
Caching Support for Skyline Query Processing with
Partially-Ordered Domains

Yu-Ling Hsueh† Roger Zimmermann‡ Wei-Shinn Ku§
†Dept. of Computer Science & Information Engineering, National Chung Cheng University, Taiwan

‡Computer Science Department, National University of Singapore, Singapore
§Dept. of Computer Science and Software Engineering, Auburn University, USA

{hsueh@cs.ccu.edu.tw, rogerz@comp.nus.edu.sg, weishinn@auburn.edu}

ABSTRACT
The results of skyline queries performed on data sets with
partially-ordered domains vary depending on users’ prefer-
ence profiles specified for the partially-ordered domains. Ex-
isting work has addressed the issue of handling each individ-
ual query with some efficiency. However, processing large
volumes of such queries for online applications with low re-
sponse time is still very challenging. In this paper, we intro-
duce a novel approach, termed CSS, to reduce the latency
by caching query results with their unique user preferences.
Of paramount importance in this case is that cached queries
with compatible preference profiles need to be utilized. For
this purpose, we introduce a similarity measure that estab-
lishes the level of a relation of a new query to each of the pre-
viously cached queries and profiles. The similarity measure
allows the cached entries to be effectively ordered accord-
ing to descending values; hence, query processing can start
with the most promising candidates. If a new query is only
partially answerable from the cache, the proposed method
pursues a second optimization step. The query processor
utilizes the partial result sets and augments them by per-
forming less expensive constraint skyline queries guided by
constraint violations between different query preference pro-
files. Extensive experiments are presented to demonstrate
the performance and utility of our novel approach.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Metrics—Spatial databases
and GIS

General Terms
Algorithms, Performance

Keywords
Skyline Query Processing over Partially-Ordered Domains,
Caching techniques, Spatiotemporal databases

1. INTRODUCTION
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL GIS ’12, November 6-9, 2012. Redondo Beach, CA,
USA
Copyright is held by the author/owner(s) .

The need of effective and real-time GIS applications for
analyzing massive high-dimensional data collections to dy-
namically and judiciously make critical decisions under com-
plex situations exists in a wide variety of disciplines. The
skyline query computation which has been studied inten-
sively in the context of spatiotemporal databases is one core
technique to assist such multi-criteria applications. Skyline
queries have been defined as retrieving a set of points which
are not dominated by any other points in multi-dimensional
space. An object p dominates p′ if p has more favorable val-
ues than p′ in all dimensions. In many applications, some
data dimensions (for example, in the form of hierarchies,
intervals and preferences) are partially-ordered (PO).

The traditional methods to execute queries over totally-
ordered domains cannot efficiently handle data sets with
partially-ordered domains. Related solutions ([2, 5]) con-
vert each partially-ordered domain data column into inte-
ger intervals that enable the traditional index-based sky-
line algorithms (e.g., BBS) to handle such queries. The
TSS [5] method enhances the pruning ability and progres-
siveness of this idea further by applying topological sorts
on the user preference profiles. Skyline query computa-
tions with partially-ordered domains are very computation-
ally complex in higher dimensions. The cost of the query
evaluation process increases as either the number of options
for a partially-ordered domain or the number of partially-
ordered domains increase. Therefore, existing systems are
often unable to provide up-to-date query results with quick
response times. To address this challenge we propose a
novel approach termed Caching Support for Skyline Com-
putations (CSS, for short). The main contribution of CSS
is that it caches previous queries with both their results and
user preference profiles such that the query processor can
rapidly retrieve a skyline result set for a new query from a
set of existing candidate queries with compatible user pref-
erence profiles. One of the innovations of the approach lies
in our proposed similarity function that measures the degree
of closeness between two user preference profiles. Since the
query processor directly accesses a relatively small candi-
date result set to retrieve the skyline points for a new query,
the response time of the skyline computation can be greatly
reduced.

2. RELATED WORK
Numerous secondary storage based algorithms for com-

puting skylines have been proposed before. Börzsönyiet al. [1]
introduced the non-progressive Block-Nested-Loop andDivide-

and-Conquer algorithms. The BNL approach recursively
compares each data point p with the current set of candi-
date skyline points, which might be dominated later. BNL
does not require data indexing and sorting; however, its per-
formance is influenced by the main memory size. The D&C
technique divides the data set into several partitions and
computes the partial skyline of the points in every parti-
tion. By merging the partial skylines, the final skyline can
be obtained. Both algorithms may incur many iterations
and are inadequate for on-line processing. Tan et al. [6] pre-
sented two progressive skyline processing algorithms: the
bitmap approach and the index method. Bitmap encodes
dimensional values of data points into bit strings to speed
up the dominance comparisons. The index method clas-
sifies a set of d-dimensional points into d lists, which are
sorted in increasing order of the minimum coordinate value.
The index scans the lists synchronously from the first entry
to the last. With pruning strategies, the search space can
be reduced. The nearest neighbor (NN) method [3] indexes
the data set with an R-tree and utilizes a nearest neighbor
search to find the skyline results. The approach repeats the
query-and-divide procedure and inserts the new partitions
that are not dominated by any skyline point into a to-do
list. The algorithm terminates when the to-do list is empty.
A special method is applied to remove duplicates retrieved
from overlapping partitions. The branch and bound skyline
(BBS) algorithm [4] traverses an R-tree to find the set of
skyline points. BBS recursively performs a nearest neigh-
bor search to compute intermediate/leaf nodes which are
not dominated by the currently discovered skyline points.
Because BBS traverses R-tree nodes based on their mindist
from the origin, each retrieved point is guaranteed to be a
skyline point and can be returned to users immediately.
The methods proposed in [2, 7, 5, 8] are the most relevant

to our work. Chan et al. [2] presented three algorithms for
evaluating skyline queries with partially ordered attributes.
Their solution is to transform each partially ordered at-
tribute into a two-integer domain, which allows users to
utilize index-based algorithms to compute skyline queries
in the transformed space. However, all the techniques pro-
posed in [2] have limited progressiveness and pruning abil-
ities. In real applications, dynamic preferences on categor-
ical attributes are more common than a fixed ordering for
skyline query evaluation. One straightforward solution is to
enumerate all possible preferences and materialize all results
of the preferences; however, the costs of a full materialization
are usually prohibitive. Therefore, Wong et al. [7] proposed
a semi-materialization method named the IPO-tree Search,
which stores partial useful results only. With these partial
results, the outcome of each possible preference can be re-
turned efficiently. Sacharidis et al. designed a topological
sort-based mechanism named Topologically-sorted Skylines
(TSS) [5] which is both progressive and exact. TSS intro-
duces a novel dominance check function which eliminates
false hits and misses. In addition, TSS is able to handle dy-
namic skyline queries. Because existing methods for skyline
with partially ordered domains either use stronger notions of
dominance, which generate false positives, or require expen-
sive dominance checks, Zhang et al. [8] introduced two meth-
ods, which do not have these drawbacks. The first mecha-
nism employs an appropriate mapping of a partial order to
a total order, inspired by the lattice theorem and an off-the-
shelf skyline algorithm. In addition, the second technique

utilizes an appropriate storage and indexing approach, in-
spired by column stores, which enables efficient verification
of whether a pair of objects are incompatible. Nevertheless,
all the aforementioned methods do not consider the utiliza-
tion of previously cached query results to further improve
the query evaluation performance.

3. CACHING SKYLINES FOR EFFICIENT
SKYLINE COMPUTATIONS

Skyline query results vary with different user preferences
and the computation is very costly. Our conjecture is that
query results that were previously obtained with a user pref-
erence profile similar to the profile of the query currently
under consideration may contribute useful candidate result
points. The design of the similarity measure, the method
for the candidate cached query selection, and the details of
handling unanswerable queries are described in the following
sections.

User Preference Profile Similarity Measure
A user preference profile can be represented by a directed
acyclic graph (DAG). To enable a quantitative compari-
son among preferences, we define a similarity function that
returns the aggregate contribution of all preference pairs be-
tween two compared DAGs. A preference or relation is de-
noted by vi → vj , which consists of two nodes (vi and vj)
and one edge e.

CB

A

D

(a) g

B

CA

D

(b) g′

Figure 1: DAG examples.

For similarity comparisons, two states (match and vio-
lation), are expressed by Qg,g′(vi, vj), which compares the
two corresponding pairs of relations between vi and vj from
both g and g′, where g is the user preference profile of a new
query q and g′ is the user preference profile of a cached query
q′. Given g and g′ (transitive closure forms), the function
Qg,g′(vi, vj) returns the matching contribution, which is ei-
ther a match or a violation, each of which provides a different
contribution to the similarity. For example, in Figures 1(a)
and 1(b), g.C → g.D matches g′.C → g′.D ; g.A → g.B vi-
olates g′.B → g′.A. The similarity function S(g, g′) returns
a real number that aggregates the matching contributions
and is computed as shown in Equation 1.

S(g, g′) =
∑

Qg,g′(vi, vj)

|E+
g | , (1)

Qg,g′(vi, vj) =

{
1 (i) a match, or
−|E+

g | (ii) a violation

Here |E+
g | denotes the total number of edges of the tran-

sitive closure g+. For all valid relations (vi,vj) in g′, vi is

an intermediate node in g′, and vj is a specified node in g.
Qg,g′(vi, vj) returns a similarity value 1 for a match (case
(i)). A violation incurs −|E+

g | as a penalty (case (ii)), which
reduces the accumulation. The maximum similarity value is
|E+

g | in the case when there are matches for all the compar-
isons.

Cached Query Selection
A perfectly similar preference profile can rarely be found
among the cached queries, especially as the maximum num-
ber of options allowed per user preference profile increases
and the users are more likely to specify very different pref-
erence profiles. For example, if the query processor accesses
the top cached query and it produces a negative score (i.e.,
indicating a preference violation), this would imply that the
system cannot retrieve a complete result set for the new
query from the existing cached queries (since all of them
have negative scores). To address this challenge, we intro-
duce a novel approach in this study to select a minimum
set of queries G′, from which the query processor can find
a complete set of skyline results by combining the results of
each query in G′.

The algorithm of finding a candidate result set for g is
outlined in Algorithm 1. In Line 2, D is a candidate re-
sult set which is initialed to the result tuples of qbase (i.e.,
q1). In Line 3, vioEdges is a container which stores the
violation edges (with respect to g) returned by the find-
VioEdges function. Line 3 checks the baseline query for any
violated relations. In Line 5, if vioEdges is not empty, q is
not an answerable query from the current selected cached
queries. If this is the case and the number of the current
candidate result set is less than a threshold (δ), the query
processor performs constraint queries to restore the missing
data points (Lines 5–12). Line 6 performs a rmVioEdges
function, which deletes the violated relations E in vioEdges,
if gi has compatible relations with regards to E. The set S
contains the result of the corresponding qi using gi. In Lines
8–9, by using the preference filtering function T (S,N), only
the relevant missing tuples of the new query result are in-
serted into the candidate result set. The details of handling
unanswerable queries are discussed in the next section.

Algorithm 1 FindCandidateSet(G, δ)

1: let Q = {q1, q2, ..., qm} be the sorted cached query list
and G = {g1, g2, ..., gm} be the their corresponding
sorted user profile list in ascending order of the simi-
larity value with respect to g

2: let D = q1.result be the initial candidate data set.
3: vioEdges = findVioEdges(g,g1)
4: i = 2 /* index of the user profiles in G */
5: while (vioEdges �= φ AND |D| < δ AND i ≤ n) do
6: (S, E) = rmVioEdges(vioEdges,gi);
7: if (S is not empty) then
8: let N be a node set of the sink node vj from each

relation pair of (vi, vj) in E

9: insert T (S,N) into D;
10: end if
11: i = i+ 1
12: end while
13: return (vioEdges,D)

Unanswerable Queries
A new query q is termed unanswerable if the selected cached
queries do not contain a complete result set for q. This may
occur when all the relations of the cached user preference
profiles violate the relations specified in q. However, even
in this case some optimization can be achieved. Instead of
accessing the entire data set to retrieve the skyline results,
CSS performs less expensive constraint queries to restore
the missing data tuples which were eliminated because of the
violated relations of the cached queries. Let SkylineQuery be
a function that embodies the non-caching algorithm TSS [5]
to evaluate a skyline query. We summarize the steps below
to perform such constraint queries for each violated relation
(vi → vj) of a partially-ordered domain POk.

Step 1: Let gi contain relation (vi → vi), gj contain rela-
tion (vj → vj), and gij contain relation (vi → vj) in
the POk domain, respectively.

Step 2: Let Si = SkylineQuery(Ti, gi), where Ti = Select
ALL from dataTable where POk = vi.

Step 3: Let Sj = SkylineQuery(Tj , gj), where Tj = Select
ALL from dataTable where POk = vj .

Step 4: Let Sij = SkylineQuery(Tij , gij), where Tij = Si∪
Sj .

Step 5: Return R = Tij − Sij

4. EXPERIMENTAL EVALUATION
We evaluated the performance of the CSS algorithm by

comparing it with the TSS approach [5], which handles
partially-ordered domains. Unlike CSS, TSS consults the
entire data set whenever it executes a new skyline query
request. CSS adopts TSS as the baseline algorithm to eval-
uate the skyline results for partially-ordered domains and
adds its own caching mechanisms. Therefore, the CPU ex-
ecution time for the first query is identical to the TSS ap-
proach. Subsequently, as the cache takes effect, performance
gains are achieved. We utilize R-trees as the underlying
structure for indexing the data and skyline points. Our data
set for a totally-ordered domain is in the range of [0, 1000)
and we generated up to 100,000 normal distributed data
points with dimensions in the range of 2 to 4. For partially-
ordered domains, we generate a PO value for each data di-
mension from 2 to 10, which is the maximal number of dis-
tinct options for a user preference profile in the system. The
height of a DAG is the maximum length of any path in the
graph. The lattice node size for a DAG is determined by a
height from 22 to 210 and a density ratio 0.6.

4.1 Data Cardinality
Figures 2 (a) and (b) show the CPU execution time and

I/O cost as a function of the number of data points, respec-
tively. Overall, the CPU overhead increases with the number
of data points. CSS achieves a significant reduction in terms
of the CPU time compared with TSS. This is indicative of
how CSS takes advantage of the results of a set of cached
queries with compatible user preference profiles. Since the
TSS approach considers the entire data set when evaluating
the skyline result for each new query, the CPU overhead is
significantly high with a large data set, especially as a result
of the R-tree constructions. In CSS, since the system only

has to construct R-trees on a small candidate result set, the
overall CPU time is reduced. The experimental results con-
firm the benefits of the CSS approach that adopts caching
and therefore achieves better CPU performance and lower
I/O cost than the TSS technique.

 0

 10

 20

 30

 40

 50

100,00080,00060,00040,00020,000

C
P

U
 T

im
e

(s
ec

)

Number of Data (P)

CSS
TSS

(a) CPU time

 20

 40

 60

 80

 100

100,00080,00060,00040,00020,000
I/O

 c
os

t

Number of Data (P)

CSS
TSS

(b) I/O cost

Figure 2: Performance as a function of data cardi-
nality.

4.2 Query Cardinality
Next, we report on the impact of the query cardinality on

the performance of the two approaches. Figures 3 (a) and
(b) show the CPU overhead and I/O cost versus the query
cardinality as it ranges from 1 to 100, respectively. When
starting the system, the CPU overheads of both approaches
for evaluating the first skyline query are identical. As time
progresses, the CSS system caches more queries; hence the
algorithm can utilize and retrieve a candidate result set that
is a subset of the entire data set. The CPU performance
is improved as more relevant queries are accessed by new
queries. However, as the number of queries increases (the
cache is likely full), the improvement of the CSS approach
slows as the system handles more cached queries and per-
forms more similarity comparisons. However, overall we can
see that CSS still outperforms TSS in terms of the CPU
time and I/O cost.

 2

 4

 6

 8

 10

 12

10090705030101

C
P

U
 T

im
e

(s
ec

)

Number of Query (Q)

CSS
TSS

(a) CPU time

 10
 12
 14
 16
 18
 20
 22
 24

10090705030101

I/O
 c

os
t

Number of Query (Q)

CSS
TSS

(b) I/O cost

Figure 3: Performance as a function of query cardi-
nality.

4.3 User Profile Cardinality
In this experiment we investigate the effect of the DAG

height associated with the PO domains. In Figures 4 (a) and
(b), we vary the DAG height from 2 to 10. Both algorithms
incur an increasing CPU load and I/O cost as the DAG
height increases. When the total number of lattice nodes of a
DAG increases, CSS mainly suffers from higher computation
costs of the similarity measurements, since the system has
to check a large number of lattice nodes (or relations) for
similarity comparisons. Furthermore, dominance operations
are performed intensively, because the query processor might
access intricate user profiles composed of more lattice nodes.
Consequently, the skyline result points are often large, such

that the performance is degraded. The performance of the
TSS approach remains relatively stable, albeit at a worse
level than CSS.

 0
 2
 4
 6
 8

 10
 12
 14

108642

C
P

U
 T

im
e

(s
ec

)

DAG Height (h)

CSS
TSS

(a) CPU time

 0

 5

 10

 15

 20

 25

 30

 35

108642

I/O
 c

os
t

DAG Height (h)

CSS
TSS

(b) I/O cost

Figure 4: Performance as a function of the DAG
height.

5. CONCLUSIONS
We have introduced a novel approach, termed CSS, to

process skyline queries with partially-ordered domains by
caching the query results with their unique user preference
profiles. The query response time of a new query is sig-
nificantly reduced by retrieving its result from the cached
result sets with compatible specifications. Our similarity
measure enables the query processor to find the minimum
set among the candidate results. In case a query result can-
not be fully computed from the cache, we propose the use of
less expensive constraint skyline queries to restore missing
data tuples. Our experimental evaluation demonstrates that
CSS improves existing methods and is especially suited for
interactive applications that require a fast response time.

Acknowledgments
This research has been funded in part by the National Sci-
ence Council under the Grants NSC101-2221-E-194-054, the
Singapore National Research Foundation under its Inter-
national Research Centre @ Singapore Funding Initiative
and the National Science Foundation (NSF) Grants CNS-
0831502 (CT) and CNS-0855251 (CRI).

References
[1] S. Börzsönyi, D. Kossmann, and K. Stocker. The Skyline

Operator. In ICDE, pages 421–430, 2001.
[2] C. Y. Chan, P.-K. Eng, and K.-L. Tan. Stratified

Computation of Skylines with Partially-Ordered Domains.
In SIGMOD Conference, pages 203–214, 2005.

[3] D. Kossmann, F. Ramsak, and S. Rost. Shooting Stars in
the Sky: An Online Algorithm for Skyline Queries. In
VLDB, pages 275–286, 2002.

[4] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An Optimal and
Progressive Algorithm for Skyline Queries. In SIGMOD
Conference, pages 467–478, 2003.

[5] D. Sacharidis, S. Papadopoulos, and D. Papadias.
Topologically Sorted Skylines for Partially Ordered
Domains. In ICDE, pages 1072–1083, 2009.

[6] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient Progressive
Skyline Computation. In VLDB, pages 301–310, 2001.

[7] R. C.-W. Wong, A. W.-C. Fu, J. Pei, Y. S. Ho, T. Wong,
and Y. Liu. Efficient skyline querying with variable user
preferences on nominal attributes. PVLDB, 1(1):1032–1043,
2008.

[8] S. Zhang, N. Mamoulis, B. Kao, and D. W.-L. Cheung.
Efficient Skyline Evaluation over Partially Ordered Domains.
PVLDB, 3(1):1255–1266, 2010.

