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Abstract—Location-based services are increasingly popular recently. Many applications aim to support a large number of users in

metro area (i.e., dense networks). To cope with this challenge, we present a framework that supports location-based services on

MOVing objects in road Networks (MOVNet, for short) [26]. MOVNet’s dual-index design utilizes an on-disk R-tree to store the network

connectivities and an in-memory grid structure to maintain moving object position updates. In this paper, we extend the functionality of

MOVNet to support snapshot range queries as well as snapshot k nearest neighbor queries. Given an arbitrary edge in the space, we

analyze the minimum and maximum number of grid cells that are possibly affected. We show that the maximum bound can be used in

snapshot range query processing to prune the search space. We demonstrate via theoretical analysis and experimental results that

MOVNet yields excellent performance with various networks while scaling to a very large number of moving objects.

Index Terms—Spatial databases, GIS, Location-dependent, sensitive.
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1 INTRODUCTION

WITH the widespread use of GPS devices, more and more
people are enjoying location-based services. Various

applications, such as roadside assistance, highway patrol,
and location-aware games, are popular in many urban areas.
This has intensified research interests to overcome the
inherent challenges in designing scalable and efficient
infrastructures to support very large numbers of users
concurrently. The mobility made possible by the usage of
car-based or handheld GPS devices in metro cities results in
two fundamental system requirements: distance computa-
tions within a (road) network and processing of moving
Points of Interest (POIs).

An increasing number of applications require query
processing of moving POIs based on an underlying network.
For example, when a pedestrian calls for emergency
assistance, the call center may want to locate all police cars
within a five-mile distance and dispatch them to the call-
originating location. Note that the mentioned examples
require snapshot queries, rather than continuous monitoring
(which is another class of applications).

Spatial data processing is a very active research field. Some
of the early work introduced spatial processing of stationary
objects based on euclidean distance metrics. More recent
work incorporates POI mobility or network-distance proces-
sing, but often not both. Several techniques [4], [14], [21] have

aimed at solving location-based (Continuous) k Nearest
Neighbor (kNN/C-kNN) queries in spatial networks. These
methods assume that the positions of POIs are fixed (e.g., gas
stations or bus stops). While the ability to process moving
POIs is challenging, it also enables new applications and, in
the most general case, the query points and the POIs are
interchangeable, i.e., users or vehicles equipped with GPS
devices are able to report their positions and, hence,
themselves become POIs. Some prior work has focused on
providing the functionality for moving POI processing [19],
[28], [30]. Specifically, these techniques aim to continuously
monitor a set of moving nearest neighbors. However, one of
the limitations of these methods is their reliance on euclidean
distance measures, which can be imprecise, especially in
dense road networks. Two of the main challenges when
supporting POI mobility on an underlying road network
are to 1) efficiently manage object location updates and
2) provide fast network distance computations. To address
these issues, we have designed a novel system to process
location-based queries on MOVing objects in road Networks
(MOVNet) [26]. The goal is to efficiently execute snapshot
range and k nearest neighbor queries over moving POIs
within a stationary road network. Although MOVNet is not
aimed at continuous query processing in its current form, we
believe that a large number of location-based services only
require snapshot query processing capabilities. For instance,
when a user calls a service center to find a nearby taxi, the
query is instantaneous and as soon as a taxi is dispatched to
pick up the customer, the transaction is complete (i.e., the
ordering phase).

Fig. 1 illustrates MOVNets system infrastructure and
components. To handle large networks, MOVNet utilizes an
on-disk R*-tree [1] structure to store the necessary connectiv-
ity information. Efficient processing of moving object
position updates is achieved with an in-memory grid index.
An appealing feature of MOVNet is the bidirectional
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mapping between the two structures that enables the
retrieval of a minimal set of data for query processing. Based
on the concept of affected cells that form the set of grid cells
overlapping with a given edge, we present algorithms to
execute range as well as kNN queries. Analytical bounds on
the minimum and maximum number of affected cells with an
arbitrary network edge enable the pruning of the search space
during mobile range query processing. In the mobile kNN
query algorithm, we utilize the concept of a progressive probe
into the grid index to estimate the subspace containing the
result set. The performance of our design has been verified
vigorously through theoretical analysis and simulations. Our
comparison with two state-of-the-art baseline algorithms
demonstrate the superior performance of MOVNet.

The remainder of this paper is organized as follows:
Section 2 describes the related work. Section 3 discusses our
assumptions and the dual-index design. In the following
Section 4, we propose our mobile network distance range
query and k nearest neighbor query algorithms. We present
the theoretical analysis of our design in Section 5. We
vigorously verify the performance of MOVNet and demon-
strate that the results match our analysis in Section 6. Finally,
we conclude with Section 7.

2 RELATED WORK

Processing spatial queries in networks has been intensively
studied recently. Papadias et al. [21] first presented an
architecture that integrates network and euclidean informa-
tion in processing network-based queries. Specifically, the
idea of euclidean restriction utilizes the property that for any
two objects in the network, the network distance is at least the
same as the euclidean distance. In contrast, the network
expansion method performs the search directly from the
query point by expanding the nearby vertices in the order of
their distances from the query point. As an improvement, the
VN3 method [15] was proposed as a Voronoi-based approach
to precompute the distances within and across subspaces.
The goal was to avoid online distance computations in
processing kNN queries. Huang et al. [11] addressed the
same problem by proposing the islands approach that
estimates the overhead of precomputation and the trade-off
between query and update performance for kNN queries
with various densities of POIs and networks. To cope with
C-kNN queries on stationary POIs in a network, Kolahdou-
zan and Shahabi [14] proposed the Intersection Examination
and Upper Bound Algorithm (IE/UBA) to compute the

kNN objects of all nodes on the path and the split points
between adjacent nodes whose nearest neighbors are
different. Lately, Cho and Chung [4] solved the same
problem by introducing UNICONS which incorporates
precomputed kNN lists into Dijkstra’s algorithm such that
it outperforms the IE/UBA approach in dense networks.

The preceding techniques hold the assumption that the
POIs are static (i.e., the POIs do not update their location).
However, a large number of the spatial applications require
the capability to process moving POIs. This requirement
raises the issue of managing a very large number of location
updates of moving POIs in an index structure. To overcome
this challenge, using predictions (i.e., the trajectory of
moving objects) to presume the movement of objects have
been used in R-tree-based structures (e.g., the TPR-Tree and
its variants [24], [23] ) and B-tree-based structures (e.g., the
Bx tree [13]). As an alternative, STRIPE [22] introduces the
idea of transforming the trajectories of objects in a
d-dimensional space into points in a 2D space. However,
the assumption of being able to predict the trajectories of
moving objects is not always realistic. If the forecast of the
object movements fails (e.g., pedestrian strolling in a
shopping mall), these approaches are inappropriate. Hence,
the Lazy-update R-tree (LUR-tree) [16] and its extension [17]
modify the original R-tree design to support frequent
updates with no restriction on object movement. Specifically,
the periodical sampling of the object location is recorded in
these tree structures to represent the current location of POIs.

In general, tree-based indices suffer from node reconstruc-
tion overhead when performing location updates. Therefore,
grid-based structures have raised intensive interest due to
their simplicity and efficiency in indexing moving objects.
Specifically, Xiong et al. proposed LUGrid [29], an update-
tolerant on-disk grid index, that outperforms the LUR-tree in
terms of update and query costs. Based on this fact, much of
the recent work leverages either an in-memory grid index [5],
[7], [19], [30] or an on-disk grid index [28]. Another notable
technique was proposed by Hu et al. [8], who introduced the
concept of distance signature that specifically focuses on
indexing the network distance between objects by partition-
ing the distances into categories to prune the search space.
However, this work assumes a network with long edges,
which does not apply in our data sets. Consequently, our
design of MOVNet utilizes an in-memory grid index to
record the snapshot location of moving POIs.

Backed by a grid index, many methods have been
proposed to process location-based services on moving POIs
with euclidean distances. For instance, Chon et al. [5] first
presented an algorithm based on the trajectory of moving
POIs overlapping with the grid cells to solve snapshot range
and kNN queries. By assuming computing capabilities on
the mobile client side, MobiEyes [7] introduced a distributed
infrastructure to process mobile range queries on dynamic
POIs. Similarly, Hu et al. [9] proposed a generic framework
to handle continuous queries by introducing the concept of
safe region through which the location updates from the
mobile clients can be further reduced. In contrast, SINA [18]
and SEA-CNN [28] were introduced as centralized solutions
with the idea of shared execution to process continuous range
and kNN queries on moving POIs. Yu et al. [30] put forward
an algorithm (referred to as YPK-CNN) for monitoring
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Fig. 1. The index structures and query processing modules of MOVNet.



C-kNN queries on moving objects by defining a search
region based on the maximum distance between the query
point and the current locations of previous kNNs. As an
enhancement, Mouratidis et al. [19] presented a solution
(CPM) that defines a conceptual partitioning of the space by
organizing grid cells into rectangles. Location updates are
handled only when objects fall within the vicinity of queries
hence improving the system throughput. However, the
above techniques do not consider network distance compu-
tation, which makes them unsuitable for applications where
movement is restricted by a network.

For environments where POIs are dynamic and distances
are based on network paths only a few techniques exist.
Jensen et al. [12] described an abstract distributed infra-
structure for handling location updates of moving POIs in a
network in conjunction with a kNN query algorithm. As
a centralized alternative, S-GRID [10] was introduced as a
means to process kNN queries. A precomputed structure is
maintained with regard to the spatial network data such as
to improve the efficiency of query processing. Recently,
Mouratidis et al. [20] addressed the issue of processing
C-kNN queries in road networks by proposing two
algorithms (namely, IMA/GMA) that handle arbitrary
object and query movement patterns in road networks.
This work utilizes an in-memory data structure to store the
network connectivity and is, therefore, unsuitable for large-
sized networks (e.g., metro cities). In contrast, MOVNet
uses an on-disk R-tree structure that has a proven
performance record for indexing large-sized, 2D data sets.

3 SYSTEM DESIGN

Next, we describe our data modeling of the road network, the
data structures of indices, and a cell overlapping algorithm
that relates the R-tree and the grid index in MOVNet.

3.1 Network Modeling and Assumptions

Fig. 2 illustrates an example of the MOVNet mobile
infrastructure. We assume that mobile users are equipped
with car-based or handheld GPS devices that provide the

coordinates of their current location. Additionally, these
devices are also able to communicate with a central spatial
data server via cellular-based wireless networks (e.g., 3G
and WiMax). Moreover, moving POIs, such as taxis, are also
equipped with GPS devices that periodically report their
locations to the spatial data server. We assume that given
the location of a mobile user or a moving POI, the GPS
device is able to snap (geomatch) the location to be on a
road segment. Note that GPS devices have some limitations
on their location accuracy which can be improved through
various techniques [25].

We define a road network (or network for short) as a
directional weighted graphG consisting of a set of edges (i.e.,
road segments) EE, and a set of vertices (i.e., intersections and
dead ends) VV, where EE � VV�VV. For any network GðEE;VVÞ,
each edge e is represented as eðv1; v2Þ, i.e., it is connected to
two vertices v1, v2, where v1 and v2 are the starting and
ending vertex, respectively. Let v1 6¼ v2. Each edge e is
associated with a length, given by a function lengthðeÞ:
EE! IRþ, where IRþ is the set of positive real numbers.

The road network is transformed into a modeling graph
during query processing. Specifically, graph vertices repre-
sent the following three cases: 1) the intersections of the
network, 2) the dead end of a road segment, and 3) the points
where the curvature of a road segment exceeds a certain
threshold so that the road segment is split into two pieces to
preserve the curvature property. Although polylines can
also be used to represent the edges, we use a set of line
segments to represent an edge due to the nature of our data
set. As a result, the modeling graph is a piecewise linear
approximation of the network. For example, Fig. 3a shows a
small road network, and Fig. 3b illustrates the corresponding
modeling graph.

There are different objects (e.g., cars, taxis, and pedes-
trians) moving along the road segments in a network. These
objects are known as the set of moving objects MM. A moving
object m 2 MM is a POI located in the network. For simplicity,
we assume that a map-matching procedure is invoked when
a POI sends its location to the central server. Hence, a POI is
presumed to be located on a network edge in the system. The
position of m at time t is defined as loctðmÞ = (xm, ym), where
xm and ym are the x and y coordinates of m at time t,
respectively. A query point q 2 MM is a moving object issuing
a location-based spatial query at different times. Currently,
our design is focusing on snapshot range queries (e.g., “find
all taxis within a three mile range from my current location”).
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Fig. 2. An example of MOVNet mobile infrastructure.

Fig. 3. An example of a road network and its corresponding, linearized
modeling graph.



Note that these queries are processed with network dis-
tances. For simplicity, we use the term distance to refer to the
network distance in the following sections.

To represent the snapshot location of moving objects,
MOVNet assumes that periodic sampling of the moving
object positions conveys their locations as a function of
time. Specifically, a spatial query submitted by a user at
time t1 is computed based on loct0ðMMÞ. The system
maintains the latest snapshot of moving objects t0 with
t0 � t1, t1 � t0 < �t, and �t is a fixed time interval; the
result is valid until t0 þ�t. This method is commonly used
(see [28], [30]) to represent the snapshot location of moving
objects. Note that slight result inaccuracies may arise
because of the discreet sampling of time and communica-
tion delays. The result converges to the accurate value as
the time interval �t and the wireless transmission delays
approach zero. The sampling rate is also related to the
maximum object speed that is expected in the system. The
system designer must tune the sampling parameter to
achieve a good trade-off between the result precision and
the sampling overhead.

We define the distance function of two moving objects m1

and m2 at time t as disttðm1;m2Þ: loctðm1Þ � loctðm2Þ ! IRþ.
Here, disttðm1;m2Þ denotes the shortest path from m1 to m2

in the metric of the network distance at time t. For notational
simplicity, we denote distðm1;m2Þ as the distance function of
m1 and m2 at the current time. Similarly, the distance
function of an edge eðv1; v2Þ and a moving object m at time t
is defined as disttðe;mÞ: locðv1Þ � loctðmÞ ! IRþ. Finally,
disttðe;mÞ denotes the shortest path from v1 to m in the
metric of the network distance at time t.

The distance between two moving objects depends on
the length of edges and the connectivity of vertices as well
as the current locations of the objects. We elaborate on our
dual-index structure designed to facilitate distance compu-
tations in the following section.

3.2 Dual-Indexing Structure Design

To record the connectivity and coordinates of vertices in
stationary networks, MOVNet utilizes an on-disk R*-tree, a
data structure which has been intensively studied for
handling very large 2D spatial data sets. Once the edges
are retrieved from disk, a corresponding modeling graph is
constructed in memory using the following structure. We use
a vertex array to store the coordinates of vertices in the graph.
For each vertex, the array maintains a list that records its
outgoing edges. To quickly locate a vertex in the array,
MOVNet manages a hash table to map the coordinate of a
vertex into its index in the vertex array.

A memory-based grid index is used to manage the
locations of moving objects [30]. Without loss of generality,
we assume that the service space is a square. We can
partition the space into a regular grid of cells with a size of
l� l. We use cðcolumn; rowÞ to denote a specific cell in the
grid index (assuming that the cells are ordered from the
lower left corner of the space). At time t, a moving object m
is positioned at loctðmÞ = (xm, ym), therefore, it overlaps
with cell cðbxml c; b

ym
l cÞ. Each cell maintains an object list

containing the identifiers of enclosed objects. The objects’
coordinates are stored in an object array, and the object
identifier is the index into this array. Fig. 4 shows a part of

the network of Fig. 3b that is managed by a grid index of
8� 8 cells. An example object on eðv2; v4Þ is enclosed by
cð5; 5Þ. Accordingly, the object list of cð5; 5Þ records the
object identifier and, hence, we can retrieve the coordinate
of the object from the object array.

Given a set of grid cells, retrieving the underlying
network can be transformed into range queries on the R-
tree. It is highly desirable to have an algorithm such that for
an arbitrary edge, we are able to find the set of overlapping
cells very quickly. Although this is related to the line
rasterization algorithm (e.g., Bresenham’s Algorithm [2]), it
is noteworthy to point out that these existing algorithms
only obtain an approximation of the overlapping cells (or
pixels, in that case). In contrast, our goal is to compute the
complete set of overlapping cells. Therefore, we devise an
incremental algorithm.

First, let us assume that the service space is managed by a
grid-based index. We define the set of cells {c1, c2; . . . ; cn},
which are consecutively overlapped from v1 to v2 by an edge
eðv1; v2Þ, as the set of affected cells of e. For instance, in Fig. 4,
the affected cells of eðv1; v2Þ are {cð1; 6Þ, cð2; 6Þ, cð3; 6Þ, cð4; 6Þ}.

We use straight line segments to represent edges in the
network. Therefore, any edge eðv1; v2Þ can be described by
a first degree polynomial function in the form of y ¼
m � xþ b with x 2 ½xv1

, xv2
�. Given an edge eðv1; v2Þ, the

coordinates of vertex v1 and v2 are (xv1
, yv1

) and (xv2
, yv2

),
respectively. To compute the set of affected cells of e, we
first capture the gradient m and the y-intercept b of e. After
that, we compute the cells overlapping with the starting
and ending vertex of the edge, respectively. Next, we
follow a step-forward approach where in each step, we
move one cell on the x-axis from the cell overlapping with
the starting vertex and calculate the affected cells along the
y-axis. Finally, we terminate once we reach the cell that
contains the ending vertex.

Computing the set of overlapping cells with regard to an
edge has linear complexity in the length of the edge. Our
experimental results show that the CPU time used for
computing overlapping cells consumes less than five
percent of the query processing time with various settings.
This indicates that our method is well suited for online
computing. More importantly, MOVNet creates a means to
bidirectionally map underlying networks and moving
object positions. We present our query design in the
following sections showing the flexibility and scalability
of this dual-index approach.
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Fig. 4. An example network indexed by the grid index and its data
storage structure.



4 QUERY DESIGN

In this section, we first describe our design of a mobile
range query algorithm. Next, we present the minimum and
maximum bounds on the number of grid cells that can
overlap with an arbitrary edge. Then, the maximum bound
is used to prune the search space during query processing.
Finally, we propose a mobile kNN query algorithm by
introducing the concept of a progressive probe and
leveraging our range query algorithm.

4.1 Range Query Algorithm

Given a query point q, a value d, a network G, and a set of
moving objects MM, a location-based network distance range
query retrieves all POIs of MM that are within the distance d
from q at time t. By using the definitions of Section 3, the
query can be represented as rangeQuerytðq; dÞ : loctðqÞ �
loctðMMÞ ! fmi; i ¼ 1; . . . ; ng, 8mi, disttðq;miÞ � d.

We propose a Mobile Network Distance Range (MNDR)
query algorithm to facilitate the query processing. First, we
know from the euclidean distance restriction [21] property
that the distance distðq;mÞ for object m in a network is
always larger than or equal to the euclidean distance d of q
to m. We observe that only the network data in MOVNet is
stored on disk. Therefore, we first perform a euclidean
range query with q as the center and d as the radius to
retrieve the network from the R-tree and to create the
corresponding modeling graph. After that, we are able to
perform the later steps efficiently in memory. Second, the
starting vertex of an edge eðv1; v2Þ has the property that if
distðq; v1Þ > d, the affected cells of the edge are not required
to be examined during this first pass because any moving
object on e has a distance greater than d from q. Hence, for
each vertex in the modeling graph, MNDR leverages
Dijkstra’s algorithm [6] to compute the distance from q. In
addition, our algorithm avoids unnecessary processing on
any edge with a distance from the query point greater than
d. Finally, for each edge whose distance of the starting
vertex is within the query range d, MNDR generates the list
of affected cells and retrieves the corresponding moving
objects from the grid index.

Algorithm 1. Mobile Network Distance Range Query (q, d)

1: /* q is the query object */

2: /* d is the distance */

3: result ¼ �
4: /* Finding the set of edges EE0, AND vertices VV0

overlapped by the circle with center point q, and

radius d */

5: ðEE0, VV0Þ ¼ euclidean-range(q, d)
6: G ¼ Create-modeling-graph(EE0, VV0)

7: q ¼ Add-vertex-into-graph(G, q, e)

8: S ¼ Compute-distance(G, q, d)

9: for each vertex v in S do

10: for each edge e outgoing from v do

11: cellSet ¼ cellSet [
cellOverlappingðe; d� distðq; vÞÞ

12: end for

13: end for

14: result ¼ Retrieve-objects(cellSet, G)

15: for each object m in result do

16: distðq;mÞ ¼ minðdistðq; v1Þ þ distðv1;mÞ,
distðq; v2Þ þ distðv2;mÞ)

17: if distðq;mÞ > d then

18: result ¼ result�m
19: end if

20: end for

21: return result

Algorithm 1 details MNDR. To illustrate the algorithm
with an example, let us assume that the system is processing a
network as shown in Fig. 4, where the side length of cells is
1.0 unit. A query object q with distðq; v2Þ ¼ 1:0 submits a
range query with a range d ¼ 3:5. MOVNet first invokes a
euclidean distance range query with q as the center and d as
the radius (Line 5 of Algorithm 1). Consequently, edges
overlapping with the shadowed area will be retrieved from
the R-tree index and a corresponding modeling graph is built
as shown in Fig. 5a (Line 6). Note that q is inserted as the
starting vertex into the modeling graph (Line 7). Next,
Dijkstra’s algorithm is invoked (Line 8). We add a constraint d
in the distance computation so that any edge eðv1; v2Þ with
distðq; eÞ > d will not be processed, which avoids excessive
computation on edges that are out of range. When Dijkstra’s
algorithm finishes, the distance of each vertex from q is
shown in Fig. 5b. In addition, S ¼ h (v2, 1), (v4, 2.5), (v3, 3), (v5,
3.4)i. Based on this information, MNDR computes cellSet by
using our cell overlapping algorithm in Lines 9-13, shown as
the dark gray cells in Fig. 5b. After that, the moving objects in
cellSet are retrieved from the grid index to constitute the
result set. However, several postprocessing steps are
required to ensure that the distance of each moving object
is within range d. First, some objects may be reachable via
more than one path from the query point. MOVNet will only
consider the shortest path and examine the path against the
range d (Line 16). For example, moving objects on edge
eðv3; v4Þ have two paths from q (q! v2 ! v3, q! v4). MNDR
will compute the distance of each object via every path, and
only use the shortest one. Second, once the distance from q to
the object is determined, MNDR confirms that the distance is
�d. For instance, for any object m retrieved from cð5; 0Þ,
distðq;mÞ > 3:5, thus, the algorithm removes these objects in
Lines 17-19.

When we compute cellSet in Algorithm 1 (Lines 10-14),
some cells can be further pruned before the system
retrieves the moving objects from the corresponding grid
index. For instance, in the example illustrated above,
eðv4; v6Þ overlaps with six cells. Some of the cells can be
pruned because their distances from q > d. This optimiza-
tion can be achieved by using the geometric properties as
described in the following section.
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4.2 The Minimum and Maximum Number of Cells
Overlapping with an Edge

We present an important geometric property that relates an

arbitrary edge overlapping with the grid cells it overlaps.

Since the edge is represented as a straight line segment, the

relationship between the length of an edge eðv1; v2Þ and the

number of its affected cells can be described as follows:

Lemma 1. Assume that the service space is managed by a grid-

based index with a cell size of l� l. For an edge eðv1; v2Þ with a

set of affected cells {c1, c2; . . . ; cn}, the maximum length of e isffiffiffi
2
p
� l� n. The minimum length of e is

0; 1 � n � 2;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�3

2

� �2þ n�2
2

� �2
q

� l; n � 3:

(

Proof. Without loss of generality, let us consider an edge e

in the service space that overlaps with grid cells as

shown in Fig. 6. Assume that the number of affected cells

for e is n. Therefore, for 0 � exi � l, 0 � eyi � l, we have

lengthðeÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn�1

i¼0

e2
xi þ

Xn�1

i¼0

e2
yi

vuut : ð1Þ

We observe that, when exi ¼ eyi ¼ l, where 0 � i �
n� 1, we have the maximum length of e when
substituting exi and eyi in (1)

lengthmaxðeÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � l2 þ n2 � l2

p
¼

ffiffiffi
2
p
� l � n:

To compute the minimum length of e, we observe
from Fig. 6 that ey1 þ ey2 ¼ ex2 þ ex3 ¼ l, and so on, which
can be summarized as

exð2jÞ þ exð2jþ1Þ ¼ l; 1 � j �
�
n�3

2

�
;

eyð2k�1Þ þ eyð2kÞ ¼ l; 1 � k �
�
n�2

2

�
:

�
ð2Þ

For simplicity, we use Exj to refer to exð2jÞ þ exð2jþ1Þ
and Eyk to refer to eyð2k�1Þ þ eyð2kÞ from here on.

When n ¼ 1, the minimum length of

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2
x0 þ e2

y0

q
¼ 0;

where ex0 ¼ ey0 ¼ 0. Similarly, when n ¼ 2, the minimum

length of e ¼ 0, where ex0 ¼ ey0 ¼ ex1 ¼ ey1 ¼ 0.
When n is �3 and odd, we have

Xn�1

i¼0

e2
xi ¼ ex0 þ ex1 þ

Xbn�3
2 c

j¼1

Exj þ exðn�1Þ

0
@

1
A2

;

Xn�1

i¼0

e2
yi ¼ ey0 þ

Xbn�2
2 c

k¼1

Eyk þ eyðn�2Þ þ eyðn�1Þ

0
@

1
A

2

:

8>>>>>>><
>>>>>>>:
Using the properties in (2), the above equations can be

transformed into

Xn�1

i¼0

e2
xi ¼ ex0 þ ex1 þ

n� 3

2

� �� 	
� lþ exðn�1Þ

� 	2

;

Xn�1

i¼0

e2
yi ¼ ey0 þ

n� 2

2

� �� 	
� lþ eyðn�2Þ þ eyðn�1Þ

� 	2

:

8>>>><
>>>>:

Substituting the corresponding parts of (1) with the
above equations, we can conclude that, if ex0 ¼ ex1 ¼
exðn�1Þ ¼ ey0 ¼ eyðn�2Þ ¼ eyðn�1Þ ¼ 0, then

lengthminðeÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 3

2

� �2

þ n� 2

2

� �2
s

� l:

Similarly, when n is �3 and even, we have

Xn�1

i¼0

e2
xi ¼ ex0 þ ex1 þ

Xbn�3
2 c

j¼1

Exj þ exðn�2Þ þ exðn�1Þ

0
@

1
A

2

;

Xn�1

i¼0

e2
yi ¼ ey0 þ

Xbn�2
2 c

k¼1

Eyk þ eyðn�1Þ

0
@

1
A2

:

8>>>>>>><
>>>>>>>:

Using the same properties as shown in (2), we can
conclude that

lengthminðeÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 3

2

� �2

þ n� 2

2

� �2
s

� l:

Therefore, we have proved that when n � 3, in both
even and odd cases,

lengthminðeÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 3

2

� �2

þ n� 2

2

� �2
s

� l:

ut

Lemma 1 states the minimum and maximum bounds of
the length of an edge given a fixed number of cells. We
further derive from Lemma 1 the maximum and minimum
number of affected cells with regard to an arbitrary edge.

Corollary 1. Assume that the service space is managed by a grid-
based index with a cell size of l� l. For an edge eðv1; v2Þ, the
maximum and minimum numbers of affected cells are
d
ffiffi
2
p
�lengthðeÞ

l e þ 3, and blengthðeÞffiffi
2
p
�l c, respectively.

Proof. We know from Lemma 1 that, given an edge eðv1; v2Þ,
lengthðeÞ �

ffiffiffi
2
p
�l�n, hence, we can directly deduce that

n � blengthðeÞffiffi
2
p
�l c.

Similarly, since

lengthðeÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 3

2

� �2

þ n� 2

2

� �2
s

� l;
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Fig. 6. Computing the length of edges with regard to the number of grid
cells.



it follows that

lengthðeÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � n� 3

2

� �2
s

� l;

which leads us to conclude that n � d
ffiffi
2
p
�lengthðeÞ

l e þ 3. tu
We utilize the property of the maximum number of

affected cells in Corollary 1 to prune the search space. Let us
assume that MNDR generates the list of cells overlapping
with an edge eðv1; v2Þ and there are n1 affected cells. By using
Corollary 1, we conclude that a range d� distðq; v1Þ is only
able to overlap with at most n2 cells, with n2 < n1. Therefore,
MNDR will only record the first n2 cells on eðv1; v2Þ into
cellSet. As an example, consult Fig. 5b. We know that
distðq; v4Þ ¼ 2:5 , therefore, we only need to record cells on
eðv4; v6Þ within a range of 3:5� 2:5 ¼ 1:0 from v4. Using the
maximum bound of the number of affected cells, MNDR
records the first five cells on eðv4; v6Þ starting from v4, even
though there are six cells overlapping with eðv4; v6Þ.

In summary, Corollary 1 provides a precise range on
how edges overlap with grid cells. Our simulation results
indicate that this property offers substantial performance
improvements when computing the affected cells over long
edges (i.e., freeway segments).

4.3 k Nearest Neighbor Query Algorithm

Given a query point q, a value k, a network G, and a set of
moving objects MM, the network-distance-based k nearest
neighbor query retrieves the k objects of MM that are closest
to q according to the network distance at time t. Formally, a
mobile kNN query is represented as kNNQuerytðq; kÞ:
loctðqÞ � loctðMMÞ ! fmi; i ¼ 1; . . . ; kg, where 8mj ¼ MM �
mi, disttðq;mjÞ � disttðq;miÞ.

To cope with this type of query, we propose a Mobile k
Nearest Neighbor (MKNN) query algorithm leveraging our
MNDR algorithm to efficiently compute the kNN POIs from
the query point in the network. We observe that the grid
index in MOVNet enables fine-grained space partitioning.
Additionally, the grid index maintains an object list in each
grid cell, which can be quickly accessed to retrieve the
number of enclosed objects. Therefore, we begin by
searching the surrounding area of the query point in the
grid index and continuously enlarging the area until we are
able to find a subspace that contains kNN POIs in terms of
the euclidean distance. We term this procedure a progressive
probe. Note that in the progressive probe, we only retrieve
the size of the object list from each cell, while the distance of
each object from the query point is not computed because
we aim to obtain an approximate area enclosing kNN
objects within network distance. Our experimental study
shows that in 30 to 48 percent of the test cases the actual
number of kNN objects is bounded by our progressive
probe. More importantly, the complexity of retrieving the
object list size from each cell is O(1), which is very efficient
especially since our grid index is an in-memory structure.

We define that cells in the grid index are grouped into
levels centered at cðbxql c; b

yq
l cÞ, where q is a moving object

submitting a mobile kNN query and l is the side length of a
grid cell. The first level L0 is the single cell cðbxql c; b

yq
l cÞ and

cells in the next level are the surrounding cells of L0, and so

on. By using the definition above, the progressive probe
first retrieves the number of objects in L0 via the grid index.
If there are less than k objects in L0, it continues to scan the
number of objects in the next level of cells, and so on. Fig. 7a
illustrates an example of these steps. Assume the system is
maintaining a network as shown in Fig. 4 and a query object
q in cð5; 5Þ submits a nearest neighbor query with k ¼ 10.
The progressive probe first locates q in cð5; 5Þ, which
becomes L0. After that, the number of POIs in cð5; 5Þ is
retrieved from the grid index. If there are less than 10 POIs
in L0, the progressive probe sequentially searches the next
levels Li, where i 2 f1; 2; � � �g, illustrated in the shadowed
areas in Fig. 7a. Assuming that at least 10 POIs have been
found after the scan in L2, the probe stops and results in an
estimated space for kNN objects in the network. Because the
R-tree is on the secondary storage in MOVNet and the
number of disk I/Os should be minimized, MKNN utilizes
this estimated area to launch a range query extracting the
edges from the R-tree, instead of following a network
expansion approach to retrieve a few edges at a time.

We also introduce the following data structures:
candidateObjs and unvisitedV ertices. These are minimum
priority queues on the value of the distances from the query
point. The set of candidate objects is retrieved from the grid
index as possible objects in the final result set. The set of
unvisited vertices is to be expanded when there are less
than k objects found during query processing. Additionally,
we manage resultObjs as a maximum priority queue in
terms of the distance from the query point with a size of k.

Algorithm 2 elaborates on the MKNN algorithm. MKNN
first executes the progressive probe in the grid index so that
an approximate query result space is created. After that,
MKNN uses this subspace as an initial range to invoke the
MNDR module so that the corresponding edges are retrieved
from the R-tree and the distance of each vertex from q is
computed (Lines 5-8). Given the example of Fig. 7a, Fig. 7b
demonstrates the correlated modeling graph and the dis-
tance to each vertex.

Algorithm 2. Mobile Network Distance kNN Query (q, k)

1: /* l is the side length of cell */

2: foundkObjs ¼ false, visitedV ertices ¼ �
3: radius ¼ Progressive-probe(q, k, l)

4: while foundkObjs ¼ false do

5: ðEE0, VV0Þ ¼ euclidean-range(q, radius)

6: G ¼ Create-modeling-graph(EE0, VV0)

7: q ¼ Add-vertex-into-graph(G, q, e)

8: S ¼ Compute-distance(G, q)
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Fig. 7. A mobile network distance k-NN query example.



9: unvisitedV ertices ¼ S � visitedV ertices
10: while unvisitedV ertices ! ¼ NULL do

11: minV ertex ¼ De-queue(univisitedV ertices)

12: cellSet ¼ �
13: if resultObjs:size ¼ kAND

minV ertex:dist � kth resultObjs:dist then

14: foundkObjs ¼ true
15: break

16: end if

17: for each edge e outgoing from minV ertex do

18: cellSet ¼ cellSet [
cellOverlappingðe; d� distðq; vÞÞ

19: end for

20: candidateObjs ¼ candidateObjs [
Retrieve-objects(cellSet, G)

21: while resultObjects:size < k do

22: De-queue(candidateObjs) to resultObjs

23: end while

24: while Peak(candidateObjs).dist �
kth resultObjs:dist do

25: Swith(De-queue(candidateObj),

De-queue(resultObjs))

26: end while

27: end while

28: radius ¼ minV ertex:dist
29: end while

30: return resultObjs

Next, a vertex is dequeued from unvisitedV ertices
(Line 11). For each outgoing edge from the vertex, the set
of affected cells is computed and objects are retrieved from
the corresponding grid cells and placed into candidateObjs
(Lines 17-20). After that, we examine two possible cases:
first, if there are less than k objects in resultObjs, MKNN
dequeues objects from candidateObjs into resultObjs (Lines
21-23). Second, the distance of the first element of
candidateObjs, the kth result object will be dequeued and
inserted into candidateObjs. Next, candidateObjs dequeues
an object and inserts it into resultObjs (Lines 24-26).

The algorithm terminates when resultObjs contains
k POIs and the distance of the kth result object is less than
the distance of the minimum vertex in univsitedV ertices
(Lines 13-16). Otherwise, if the last vertex v in the modeling
graph (i.e., the vertex with the longest distance to q) is
visited and the distance of the kth result object is greater
than distðq; vÞ, MKNN will use distðq; vÞ as the radius to
launch a range query in the R-tree as a new iteration of
MKNN (Line 32). Although this step causes I/O operations
as well as the overhead of creating a modeling graph again,
MKNN maintains the set of visited vertices in each
iteration to avoid visiting these vertices in future iterations
(Line 13). As our simulation results have verified, under
various settings, MKNN requires no more than two
iterations during query processing in more than 97 percent
of the test cases. Therefore, this method significantly
reduces the I/O cost and ensures high system throughput.

5 THEORETICAL ANALYSIS

We present our theoretical analysis of MOVNet in the
following sections. We assume that the network and moving
objects are uniformly distributed in a one unit square space

(i.e., for an object m, 0 � xm < 1, and 0 � ym < 1). This is an
optimal simplification, which is analogous to previous
studies [30], [19]. A grid index with l� l side length
manages the moving object location updates. The total
number of edges and moving objects in the network are E
and M, respectively.

5.1 Analysis of MNDR

For a MNDR query with a range d, let us assume the query
covers an area of 4d2. Although the euclidean distance query
in MNDR is in actuality performed within an area of �d2, our
assumption does not change the quality of our analysis.
During the processing of MNDR, there are Oðd2EÞ edges
retrieved from the on-disk R-tree in the euclidean distance
range query. The next step that creates a modeling graph is
of complexity Oðd2EÞ since every edge will be recorded in
the graph. Finding the edge, where the query point is located
can be achieved during the modeling graph construction.
Additionally, inserting the query point into the modeling
graph as the starting vertex requires only Oð1Þ operations.
The running time of Dijkstra’s algorithm to compute
the distance of each vertex from the query point is
Oðd2E�logðd2EÞÞ. Next, MNDR calculates the cell set over-
lapping with the edges based on the distance information.
Note that each edge is examined at most once during the
course of this step. Therefore, Oðd2EÞ iterations are needed
to calculate the overlapping cells. Moreover, since the length
of the edge is bounded by d, the total complexity of this step
is Oðd3EÞ. Finally, MNDR retrieves the objects from the grid
index and computes the result set. For a range query with a
side length of 2d, the number of overlapping grid cells is
ð2dþ lÞ2=l2 [27]. For each cell, we can assume that there are
l2M objects. Hence, the number of moving objects retrieved
in the final step is Oðð2dþ lÞ2MÞ. To sum up, the cost of
MNDR can be represented as Oðd2Elogðd2EÞ þ ð2dþ lÞ2MÞ.

We observe that the cost of MNDR is linear in the number
of POIs. Similarly, the system throughput is proportional to
the side length of cells (or inversely proportional to the
number of cells). Additionally, both factors are lower
bounded by the cost of graph construction, Dijkstra’s
algorithm, and the overlapping cell computation. Finally,
the CPU cost is a quadratic function of d, which means a
larger range results in a serious increase in CPU cost.

5.2 Analysis of MKNN

For simplicity, let us assume that the progressive probe
results in a subspace containing k nearest neighbor objects.
In the case that MKNN needs to expand to a larger space
with more iterations, it can be modeled with our cost model
times a constant, which does not change the characteristic of
our analysis.

Since we assume that POIs are uniformly distributed, the
subspace containing kNN objects has a size of k

M . Therefore,
MKNN needs to scan k

M�l2 cells to find the kth object and
return a subspace. The subsequent steps that perform a
euclidean distance range query, construct the modeling
graph, compute the overlapping cells, and retrieve objects
are the same as the ones in MNDR. Hence, the cost in these
operations can be summarized as

O
kE

M
2þ log kE

M
þ

ffiffiffiffiffiffiffi
kE

M

r !
þ

ffiffiffiffiffiffiffi
kE

M

r
þ l

 !2

M

0
@

1
A:
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The final step that filters objects from candidateObjs into
resultObjs is bounded by the size of resultObjs (i.e., k). In
summary, the cost of MKNN can be simplified as

O
k

Ml2
þ kE
M

ffiffiffiffiffiffiffi
kE

M

r
þ

ffiffiffiffiffiffiffi
kE

M

r
þ l

 !2

M

0
@

1
A:

The equation above shows that the CPU cost of MKNN is
proportional to k. The explanation is that with an increasing
k, MKNN needs to search for a larger space to find the
query result. Additionally, the CPU cost is inversely
proportional to the number of objects. This is because with
more POIs, the search space for finding the kth object
becomes smaller, and vice versa. Finally, the system
throughput as a function of the cell size is bounded by
two factors: the cost from the progressive probe and the cost
of retrieving objects from the grid index. A smaller cell size
results in more overhead from the progressive probe. In
contrast, increasing the size of cells implies that more
objects are retrieved from the grid index. We present our
simulation results in the following section as an experi-
mental verification of our theoretical analysis.

6 EXPERIMENTAL EVALUATION

To evaluate the performance of MOVNet, we performed
extensive simulations on a real dense road network. The
result indicates that MOVNet achieves good throughput
with a wide variety of data settings. In Section 6.1, we start
by describing the data sets used in our simulation and our
simulator implementation. Experimental results and the
corresponding discussion are presented in Section 6.2.

6.1 Simulator Implementation

We are using the TIGER/Line1 data set for our road
network segments and a moving object generator [3] to
create the locations of 100,000 moving objects over time.
Therefore, the locations we used in our simulation have the
same format as that of the TIGER/Line data, which is
expressed as Longitude/Latitude. For each road network
(e.g., the complete set of the LA county road segments),
TIGER/Line defines four bounding coordinates: the west,
east, north, and south bounding coordinate. We use these
bounding coordinates to define the service space and
overlap it with our grid index. The Los Angeles (LA)
County data set has 304,162 road segments distributed over
an area of 4,752 square miles. The average length of road
segments is 0.1066 miles. For simplicity, we assume that
each road segment is bidirectional. The network data are
indexed with an R*-Tree.

Existing work, such as IMA/GMA, only focuses on
C-kNN query processing. This method differs from the
functionality of MOVNet which supports both snapshot
range and kNN query processing. Therefore, we leveraged
the concept of network expansion [21] to design baseline
algorithms for performance comparisons in our simula-
tions. The baseline algorithm for mobile range queries
executes as follows: First, we retrieve the edge where the
query point is located. Next, the closest vertex to the query
point is expanded and outgoing edges from this vertex are
retrieved. The expansion stops once all vertices whose
distances from the query point are less than d have been

expanded. After that, for each expanded edge, the over-
lapping cells are computed and POIs in these cells are
retrieved to constitute the result set. Based on the same
idea, the baseline algorithm for mobile kNN queries has the
following steps. First, we locate the road segment on which
the query point is moving and compute the affected cells.
Next, the corresponding moving objects are retrieved from
the affected cells. If there are less than k objects in the result
set, or if the distance from the query point to the closest
vertex is less than the distance of the kth object from the
query point, the closest vertex is expanded and the
outgoing edges from this vertex are retrieved. Afterward,
the set of affected cells on the outgoing edges is computed
and the corresponding objects are retrieved from the grid
index. The vertex expansion process stops when there are
k objects in the result set and the distance from query point
to the kth object is no greater than the distance from the
query point to the closest unexpanded vertex.

We also implemented the design of S-GRID [10] in Java
to compare it with the CPU cost of MKNN. Specifically, we
implemented the Vertex-Edge component of S-GRID as an
on-disk module. Edges of the network are indexed by an
R*-tree. The precomputing component of S-GRID is stored
in memory.

We implemented a simulator in Java. The simulation was
executed on a workstation with 1 GB memory and a 3.0 GHz
Xeon processor. We arranged the road segments of the LA
county data set into a R*-tree index file, in which we set the
page size to 4 KB. Each road segment is stored in a Minimum
Bounding Rectangle (MBR) bounded by its starting and
ending coordinates. To achieve a fair comparison, our
baseline algorithms also use this R*-tree index structure to
speedup the edge retrieval during query processing. For
each test case, our simulator creates a service space with the
area equal to the LA county size. It then opens the R*-tree
index file and uses a buffer for caching the disk pages read
by MOVNet with a size of 10 pages. Next, an in-memory
grid index is created with the positions of the moving
objects. To simplify the map-matching process, we assume
that object locations always fall along the road segments. In
the next step, the query generator randomly picks a moving
object and launches a query from its location. Table 1
summarizes the parameters used. In each experimental
setting we varied a single parameter and kept the remaining
ones at their default values. The experiments measured the
CPU time (in milliseconds) and the number of disk page
accesses as the performance metrics of the query processing.
For each experimental configuration, the simulator executed
1,000 iterations and reported the average result.

6.2 Simulation Results

We were first interested in verifying the update costs from
POIs in MOVNet. Since we use an in-memory grid index to
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Simulation Parameters

1. http://www.census.gov/geo/www/tiger/.



handle these updates, there is no disk access to the R*-tree
index file, which is on secondary storage. We measured the
CPU time of the update process. Note that the update and
query processing should be finished in one update cycle to
ensure the correctness of the query results. We assume that
at the beginning of each update period, 10 percent of the
POIs submit their new positions. Fig. 8 shows that when
there are 10,000 update messages in one period, MOVNet is
able to record these changes in about 4.5 seconds.
Additionally, the update cost of MOVNet is slightly less
than that of S-GRID. This is because both techniques
include the map-matching procedure for object updates to
record the edge where the object is located. Moreover, S-
GRID records the object into a cell if its nearest vertex on
edge e belongs to this cell. Therefore, distance computing is
performed during object update in S-GRID. In contrast,
MOVNet directly insert the object into the cell that encloses
it, which simplifies the update procedure.

Next, we verified the performance of MNDR. Fig. 9a
illustrates the effect when varying the number of cells with
the LA county data set. The results show that MNDR
requires less than half of the CPU time compared with
the baseline algorithm. Correspondingly, Fig. 9b studies the
page accesses of both algorithms. As we can see, the
baseline algorithm consumes more than 3,000 page accesses
with various cell sizes. By comparison, MNDR requires less
than 100 page accesses during query processing. An
important observation is that a small number of cells cause
the CPU time of MNDR to degrade. On the other hand, the
disk access of MNDR is stable with different cell sizes. This
can be explained by the fact that a disk access only occurs
when we retrieve the road segments from the R*-tree file.
Since we use a fixed range in this test, the number of disk
accesses is not affected by changing the cell size. However,
a larger cell size will result in an increased number of POIs
being retrieved from the grid index during query proces-
sing. Therefore, the CPU time expended in this portion is
larger than with smaller cell sizes. Overall, we conclude that

MOVNet scales very well with varying cell numbers. Note
that with MNDR, the setting of 1,000 cells per axis achieves
a stable and optimal performance, hence, we set the default
number of cells per axis to be 1,000 in our other tests.

Next, Fig. 10a illustrates the effect of the number of POIs
on the execution time of MNDR. As shown, MNDR

outperforms the baseline algorithm with various numbers
of POIs. In the case of 20K POIs, the CPU time of MNDR is
only about 30 percent of that of the baseline algorithm.
Additionally, the graph shows that the CPU time increases
linearly with the number of POIs, which follows our
complexity analysis expectation. The very small gradient

of the MNDR output suggests that MOVNet is very scalable
to support a very large number of POIs. More importantly,
with 100K POIs, the processing time for LA county is about
0.1 seconds. This demonstrates how efficiently MOVNet
executes. Fig. 10b plots the disk accesses of both algorithms.
Similarly to the CPU time outputs, MNDR performs

consistently much lower than the baseline algorithm.
Fig. 11a plots the CPU time (with logarithmic scale)

versus the query range with the LA county set. The CPU
time quadratically increases with a larger range. When the
range is 4 miles, MNDR costs 0.076 seconds. Processing a
range of 8 miles requires 0.2 seconds by using MNDR
compared with 0.65 seconds when using the baseline

algorithm. Additionally, MNDR always consumes about
40 percent of the CPU time compared with the baseline
algorithm during query processing. Fig. 11b plots the
corresponding number of page accesses. The output
corresponds to the CPU output, as well as our complexity
analysis results. Assuming the road network is uniformly

distributed, the number of edges grows quadratically with
the increase of the range. Since these edges must be
retrieved from the R*-tree file during query processing,
the performance of MNDR is deteriorating proportionally.
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Fig. 8. The CPU time of update cost as a function of POIs (assuming
10 percent of the POIs sends updates).

Fig. 9. The performance of MNDR as a function of the number of cells.

Fig. 10. The performance of MNDR as a function of POIs.

Fig. 11. The performance of MNDR as a function of range.



Next, we are interested in the performance improve-
ment when using Corollary 1 in MNDR. Fig. 12a plots the
CPU time when using Corollary 1 to prune the search
space in MNDR compared with not using it when handling
the LA county data. The performance improvement of
using Corollary 1 is about 10 percent when the range is
6.0 miles and less than 5 percent when the range is
2.0 miles. We believe this is largely due to the fact that the
TIGER/Line data set consists of many very short road
segments (0.1066 miles on average). There are only a few
cells that overlap with each edge, which implies that there
is little chance to prune some cells during query proces-
sing. However, the system improvement by using Corol-
lary 1 is substantial when it is applied to large road
segments. To illustrate this fact, we extracted the freeway
segments in LA county (the average length of road
segments is 2.7127 miles) and performed the simulation
on just this network. Fig. 12b shows the results, with query
ranges from 2.0 up to 10.0 miles. The results indicate that
the improvement of system throughput by applying
Corollary 1 is very noticeable. Especially, when the range
is 6 miles, the system performance achieves a gain of over
30 percent. Hence, we conclude that for a network with
long road segments, it is very appealing to use Corollary 1
to prune the search space.

We also studied the performance of MKNN. Figs. 13a
and 13b illustrate the CPU time and disk accesses of MKNN
as a function of the number of cells, respectively. An
observation is that the throughput of MKNN is relatively
stable when the number of cells per axis exceeds 400. This is
because when we use a fairly large cell size (e.g., 200 cells
per axis), the grid index only provides a very coarse-
grained space partition. Hence, the progressive probe
results in a space with many unnecessary road segments,
which must be retrieved in later steps. Fig. 13a also shows
that MKNN performs better than S-GRID with various cell

sizes. When the cell size is relatively large, the performance
of S-GRID becomes even worse than MKNN. This is
because S-GRID records the distances between each pair
of a vertex and a border point in the same cell. When the
cell size is large, a cell contains a significant number of
vertices, especially for a dense network. Therefore, the
search on the Vertex-Border component becomes cumber-
some without the support of any index structure, which
ultimately affects the system performance. Finally, MKNN
consistently requires less CPU time and disk accesses than
the baseline algorithm.

Fig. 14a plots the performance of MKNN with respect to
k. The CPU time grows proportionally with k. More
importantly, MKNN outperforms both the baseline algo-
rithm and S-GRID. The growth of the CPU time in MKNN is
much slower than that of the baseline algorithm and S-GRID
as a function of k. MKNN costs less than 80 percent of the
CPU time of the baseline algorithm where k ¼ 128. Similary,
MKNN requires about 50 percent of the CPU time of
S-GRID when k ¼ 128. Fig. 14b shows the disk accesses of
both algorithms. The gradient of the MKNN curve is very
small, which suggests that with the increase of k, the
progressive probe in MKNN significantly avoids excessive
I/O operations on the R*-tree. Finally, when k ¼ 128, the
CPU time in LA county is less than 0.5 seconds. This clearly
shows that MOVNet can support a very large value of k.

Fig. 15a illustrates the CPU time of MKNN as a function
of the number of POIs. The result shows that the CPU time
is inversely proportional to the number of POIs, which is
what we expect from the theoretical analysis. With a larger
number of POIs, the performance of MKNN improves. This
characteristic ensures that MOVNet is very applicable for
use in metro areas. When there are 100K POIs in the
service area, processing a kNN query with k ¼ 50 requires
only 26 milliseconds. Another important observation is that
MKNN has better system throughput than both the
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Fig. 12. The CPU time improvement of using Corollary 1. (a) LA County.
(b) LA County, Freeways Only.

Fig. 13. The performance of MKNN as a function of the number of cells.

Fig. 14. The performance of MKNN as a function of k.

Fig. 15. The performance of MKNN as a function of POIs.



baseline algorithm and S-GRID with varying numbers of

POIs. Fig. 15b shows the disk access counts with regard to

both MKNN and the baseline algorithm, which correlates

with our CPU time measurement result.
Based on our simulation results and analysis, we

conclude that the performance of MOVNet scales very
well with various settings. In range query processing, the
performance difference between MOVNet and the baseline
algorithms is much more distinguishable with respect to
the disk page accesses, which is due to the usage of the
euclidean distance restriction that minimizes the I/O
operations. Moreover, our design of the progressive probe
results in a good estimation of the result space, hence,
the system throughput of MKNN is better than the
baseline algorithm and S-GRID.

7 CONCLUSIONS

Location-based services have generated growing interest in

the research community. This paper presents an infrastruc-

ture aimed to process location-based services with moving

objects in road networks. We propose a cell overlapping

algorithm that quickly relates the underlying network and

moving objects in memory. Based on the infrastructure of

MOVNet, we present two novel algorithms for processing

snapshot range queries and kNN queries, respectively. The

experimental evaluation suggests that MOVNet is highly

efficient in processing these queries with a real-world,

dense road network.
We plan to extend our work in several directions. First,

our study currently assumes a static network. However,

incorporating some dynamic network updates, such as the

real-time traffic information, will be critical for many

location-based services, especially those for metro usages.

Here, we plan to extend our work to support a dynamic

underlying network. Additionally, continuous queries are

the most sophisticated query type in location-based services.

Although they consume much more computational and

memory resources than snapshot queries, they offer an

extended view of POI movements and are appealing for

monitoring purposes. We are currently extending the

functionality of MOVNet to support continuous queries.
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