact on our approach
is the detail level of the spatial data available from mapping
services, e.g., the label matrix generated by 3D projection
can be imprecise due to missing buildings. Fortunately, with
the rapid growing collection of map data, it is reasonable to
expect that the proposed method will be able to geo-register
video sequences with increasing accuracies in the future.

At the current stage, the geo-based 3D projection and
the content-based semantic pixel labeling are regarded as
two separate modules in our framework. As part of the
future work, we are interested in developing a joint camera
geo-registration and image scene understanding algorithm
to further improve the results in both of the subtasks.
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