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Abstract—The recent rapid development of urbanization and
Internet of things (IoT) encourages more and more research on
Smart City in which computing devices are widely distributed
and huge amount of dynamic real-time data are collected and
processed. Although vast volume of dynamic data are available
for extracting new living patterns and making urban plans,
efficient data processing and instant decision making are still
key issues, especially in emergency situations requesting quick
response with low latency. Fog Computing, as the extension of
Cloud Computing, enables the computing tasks accomplished
directly at the edge of the network and is characterized as
low latency and real time computing. However, it is non-trivial
to coordinate highly heterogeneous Fog Computing nodes to
function as a homogeneous platform. In this paper, taking urban
traffic surveillance as a case study, a dynamic video stream
processing scheme is proposed to meet the requirements of real-
time information processing and decision making. Furthermore,
we have explored the potential to enable multi-target tracking
function using a simpler single target tracking algorithm. A
prototype is built and the performance is evaluated. The ex-
perimental results show that our scheme is a promising solution
for smart urban surveillance applications.

Index Terms—Smart City, Urban Surveillance, Fog Comput-
ing, real-time processing, Speeding Traffic.

I. INTRODUCTION

With the increasing urbanization and prosperity of the

Internet of things (IoT), cities are making their way to be

even much smarter [3], [4], [36]. It is predicted that by

2020 there will be more than 10 billion mobile devices that

produce tons of data every day and trillions of sensors that

will monitor and communicate with each other, flooding the

IoT with dynamic real-time data [16]. These ubiquitously

distributed sensors and smart devices bring smart cities a

broad variety of data from which urban planners can obtain

timely living patterns updating [1]. Urban surveillance, as

an essential part of situational awareness for better urban

management and planning, deals with heterogeneous data from

a layered sensors environment [5]. For object assessment and

target tracking, information fusion is indispensable. Efficient

extracting, analyzing and understanding the large scale data set

from heterogeneous smart devices in a real-time manner are

essential in mission critical applications, such as the instant

decision making in emergency situations. However, there is

still a huge performance gap between the amount of data and

the lack of adequate resources at the edge of network [8].

For urban surveillance tasks requiring complex data fusion,

Cloud Computing has been widely recognized as the solution.

However, Cloud Computing is not the silver bullet that works

for all kind of applications. The extra round-trip delays and

possible network congestions are not tolerable in some latency

sensitive applications, such as real-time raw video streaming

mining. Fog Computing [6], [35], one extension of Cloud

Computing paradigm, is a promising solution to the mission

critical tasks involving information fusion, quick decision

making and situation awareness. Instead of transmitting col-

lected data to remote Cloud center, Fog Computing leverages

computing resources at the edge of the network, i.e. the

embedded and mobile computing devices carried by end users.

Urban traffic surveillance, with the help of massive trajec-

tory data collected from pervasively deployed sensors, is of

great value. It enables city administration and law enforcement

department get information quickly and allocate the resources

efficiently. For example, over-speed driving violation brings

unpredictable danger to the drivers and could be fatal to

innocent people such as the pedestrians. Therefore, a smart,

real-time speeding traffic monitoring system would be very

helpful to reduce the number of car accidents.

In this paper, we propose an urban speeding traffic mon-

itoring system using Fog Computing paradigm. A drone is

used to monitor the vehicles on the roads and the video

is sent back to the controller on the ground. Due to the

limited computing capability of the controller, the raw video

stream was sent to a Fog Computing node, where the mov-

ing vehicle tracking algorithms are executed. Since we have

already verified the correctness of the proposed system [8],

in this work, the focus is to verify that the performance of

our monitoring system meets the requirement of real-time

monitoring and instant decision making. Considering the size

of the video frames, an efficiently dynamic real-time frame

processing scheme was proposed. Leveraging the divide-and-

conquer strategy, the subarea containing the vehicle of interests

was identified and transmitted to the Fog node for processing.

After the processing of the subarea in computing units, the

tracking result would be sent back to end users and will be

synchronized with the remaining part of that frame to display.

The experimental results are very encouraging.

The rest of this paper is organized as follows. Section 2

provides a brief discussion of closely related work about Fog

Computing and traffic monitoring. Section 3 introduces the

Fog Computing based real-time speeding traffic surveillance

system. Section 4 shortly describes the tracking algorithm.

Section 5 reports the detailed experimental results. Section

6 concludes this paper with some discussions.
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II. RELATED WORK

Because of advantages such as flexibility, safety and easy

to manipulate, quadcopter drones have been widely utilized to

assist people in multiple areas, including service improvement,

urban surveillance and scientific research. Particularly, drones

are ideal tool for dull, dirty or dangerous work that may

cause harmful consequences to human operators. Recently, the

opportunities for UAVs to be used in smart cities are discussed

[24]. Researchers have recognized that UAVs could be utilized

in a wide range of urban applications such as geo-spatial and

surveying activities, traffic and crowd management, natural

disaster control and monitoring and Big Data processing. Com-

bining the wireless networks or mobile applications, UAVs

help the police department maintain the safety and security

in the urban residence. In 2010, UK policemen arrested a car

thief suspect with the help of a UAV [11].

In addition, the UAVs can be used for remote sensing

and photogrammetry [10], [13], [17], [18]. Niethammer and

colleagues [25] use UAVs to map landslides with high res-

olution, the results are encouraging but the improvements

are still needed to reduce the image processing time. These

applications indicate that UAVs, as the sensors in the sky, can

provide valuable data for urban surveillance tasks and could

alleviate the problem of data sparsity. However, lack of real-

time processing capability is still an obstacle to make full use

of the abundant data collected by UAVs.

One example application of UAV data is moving target

monitoring and activity recognition using wide area motion

imagery (WAMI) [5], [9], [21], [26], [28], [31], [33]. WAMI

is characterized by its high data rate and the wide area

coverage, which provides plentiful information. Real-time

information fusion is of great importance for the situational

awareness in urban surveillance tasks [20]. However, due

to the increasingly big size of real-time video and imagery

data, it is very challenging to achieve the goal of real-time

information fusion. A container-based cloud architecture has

been proposed for pseudo real-time target tracking in full-

motion video and WAMI stream [32]. Besides the Cloud Com-

puting platform proposed in [32], the performance of visual

tracking in extremely low frame rate WAMI was evaluated

in [19]. Though a variety of methods have been proposed to

reduce the processing time, the major concern about the Cloud

based solution lies in the high latency introduced by data

transmission to and from far away Cloud Computing center. In

addition, low frame rate would reduce the valuable information

for situation awareness and decision making. Therefore, an

improvement is necessary to achieve the goal of real-time

processing in urban surveillance tasks.

Fog computing recently appeared promising to meet the

requirement of real-time data fusion for dynamic urban

surveillance. The IoT and ubiquitous sensors have pushed

the computing to the edge of network. The most explicit

difference between Fog Computing and Cloud Computing is

that Fog Computing provides computing facility nearby that

enables on-site real-time analysis and instant decision making.

Researchers have explored application of Fog Computing [7],

[12], [27], [34]. Fog Computing has been applied in IoT for

Fog Computing Nodes
End Users

Cloud Center

Drone

Surveillance Target

Fig. 1. System Architecture.

healthcare, ECG feature extraction is taken as a case study to

verify the feasibility [14]. In [29], a hierarchical distributed

Fog Computing architecture is studied for Big Data analysis

in smart cities. In [15], [22], researchers explore how the Fog

Computing can efficiently reduce the mobile data traffic and

enhance the quality of service for mobile users.

III. SYSTEM ARCHITECTURE

Figure 1 illustrates the proposed three-layer urban surveil-

lance system architecture, which consists of surveillance ap-

plication layer (also be called user layer), Fog Computing

layer, and Cloud Computing layer. The on-site or near-site Fog

Computing layer is of the greatest importance for real-time

data processing. A wide range of smart devices serve as Fog

Computing nodes, i.e. smart tablets, personal smart phones,

the laptop in the police car, or on-board computing device on

the drone. When the raw video streams are collected, instead

of transferring them to the remote Cloud center, the processing

tasks are assigned to near-site Fog computing devices. Thus,

the latency of transmitting data from surveillance area to the

Cloud center is removed. Also, the Fog Computing layer

prevents the local significant data from being sent to the Cloud.

It reduces the work load of the communication network.

The video processing time at the Fog nodes is another

key issue for the real-time processing. In order to meet the

real-time video stream processing requirement, the output

frame rate should be equal to or higher than the input frame

rate. To achieve this goal, two methods are often utilized by

researchers. One is to decrease the video frame rate or discard

some frames. Although the performance of this strategy is

acceptable, the big gap between two consecutive frames would

cause the loss of suspicious targets since the target may

move large distance between these two subsequent frames and

some threats can be hidden. Another way is to decrease the

resolution of surveillance video. Lower video resolution does

reduce the data size, but it sacrifices the details in video stream

which can be a big loss of information, especially in some

security or safety related applications. The higher resolution

that a surveillance video has, the more information for the

situational awareness and decision making.

In the proposed surveillance system architecture, a drone

acts as a sensor to monitor the area of interests. Once the
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surveillance video data are generated, the raw stream is sent

back to the ground controller station and display on a screen.

The operator, i.e. a police officer, once find a suspicious

vehicle driving very fast, he can lock that vehicle in the

real-time video for further tracking. The tracking algorithm

is executed at the near-site Fog Computing nodes in which

each of the video consecutive frames are processed. In our

dynamic stream processing scheme, instead of forwarding

the whole video frame, the sub-area including the suspicious

vehicle is extracted from the original frame and sent to the

Fog Computing units. The size of the sub-area of interest is

determined by the computing resource provided by the Fog

Computing nodes. Our scheme reduces the processing time at

the computing nodes, and also cuts down the data size to be

transmitted which can reduce the transmission time.

When the speed is calculated, the result and the processed

sub-area will be sent back to the ground controller station

immediately. The sub-area would be synchronized with re-

maining part of the frame and displayed on the screen. The Fog

Computing nodes not only provides the computing resource,

but also the storage space. In this urban speeding surveillance

system, the processed vehicle motion data can be saved in Fog

nodes for a short period and then would be uploaded to the

Cloud center for a long-term analysis. For example, in our

case, research about during what time the over-speed driving

could happen most likely can be of interest.

IV. TRACKING ALGORITHMS

In practical scenarios, when a suspicious vehicle is con-

sidered in the real-time surveillance video, it needs to be

locked immediately and tracked with high accuracy frame by

frame. The vehicles are not the only things that appear in

the surveillance video, there are also occlusion, background

clutter, the variation of illumination and even noise in the

practical scenarios, which would affect the tracking accuracy

and efficiency. A robust and effect tracking algorithm is highly

desired based on which the precise speed information can be

calculated.

In our speeding vehicle surveillance system, based on

the specific requirements in the practical scenarios, a robust

L1 tracker using accelerated proximal gradient approach is

adopted [2]. This algorithm is casted by the sparse represen-

tation in the particle filter framework.

A. Particle Filter

The particle filter implements the recursive Bayes estimation

using the method of non-parametric Monte Carlo simulation.

It uses a large number of particles that are transferred in the

state space to estimate the probability density function of state

variables. Particle filter is an efficient tool to solve the problem

in non-linear system. In addition, the distribution of random

variables are unnecessary to be Gaussian distribution. Two

steps are essentially involved in the particle filter: prediction

and update.

We denote xt to represent the state variable describing the

motion of the target in frame t. yt denotes the observation of

the moving target in frame t. In target tracking applications,

we assume state variable xt is only related to xt−1 and the

observation at frame t is only related to xt, which means obser-

vations among y1:t = {y1, y2, · · · , yt} are independent of each

other. It is assumed that at frame t−1, the probability density

distribution is p(xt−1|yt−1). In prediction step, p(xt|yt−1) is

derived from p(xt−1|yt−1):

p(xt, xt−1|yt−1) = p(xt|xt−1, yt−1)p(xt−1|yt−1) (1)

Given xt−1, xt and yt−1 are independent, Eq. (1) becomes:

p(xt, xt−1|yt−1) = p(xt|xt−1)p(xt−1|yt−1) (2)

Then compute the integration of Eq. (2) over xt−1:

p(xt|yt1) =
∫

p(xt|xt−1)p(xt−1|yt−1)dxt−1 (3)

With Eq. (3), we can move forward to the update step by using

Bayes rules:

p(xt|zt) = p(xt|xt−1)p(xt|yt−1)

p(yt|yt−1)
(4)

where p(yt|xt) is the observation likelihood. In the particle fil-

ter, the posterior probability above is estimated by N samples,

denoted by St = {x1
t , x

2
t , x

3
t , · · · , xN

t } with different weights.

Due to the lack of knowledge about variable distribution,

sequential important distribution q(x
(i)
t |yt) is used to generate

the samples. The weight is:

W
(i)
t ∝ p(x

(i)
t |yt)

q(x
(i)
t |yt)

(5)

and the weight can be updated as follows:

W i
t = wi

t−1

p(yt|xi
t)p(x

i
t|xi

t−1)

q(xt|x1:t−1, y1:t)
(6)

The observation likelihood depicts the similarity between the

target candidate and the target templates [23].

B. Modified L1 Minimization Tracker

In sparse approximation, the signal y can be linearly repre-

sented by the atoms of the over-complete dictionary D.

y = D · x (7)

where x is the coeffieient of each atom in the dictionary D.

In moving target tracking algorithm, over-complete dictionary

consists of target templates denoted by T = t1, t2, t3, · · · , tn.

With the target templates, a target candidate can be represented

as follows:

y ≈ T · x = x1t1 + x2t2 + · · ·+ xntn (8)

Because of the sparsity in sparse approximation, for a good

target candidate, most coefficients of the target templates

should be zero, which means a good target candidate can be

nearly represented by several target templates. In other words,

the coefficients of a bad target candidate can be relatively of

smaller number.

In the real scenarios of our monitoring videos, we have to

consider the errors resulted from objects other than the target,

such as occlusion, noise, shadows, sometimes even darkness.

Therefore, trivial templates denoted by I = i1, i2, i3, · · · , in

107107



are introduced in this algorithm and the Eq. (8) is rewritten as

follow:

y =
(
T I

)( x
e

)
(9)

where e represents the coefficients of trivial templates. In

a further consideration, it is reasonable to assume that the

coefficients of a good candidate should be positive, which can

also be considered as the non-negative constraints. Hence, in

this scenario, positive and negative trivial templates should be

involved. Then Eq. (9) is rewritten as:

y =
(
T I −I )⎛⎝ x

e+
e−

⎞
⎠ = D ·m (10)

Here, D = (T I −I) and mT = (x e+ e−). What we want to

know is the coefficients m of the target templates and trivial

templates, but in the over-complete dictionary Dm×n, m is

much smaller than n, which means the solution of Eq. (10) is

not unique. Some constraints are indispensable in order to get

a unique solution in the sparse representation. Fortunately, we

can solve this problem as an L1 norm least squares problem.

min‖Dm− y‖22 + λ‖m‖1 (11)

where ‖ · ‖1 denotes l1 norm and ‖ · ‖2 denotes l2 norm

respectively. As mentioned above, trivial templates are brought

into the dictionary to deal with the noise and occlusion. But

what if there is no occlusion? The target object should be well

approximated by the target templates from previous frames.

In case of no occlusion in the frame, the trivial templates

would impact the detection accuracy otherwise and bring

some computation complexity. So in this accelerated l! norm

tracking algorithm, another coefficient μt is introduced to

improve the constraint (11). The revised constraint is as:

min
1

2
‖yt −Dm‖22 + λ‖m‖1 + μt

2
‖mI‖22 (12)

where mI is the coefficients of trivial templates in this target

tracking sparse approximation problem: m = [mT mI ]. If

occlusion is detected in a video frame, μt is zero. Otherwise,

μt is supposed to be certain specific value.

In practical experiments, solving such kind of modified l1
norm minimization could be pretty time consuming. A fast

numerical method called accelerated proximal gradient [30] is

applied to solve this problem. This approach is designed for

solving the optimization problem as below:

min F (a) +G(a) (13)

and the accented proximal gradient is fast for some specific

types of function G.

After solving the l1 least squares minimization problem and

obtaining the sparse coefficients m, the observation likelihood

of state variable xi
t can be expressed as:

p(yt|xi
t) =

1

Γ
exp{−α‖yit − Ttm

i
T ‖22} (14)

where α is used to control the shape of a Gaussian Distribution

and Γ is a normalized factor. mT denoted the coefficients of

Fig. 2. A surveillance video frame

target templates. The optimal state xi
t satisfies:

xi
t = argmax

xi
t∈St

p(yt|xi
t) (15)

V. EXPERIMENTAL RESULTS

We have tested the performance of our proposed Fog

Computing based urban speeding surveillance system and the

dynamic surveillance video processing scheme. The experi-

mental results are reported in this section.

A. Experimental Setup

A prototype of our proposed system has been built. Two DJI

Phantom 3 Professional drones are used to monitor the moving

vehicles on road and two Nexus 9 tablets are connected to the

drone controllers to display the real-time surveillance video.

In our prototype, one laptop acts as a Fog Computing node

whose configuration is as follows: the processor is 2.3 GHz

Intel Core i7, the RAM memory is 16 GB and the operating

system is OS X EI Capitan. The resolution of our video

frames is 1280 × 720. The OpenCV 3.1 and Eigen 3.2.1

are used for the tracking algorithm. The given FOV (field of

view) of the camera mounted on the drones is 94◦, and the

actual FOV after calibration is 89.39◦ according to the fact

that manufacturers would always make the image plane not

perfectly circumscribed with the CCD plate but a little larger

than that.

There are two video streams used. One is taken by the drone

above an on-campus road of Binghamton university, where

the speed limit is 30 mile per hour. A black Toyota Camry is

moving on the road with the constant speed of 27 mile per hour

for the speed calculation accuracy test. There are 514 frames

in this video stream. Another video stream is obtained above

the I-81 highway from Binghamton to Syracuse, which is used

to evaluate the performance of our system. We would use the

gray information of the video frames to track the vehicles

and the video frames are stored in JPG format. Figure 2 is

an example frame, the car in the white bounding box is that

Toyota Camry with the constant speed 27 miles per hour.

B. Performance Evaluation

It is a challenge for our tracking function to work in a

noisy environment, in which there are multiple similar vehicles

as the tracking vehicle, the occlusion, the shadows, etc. It is

critical to ensure that the tracking algorithm can properly and
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Fig. 3. Tracking Test Sequence 1.

robustly track the suspicious target and the speed is calculated

correctly. An accurate speed assessment is equally important

as the police officer will make decisions on the further actions

if necessary.

Figure 3 shows the tracking results of a moving target on the

road with shadow of trees along the roadside. The black Toyota

Camry is the target and a red bounding box is on its body in the

image showing it is locked. The vertical height from on-board

camera to the ground is 140.0 meters. The tracking results have

shown that our scheme can lock the target all the time without

losing the track. The vehicle moving speed is calculated based

on the position of the target in each frame. Knowing the height

and the FOV of the camera, the diameter of the object circle

plane can be calculated, which is also the real distance the

diagonal of the image represents. Further, we can obtain the

unit distance that one pixel represents. Combining the unit

distance and the interval time slot, the speed can be easily

obtained. More details and the explicit algorithm explanation

can be found in our previous work [8].

Figure 4 presents the estimated speed results. The video

sequence contains 511 frames and the speed of the tracked

vehicle was calculated every fifteen frames, which means the

time resolution is 0.5 second. As shown in Fig. 4, the estimated

results stay close to the actual speed, which is 27 mile per hour

and the results varies in the range from 25 to 30 mph. The

largest speed is 28.97 mph and the lowest speed is 24.97 mph.

Fig. 4. Speed calculation results.

Fig. 5. Error rate.

Fig. 6. Tracking Test Sequence 2 on highway.

The error is define as follow:

error =
|estimation− actual|

actual
(16)

Figure 5 provides a better view of the results. The detection

error compared to the real speed of the vehicle stays below

10% all the time. The Figs. 4 and 5 demonstrate that the

proposed detection system can efficiently track the vehicle and

obtain the speed with the acceptable accuracy.

Another tracking experiment has been conducted using a

video stream monitoring freeway I-81 from Binghamton to

Syracuse, the speed limit is 65 mph. The target is a white

truck what is entering a ramp exiting the highway. The tracking

results are shown in Fig. 6 and the speed calculation results are

shown in Fig. 7. Figure 6 verified that our tracking algorithm

can properly track a vehicle that is changing its direction.

In this scenario, the locked vehicle is going to leave the

highway. Based on our driving experience, the speed should

be decreased during a turning. As shown in Fig. 7, at the first

time point, the speed is close to 62 mph, indicating that the

vehicle started to slow down. Then the red line keeps going

down along with the time depicting that the white truck is

leaving the highway with slower and slower speed.

C. Dynamic Frame Processing

The above study has demonstrated that our proposed speed-

ing vehicle detection system can successfully identify suspi-

cious target and track it correctly. The next critical question we
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Fig. 7. Speed estimation on highway.

need to answer is whether or not our system is able to process

the surveillance video stream fast enough to accommodate the

performance requirement for real-time surveillance.

It took 29.35 seconds to process the first test video stream,

which resolution is 1280 × 720 and there are 511 frames in

total. The average processing time for each frame is 57.5

ms, which means that the system can process 17.4 frames

per second. Regarding the second video stream, it took 19.47

seconds for 240 frames, the resolution is 4096 × 2160. The

average processing time is 81.1 ms. The frame rate of the video

is 30 frames per second. Therefore, it implies an optimized

approach is needed to achieve the goal of real-time processing.

Intuitively, the barriers that prevent the system from achiev-

ing real-time processing mainly come from two parts: the pro-

cessing time at the Fog Computing nodes and the transmission

time of the surveillance data from the collecting device to

the computing units. The larger size the data is, the longer is

transmission delay. It is worthy to note that in the era of IoT,

hundreds of thousands devices are connected together, with

huge amount of data produced every minute. Such high data

volume can easily cause network congestion without a well

designed traffic manage scheme.

In order to address these challenges, a dynamic frame

processing scheme is proposed. It not only aims at reducing the

computing time at each individual Fog node, but also transmits

smaller amount of data, which in turn would decrease the

transmission time and alleviate the network work load. To

achieve these goals, a divide-and-conquer strategy is adopted

in our dynamic processing scheme. Instead of assigning a full

video frame to a Fog node at one time, a sub-area containing

the vehicle of interests is identified and transmitted to a

computing node to be processed.

Figure 8 shows an example of making sub-areas with

different colors and different sizes. Theoretically speaking, the

smaller size of the data to be processed means less time to

accomplish the tracking task. For the sake of convenience, the

selected sub-area is specified as a square calculated using the

size of the vehicle as the basic unit. For example, assume the

length of the monitored vehicle is one, then the size of the

square area can be 4(2× 2), 9(3× 3), 16(4× 4), etc.

Figure 9 illustrates the results of dynamic frame processing

scheme using the test sequence 1. The X axis represents the

size of the sub-area in the bounding box used for locking the

Fig. 8. Example of definition of sub-areas.

Fig. 9. Differing sub-area test sequence 1.

suspicious speeding vehicle. The Y axis represents the average

processing time for each frame in the video sequence. The red

line marks the baseline representing the average processing

time without dynamic sub-area policy applied and the blue

line depicts the average computing time with different sizes

of sub-areas. The size one is not considered since that sub-area

is too small to be processed.

As shown in Fig. 9, it is interesting that the smallest sub-

area strategy takes the longest processing time. It is counter-

intuitive and different from our initial conceiving. The average

processing time goes down as the sub-area increases until the

size becomes 49 (7×7), then the average time stays around the

average processing time achieved without the sub-area policy

applied.

Figure 10 presents the results using the test video sequence

2, in which the axis is the same as Fig. 9. Similarly, the

smallest sub-area is still characterized as the time consuming

in the whole figure. But when the size of the bounding box

area becomes 49 (7 × 7), the average processing time is

close to 70.5 millisecond for each frame and the frame rate

is 14.18. Comparing with the average time of whole frame

processing, the sub-area with size 7×7 can effectively reduce

the processing time, around 13% down. As the size continues

going up, the average processing time increases again and

eventually would larger than the time without sub-area policy.

With a deeper analysis of the behavior of our tracking

algorithm, this phenomenon is resulted from two factors.

The first one is the overhead incurred by re-initialization

of the tracker every time a new sub-area is assigned. The

tracker needs to learn the background and the characteristics
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Fig. 10. Differing sub-area test sequence 2.

of the target. While the smaller sub-area shrinks the data

size for transmitting and processing, the tradeoff is that each

frame is divided into more sub-areas. Every time, when the

tracker deals with a new sub-area, it will discard the previous

templates and treats the new sub-area as a new one. This

operation is computationally expensive with more resource

consumed. Hence, the processing time is actually longer when

smaller sub-areas are adopted. The sub-area size of 7 × 7 is

close to the actual area in the frame utilized by the tracker.

The other factor is that the tracking problem is handled

as a sparse representation within particle filter framework.

The tracker updates the templates along with the tracking

process for higher accuracy. Particularly, the particles follow

Gaussian distribution. Thus, large amount of particles stay

closely around the circle center point to detect the similarity

between tracking candidates and the original tracking target.

The circle center point in our tracking process is the center

point of our bounding box and there would be no particles far

away from the center point with low probability. Therefore, the

tracking algorithm already handles the frame in a way that is

similar to the dynamic sub-area based tracking.

The resolution of test sequence 2 is 4094× 2160, which is

larger than the resolution of sequence 1. Before the sub-area

size becomes 7×7, the trend of average processing time stays

as same as that in Fig. 9. Difference appears when the sub-

area size is larger than 7× 7. The average time starts to grow

from 70.5 ms, approaching to 81.1 ms, which is the average

processing time of an entire frame.

The convex-like curve in Fig. 10 appears mainly because of

the higher resolution. The sub-area size of 7×7 in this scenario

is smaller than the area the tracker used in tracking. As the

size of sub-area increases, the processing time becomes longer

as well. Considering the effects shown in the two figures, it is

clear that the smaller sub-area does reduce the data size of each

individual job, but could also increase the total tracking time.

The data size and the processing time need to be balanced to

find an optimal operation point.

D. Multiple Vehicles Tracking

In practical scenarios, generally there are more than one

vehicles need to be tracked simultaneously. While the multiple

target tracking is necessary, it is still an unmatured research

area. The dynamic sub-area assignment mechanism introduced

in our proposed Fog Computing based surveillance system

Fig. 11. Two vehicles tracking.

Fig. 12. Multiple vehicles detection results.

is able to track multiple vehicles in parallel, although it is

a single target tracking algorithm adopted in our system.

When there are two or more vehicles need to be tracked,

same processing scheme is applied to each individual sub-

area containing the vehicle of interests. Each sub-area image

will be sent to different Fog Computing nodes and they are

processed in parallel. A preliminary experimental study has

been conducted to verify the feasibility.

Figure 11 shows a scenario in which two vehicles are

tracked and the testing results are shown in Fig. 12. Red

line represents the white vehicle and the blue line represents

the black vehicle. Each time slot is one second. As shown

by Fig. 12, the speed of the black vehicle stays around 27

mile per hour and the white vehicle speed stays around 23

mile per hour. The red line ends at 10 second point because

the white vehicle went out of the image and the tracker

stopped tracking. This simple experimental study verified that

the proposed system is able to track multiple vehicles utilizing

the advantages of Fog Computing.

VI. CONCLUSION

In this paper, we propose a smart city speeding traffic

surveillance scheme using Fog Computing paradigm. A pro-

totype has been built in which two DJI drones are integrated

for monitoring and one laptop serves as a Fog Computing

node. Intensive experiments are conducted using real-world

traffic surveillance video streams. The experimental results

have validated the effectiveness of our system. A dynamic
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sub-area of interest assignment scheme is suggested to pro-

mote the performance to meet the requirements of real-time

surveillance tasks. A balance between the sub-area size and

the processing time is discussed based on the numerical

testing results. Furthermore, we have explored the feasibility

of concurrent multiple targets tracking using the single target

tracking algorithm leveraging the divide-and-conquer strategy

in the Fog. The result is very encouraging, showing that our

system has the potential to handle multiple targets without

using more complex multi-target tracking algorithm. The on-

going efforts focus on two important issues: (i) reducing

the overhead incurred by tracker initialization when a new

sub-area of interest is assigned; and (ii) implementing and

evaluating the multi-target tracking scheme using concurrent

multiple single target tracking jobs.
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