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Abstract—Battery powered mobile devices suffer from signif-
icant power consumption of the WiFi network interface during
video calls. By utilizing the dynamic Power Save Mode (PSM),
our study proposes an adaptive RTP packet transmission
scheme for multimedia traffic. By merging the outbound packet
delivery timing with inbound packet reception and estimating
each delay component along the packet processing and trans-
mission path, each client manages to meet the stringent end-
to-end latency for packets while creating longer sleep intervals.
As a benefit it involves no cross-layer communication overhead
as the interface state transitions are completely transparent to
the application. The experimental results show that 28.53%
energy savings on the WiFi interface can be achieved while
maintaining satisfactory application performance.

Keywords-Energy use optimization, WLAN, Power Save
Mode (PSM), 802.11, mobile video calls

I. INTRODUCTION

Video calling has acquired great popularity on mobile

platforms in recent years with the advances in video codec

efficiency and transmission bandwidth increase, especially

the widespread deployment of 3G/4G networks and WiFi

Wireless LANs. However, a video call involves many power-

consuming hardware components in simultaneous execu-

tion and mobile devices are usually powered by capacity

constrained batteries. On a modern smartphone, the power

consumption of the WiFi interface can reach up to 7 times

that of CPU and RAM during data transmission [1], and the

WiFi interface has a very high maintenance energy in idle

state compared to the cellular radio interface [2]. The fast

draining of battery results in mobile video calls of limited

duration, generating a hugh gap against user expectation.

To reduce the power consumption of the WiFi interface,

Power Save Mode (PSM) was proposed [3], which enables

the device to transit to a low-power sleeping state during idle

network intervals. However, as PSM will incur additional

delays, it is primarily intended for delay-tolerant applications

such as web browsing and file download, etc., and was

regarded as not applicable to time-critical applications.

In this paper, by utilizing dynamic PSM widely available

in current WiFi deployment, we design a packet transmission

scheme for delay-sensitive multimedia traffic and show that

considerable energy on the WiFi interface can be saved by

aggregating the available queuing time for each packet, with

negligible impact on the communication quality.

In summary, our main contributions are two-fold: First,

we design an adaptive RTP packet transmission scheme for

simultaneous audio and video traffic, which require media

synchronization and incur various coding delays. Unlike

previous cross-layer approaches that force the WiFi cards

into state transitions from applications according to pre-

calculated sleep intervals, which can harm the underlying

communication behavior between client and access point, we

only schedule the traffic from the application layer. Second,

we implement the adaptive transmission into a real video

call system and evaluate its performance. The effects under

different WiFi configurations are compared and possible

contributing reasons are analyzed.

The rest of the paper is organized as follows. Section II

presents a brief overview of related work. Section III intro-

duces the background knowledge of power saving features

in 802.11. Section IV shows a detailed analysis of the power

consumption and sleeping behavior in video calling and

Section V presents the design of the adaptive transmission

scheme and how various parameters are obtained. The

experimental implementation and comparison of results are

illustrated in Section VI. Finally, Section VII concludes the

paper and proposes several directions for future work.

II. RELATED WORK

Extensive work has been carried out exploring the trade-

offs between energy consumption on WiFi interface. We

classify the techniques into several categories.

A. Idling Detection

Since network I/O is largely driven by user interactions,

Crk et al. [4] predicted network traffic by monitoring

users’ interaction with applications through the capture and

classification of mouse events. Then the NIC was adap-

tively switched according to traffic modeling and prediction.

Dogar et al. [5] exploited the bandwidth discrepancy be-

tween wired and wireless connections and proposed Catnap,

which defers the packet transmission by combining small

data blocks into big chucks and creating some idle periods

to enable the mobile clients to sleep during data transfer.



B. MAC and Hardware Level Manipulation

Due to the adoption of carrier sense multiple ac-

cess/collision avoidance (CSMA/CA) as the medium ac-

cess control (MAC) mechanism, in 802.11 WLANs large

amounts of frame overheads are generated, especially for

small packets. Based on the current packet loss rate and

the target voice quality, Tsao et al. [6] dynamically dis-

abled the MAC-layer acknowledgement for each transmitted

packet to reduce the consumed time and energy. Rozner et

al. [7] proposed NAPman, which implements an energy-

aware fair scheduling algorithm for both CAM (Constantly

Awake Mode) and PSM clients to minimize WiFi radio

wake up time and eliminate unnecessary retransmissions.

Manweiler et al. [8] executed a TDMA-like scheme by

dynamically rescheduling an AP’s beaconing time in a

circle to minimize beacon overlap with nearby APs. These

approaches need heavy modifications to the hardware or

MAC layer driver code, either for APs or clients. In our

transmission scheme we have made no modifications to

underlying driver and hardware behaviors.

C. VoIP Traffic Reshaping

Pyles et al. [9] proposed SiFi, which leverages statistical

analysis on history and builds an empirical distribution

function to predict the future silence periods during which

a network card will be put into PSM mode. Choi et

al. [10] utilized a two-way Brady model to classify the

talking session into talk-spurt and mutual silence periods,

and applied two kinds of PSM for each. Namboodiri et

al. [11] forcibly put the WiFi interface into sleep based

on the calculated playout deadline for each voice packet.

Energy saving through silence suppression will not work

effectively in video calling as video frames still need to

be sent periodically even if delivery of some audio frames

can be suppressed. Moreover, we only reshape the inbound

and outbound traffic from the application layer and do not

force the state transition of network card. This eliminates

cross-layer communication overhead and guarantees that the

communication mechanism between client and AP remains

intact as the AP and clients keep exchanging state informa-

tion through WiFi management and control frames.

III. BACKGROUND

A. Power Save Mode

Modern WiFi network interfaces have at least two power

modes: Constantly Awake Mode (CAM) where the device

stays awake all the time, and Power Save Mode (PSM)

where the device periodically wakes up and goes back

to sleep in the idling state to save energy [3]. In PSM,

the devices informs the AP (Access Point) of their state

transition by sending a Null Frame with power management

bit either set to 1 (going to sleep) or 0 (going to wake up

or remain in the current awake state). The AP will buffer

all inbound packets destined for the device in sleep state,

and broadcasts beacon frames to all associated devices at a

scheduled time interval. Upon reception of a beacon frame,

the device can check the Traffic Indication Map (TIM)

element to see if there is any buffered data destined for itself.

Based on how the device will react to receive the buffered

data, PSM can be further classified into static (legacy) PSM

[3] and dynamic PSM [12]. In static PSM, the client sends

a Power Save Poll (PS-Poll) frame to poll each frame from

the AP and goes back to sleep immediately if there is no

more buffered data. Since the reception of every buffered

frame will initiate a PS-Poll and an acknowledgement frame,

the delay incurred by static PSM is generally regarded as

unacceptable for even web browsing[12]. In dynamic PSM,

however, the client switches to CAM directly in case of

any buffered data, and it goes back to PSM if no network

activity is observed for a predefined timeout period after

data reception. Compared with static PSM, dynamic PSM

effectively shortens the transmission delay at the price of

less sleeping opportunities.

B. IEEE 802.11e

Quality of Service (QoS) guarantee was proposed in

the 802.11e amendment [13], Inside which Unscheduled

Automatic Power Save Delivery(UAPSD) is supposed to

better support real-time two-way traffic like VoIP [14][15],

as an outbound packet from the client can trigger all buffered

frames at an AP to be released, negating the beacon waiting

and frame polling delays. However, due to the introduction

of a more complicated scheduling at the MAC layer such as

Service Period and Transmit Opportunity, UAPSD requires

clients and APs to be upgraded from the current legacy

deployment and is therefore still in limited availability at

present. We checked the WiFi Alliance website1 and found

that of all the certified network adapters, only 7.69% support

the WMM (WiFi Multimedia) Power Save feature currently

(WMM is a subset of 802.11e and uses UAPSD to provide

enhanced power saving).

Because of the low transmission efficiency of static PSM

and the limited availability of UAPSD, in this paper we use

dynamic PSM to design our adaptive transmission scheme

for video calling and show that it works effectively in current

WiFi deployments.

IV. TRANSMISSION ANALYSIS

A. State Transitions under Dynamic PSM

In dynamic PSM, a sleeping client can wake up either to

send a frame, or to receive frames if there is any buffered

data at the AP. Figure 1 shows the state transitions in three

consecutive beacon intervals. For better illustration purpose

the acknowledgement frames for every Data and Null Frame

are not drawn. We use Tbc to represent the beacon interval,

Tout for the timeout interval and δ for the transmission time

1http://certifications.wi-fi.org/search products.php
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Figure 1. WiFi interface state transitions in adaptive PSM.

of one frame between a client and its associated AP. Suppose

there is a beacon frame arriving at the client side at t0,
t1 and t2, respectively, and the beacon at t1 indicates that

there are Nin buffered frames at the AP. At the reception of

each beacon the client uses Ttim for beacon checking. Here

we assume that a client checks every beacon frame (the

WiFi standard defines a integer DTIM value, which enables

the configured client to check only once for every DTIM

number of beacons. A DTIM value larger than 1 will incur

at least 200 ms latency (100 ms for typical Tbc), and is thus

impractical for video calls).

In the 1st (upper) case, the sleeping client transits to CAM

at tθ (t0 < tθ < t1) to send Nout data frames to the network.

Since a Null frame is needed to notify the AP of every state

transition and all Null and Data frames require acknowledge

frames, it takes a total of 2δ(Nout + 1) to complete the

transmission. Then it waits for the timeout value Ttout, and

hence uses another 2δ for Null frame before going back to

sleep. It wakes up again to receive Nin buffered data at t2
and this takes a duration of 2δ(Nin+1). We can see that the

sleeping time Tsleep for the client during the three beacon

interval is:

Tsleep = 3Tbc−(3Tcheck+2Ttout+2δ(Nout+Nin+4)) (1)

In the 2nd (lower) case, the client defers the transmission of

the Nout outbound packets to the time when it receives the

Nin inbound packets. Since the AP knows that the client is

in CAM state, a Null frame is not necessary for outbound

transmission. The sleeping time for the client is:

Tsleep = 3Tbc−(3Tcheck+Ttout+2δ(Nout+Nin+2)) (2)

Compared to the 1st case, the client sleeps Ttout+4δ longer.

Since a timeout period is needed for every transition from

CAM to PSM and a state transition incurs overhead (Null

frame), in the 2nd case it wakes up only once to process both

inbound and outbound traffic. This reminds us that we can

reduce state transitions and create more sleep opportunities

by merging inbound and outbound traffic timings. We can

either defer the reception to the next transmission timing,

or defer the transmission to the next reception timing.

However, in PSM the device cannot defer the reception of

buffered packets that have been broadcast by beacon frames,

otherwise they will be dropped at the AP. This means that

we must schedule the timing of the outbound packets to be

as close as possible to the reception of inbound packets.

B. Delay In Video Calling
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Figure 2. Delay components of video call frames under dynamic PSM.

As Figure 2 shows, in a typical video call, two clients

communicate with each other through a direct network

connection. As a network inactivity period of Ttout is

required for entering sleep state, both participating clients

have to send packets in batch to create longer networking

inactivity, which will inevitably incur additional latencies.

The total end-to-end latency for a packet, which is the delay

from packet generation time at one client to playout time at

another client, should be upper bounded to enable smooth

playout, otherwise noticeable jitter will greatly degrade user

experiences. We set this upper bound as Tmax. Figure 2

illustrates the delay components of a multimedia packet. The

two participants of a video call, termed client 1 and client

2, are associated with two different APs and the two APs

are connected through a wired network (we omit the case

where the two clients are associated to the same AP, which is

a simplified version of our assumption). We use Tlat1, Tlat2

and Tnet to denote the processing time at client 1, client 2

and the network transmission latency, respectively. Then the

following condition must be met:

Tlat1 + Tlat2 + Tnet ≤ Tmax (3)

Suppose at client 1 a video or audio packet is generated

at an interval of Tgen ms. After Tenc ms encoding and Tpkt

packetization delay, it waits in a queuing buffer for Tqueue

before it is sent out. Then Tlat1 can be expressed as

Tlat1 = Tenc + Tpkt + Tqueue (4)

When the packet is received by client 2 from AP2, it is not

directly sent to the decoder. Instead, it is usually queued into



a de-jitter buffer first to minimize delay variations and sort

packets arriving out of order [16]. This queuing will incur

a de-jitter delay as Tjitter. Then Tlat2 can be expressed as:

Tlat2 = Tjitter + Tdepkt + Tdec (5)

where Tdepkt and Tdec represent the de-packetization and

decoding latency.

Tnet includes the transmission time from client 1 to AP1,

AP1 to AP2, and AP2 to client 2. As we have analyzed

in Section IV-A, if client 1 stays in CAM before sending,

it takes δ to send this frame, otherwise 3δ is needed. For

simplicity we assume 3δ is required for the delivery of every

outbound packet. The hardware transitional latency for the

interface card from PSM to CAM is not accounted for as

we will show in the experimental section that such time

proves trivial and can be safely neglected. We define the

transmission time in a wired network from AP1 to AP2

as Twan. Suppose AP2 receives the packet at tr, it either
transmits it directly to client 2 if client 2 happens to be

awake, which takes δ, otherwise the packet must wait in

the AP’s transmission buffer first. If client 2 remains asleep

until the delivery time of the next beacon at tnb (tnb > tr),
the packet will be delivered after this beacon’s broadcasting.

However, client 2 may wake up to send frames at some time

between tr and tnb, which enables the AP to deliver inbound

packets immediately after reception of outbound packets

from client 2 as the AP knows that the client has transitioned

to CAM state. To summarize, Tnet can be expressed as

Tnet = 3δ + Twan + TAP + δ (6)

TAP refers to the buffering time at the AP, ranging from 0 to

Tbc, the beacon interval. This shows that Tnet is composed

of a relatively stable part, 4δ + Twan, and a highly volatile

part, Twan. From Inequation 3 and Equation 4 we can get

that the queuing time for outbound packets should satisfy:

Tqueue ≤ Tmax − Tenc − Tpkt − Tlat2 − Tnet (7)

For each client, its own processing time (Tenc+Tpkt) can be

obtained during execution. To get Tlat2 and Tnet, however,

the client has to receive feedback from the other client (peer

client). If both clients are working properly, Tlat1 and Tlat2

should be stable as well. Combining Equation 6, we rewrite

the above inequality as

Tqueue+TAP ≤ Tmax−Tenc−Tpkt−Tlat2−4δ−Twan (8)

We refer to the left part of the inequality as Quota Time

Tqt. This means that if we know the processing latencies at

both clients and the network transmission latency (excluding

buffering time at AP), we can obtain a maximal sum of

the buffering time at its own transmission queue and at the

receiver’s AP before delivery. During program executions

we have to decide how to allocate the correct portions for

each part so that the playout deadline for each packet can

be met and the interface can have a long duration of sleep.

V. TRANSMISSION SCHEDULE DESIGN

We use SIP (Session Initiation Protocol) to establish and

manage the calling session and RTP (Real-time Transport

Protocol) to transmit media packets. RTCP (RTP Control

Protocol) is utilized to provide execution feedbacks to each

client. The generated audio and video packets are queued

into the same transmit buffer.

A. Session Establishment

The two participants establish a video call connection by

SIP. Apart from the ordinary parameters exchanged in this

phase by SIP such as supported codecs and transmission

bitrates, we modify the protocol so that the following

parameters are exchanged as well: beacon interval (Tbc),

timeout value (Ttout) and initial de-jitter buffer size (Tjitter).

As at this time Tdepkt and Tdec are not available (actual

processing has not started yet), we use the packet gener-

ation interval Tgen as a conservative estimate, as in most

cases Tdepkt+Tdec is much smaller than Tgen. With these

parameters each client can obtain an initial estimation of

Tlat2 from each other.

B. Exchange of Execution Condition

We make use of RTCP to enable the two clients to

exchange instantaneous information on their execution con-

ditions. As in a video call each client works both as a sender

and a receiver, they will transmit and receive Sender Report

(SR) and Receiver Report (RR) on a regular interval Trtcp.

According to the RTCP specification [17], each client can

acquire its peer’s packet loss rate PRl since the last report.

We extend RTCP so that the packet miss rate PRm, averaged

decoding time Tdec and de-packetization time Tdepkt since

the last report are exchanged as well. While Tdec and Tdepkt

help the client to calculate a correct quota time Tqt, PRp

and PRm are utilized in the decision making procedure, as

shown in Section V-D.

C. Estimation of Network Latency

According to RTCP, Round Trip Time (RTT) can be

derived as:

RTT = NTPrecv −Delaysr −NTPsend (9)

This is shown in the upper diagram of Figure 3. NTPsend

is the timestamp when an initiating client sends a SR to

peer client and Delaysr is the delay between when the peer

receives this SR and sends a RR as a response. NTPrecv

is the timestamp this RR is received by the initiating

client. Half of the RTT is utilized to estimate network

transmission latency. However, calculation of RTT according

to Equation 9 is only applicable to the CAM state in a WiFi

network. As the lower diagram of Figure 3 indicates, since

this RTT calculation involves two transmitted RTCP packets,

under WiFi PSM it is actually a sum of the transmission

latency in the wired network, latency between the AP and
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the clients, and the possible buffering time at the APs in both

directions before being delivered to clients. To differentiate

those elements we make the following modifications. After

the peer client receives SR, it checks the difference Tdiff

between the receiving time and the last network activity

(receiving or sending) time. If Tdiff is smaller than Ttout, it

means that the network interface remains active since the last

network activity and when this RTCP packet was delivered

to itself immediately without buffering at the AP, otherwise

it may have been buffered at the AP for a duration upper

bounded by Tdiff -Ttout. This maximal buffer time, denoted

as T l
AP , is transmitted back in RR. When the initiating client

receives this RR, it also calculates a corresponding T s
AP as

the maximum buffering time at its associated AP. Then RTT

is calculated as:

RTT = NTPrecv −Delaysr −NTPsend −
(T s

AP + T l
AP )

2
(10)

That is, we take half of the upper bound as an estimation

of the actual buffering time at both APs. If both T l
AP and

T s
AP are zero then the calculation is the same as Equation 9.

If the derived RTT is not a positive value, this indicates

that the actual buffering latency at the two APs are much

smaller than T s
AP +T l

AP . In this case we disregard the short

buffering time and recalculate RTT according to Equation 9.

Combined with Equation 6, we can obtain

Twan =
RTT

2
− 4δ (11)

Each time we receive an RTCP packet and derive a new

Twan value, the current estimation Twan is updated by an

infinite impulse response (IIR) filter:

Twan = αTwan + (1− α)RTT ; (12)

where α is a smoothing coefficient utilized to prevents

occasional spike values.

D. Making Transmission Decision

Figure 4 demonstrates the flow chart of transmission
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Figure 4. Flow chart of transmission decisions.

into this batch. We divide the total program running time

into many small Decision Periods Td. In each Td, we try to

fetch inbound packets from the network interface and then

make a sending decision based on the queued packets in the

transmission buffer. Although these packets are generated at

different times, they will be delivered together in a batch.

As such we only have to care about the “oldest” packet (the

earliest queued packet) in the buffer currently, i.e, P 1

k , and

guarantee that it meets the end-to-end latency requirement.

When P 1

k arrives in the transmit buffer, its maximal quota

time is calculated as Tqt according to Equation 8. If Tqt

is larger than the beacon interval Tbc used by the receiver

side, we decide not to send in this decision period. This is

because P 1

k will still meet its deadline even if it is buffered

at the receiver’s AP for a maximum of Tbc duration. Then

Tqt is reduced by Td since only Td later we will make the

next decision and this also means that the queuing time in

the transmit buffer has increased by Td. On the other hand,

if Tqt is less than or equal to zero, we must send the packets

immediately as P 1

k can only meet its playout deadline if it

happens not to be buffered at all at the receiver side’s AP.

In cases other than the above two, the sending decision is

based on the following conditions.

1) Number of Received Packets: If in this Td we success-

fully receive inbound packets, we know that the interface

must have transitioned to the CAM state. As we have

analyzed in Section IV-A, we will send all packets in

the transmission buffer at once to reduce network state

transitions.

2) Packet Miss Ratio: If in this Td packet miss happens

for play out and there are no more inbound packets queued

in the de-jitter buffer, this indicates that packets from the

other client failed to arrive in time. We know that either

the inbound packets have not arrived at the AP, or currently

they are buffered at the AP and waiting to be delivered at

next beacon. To prevent further play misses, we send packets

immediately as this will enable possibly buffered packets at

the AP to be delivered right now, instead of being deferred

to the next beacon time.



3) State Feedback from RTCP: Each client checks the

packet loss rate PRpl and miss rate PRpm of the peer

client from the most recently received RTCP packet. We

know that packet misses can be reduced if all packets are

sent out early and received in time for playing, while packet

loss happens due to problems through network transmission

such as congestion and queuing at routers, etc. Apart from

the transmission path, bursty transmission of UDP packets

through WiFi can also increase packet loss and have a

negative impact on effective network throughput. The poor

performance of WiFi in dealing with bursty traffic is due

to its Distributed Coordination Function (DCF) for access

control at the MAC layer, in which case a large portion of

time is spent on sensing for free medium and considerable

framing overheads are generated [18]. This indicates that a

large packet loss rate, as well as packet miss rate from the

peer client can both be incurred if we accumulate too many

packets before each outbound delivery. As such we use the

Packet Unavailable Rate PRun to denote the sum of PRpl

and PRpm, where we set an upper bound as PRmax
un , as

a high PRun will inevitably undermine user experiences.

If we check that the current PRun exceeds the upper

bound, the current packets will be released immediately,

otherwise the remaining quota time will be reduced by

a value proportional to PRun to accelerate its delivery

process:

Tqt = Tqt(1− PRun/PRmax
un ) (13)

To conclude, once we derive the sum of buffering time at

the transmit queue and at the peer client’s AP, we allocate a

dynamic portion to each and make the transmission decision,

according to play deadline, packet reception time, packet

misses as well as the execution conditions of the peer client.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

We established two independent 802.11g wireless net-

works as follows. Two desktop computers, each equipped

with a TP-LINK WN951N PCI adapter, operate as two APs

with hostapd, a user space daemon for AP management that

provides more control options compared with commercial

wireless routers. To reduce radio interference, the two APs

are placed 5 meters apart and configured to be operating

in two frequency channels farthest from each other in

the 2.4GHz band (Channel 1 and 11, respectively). Two

laptop computers, each equipped with a D-Link DWA-652

Cardbus adapter, are associated with each of these two APs,

working as video call clients. We use laptops instead of

mobile phones and tablets due to their easy modification and

compilation of kernel modules. DWA-652 uses the Atheros

AR5008 chipset inside, which is operated by the mac80211

driver under Linux. The specifications for the AR5008 are

listed in Table III. We measure the transition delays by

instrumenting a time function around the state transition

code. The power profiles are taken from the Atheros AR5213

chipset [19]. We modified mac80211 and enables it to write

a timestamped record to a log file each time a state transition

occurs to calculate the total sleep duration.

We implemented our framework into the open source Lin-

phone as the software client for video calls. To conduct re-

peatable experiments, we cannot use live multimedia streams

from the camera and sound card. Instead, we recorded a two-

minute long video clip that features a guided tour around our

campus2, extracted its audio and video track and converted

them into raw WAV and YUV formats, which are read frame

by frame from disk to simulate a real-time media stream.

The parameters adopted for the transmission scheme and

coding are listed in Table I, Table II and Table IV. Tmax is

set according to recommendations of ITU-T [20]. Note that

δ is obtained by averaging the halved ping results between

AP and clients.3 The beacon checking time for the network

interface is automatically deducted in the record file.

Table I
PARAMS FOR TRANSMISSION

Params Value Params Value

Tbc 100 ms Tmax 300 ms

Tjitter 60 ms Trtcp 2 s

Td 5 ms PRmax
un 0.05

δ 0.78 ms α 0.8

Table II
PARAMS FOR AUDIO

Params Audio

Codec Speex

Samp. interval 20 ms

Bitrate 28 kbps

Samp.frequency 32k Hz

Table III
SPECS OF AR5008

Params Value

Transit Time (Awake to Sleep) 4-5 µs

Transit Time (Sleep to Awake) 56-58 µs

Power (Awake) 219.6 mW

Power (Sleep) 10.8 mW

Table IV
PARAMS FOR VIDEO

Params Video

Codec H.264

fps 25

Bitrate 192 kbps

Resolution 480x360

B. Experimental Results

Each experiment is run 5 times and the results are

averaged. Due to space constraints the results of only one

client are demonstrated. As the two clients play a completely

equal role in the communication session, the results from

each client are consistent and similar with the each other.

1) Default Timeout Interval: In this section we evaluate

the performance of our transmission scheme under the

default timeout value of 100 ms, as adopted by mac80211.

The results are demonstrated in Table V, in comparison with

normal transmission, where packets are generated and sent

directly without buffering. In the table, A stands for Audio

and V stand for Video. Jittplay , Psp, Dsp and E stand for

play jitter, percentage of sleep time, average sleep duration

and energy use, respectively. We can see from Table V

2Campus video has more dynamic and complex scenes than a conference
video, introducing large coding delay variations.

3Actually this is not the exact transmission time for a frame between an
AP and its clients, which takes only 2-5 µs according to our packet sniffing
records from Wireshark, but rather a statistical averaged mean time that
takes into account the much larger medium contention overhead.



Table V
PERFORMANCE COMPARISON BETWEEN ADAPTIVE AND NORMAL

TRANSMISSION WITH A 100 MS TIMEOUT.

Params Normal Trans Adapt Trans

PRl (%)
A 0.033 0.083

V 0.143 0.256

PRm (%)
A 0.0 0.852

V 0.0 0.0

Jittplay (ms)
A 0.237 1.534

V 1.375 2.866

Psp (%) - 0.0 14.445

Dsp (ms) - 0.0 40.202

E (J) - 26.352 22.731

that with normal transmission the WiFi interface remains in

CAM state and never goes to sleep, as the 100 ms timeout

value is much larger than packet generation intervals. While

our adaptive transmission scheme has 13.74% savings of

energy consumption on the network interface, its perfor-

mance in terms of packet loss, packet miss and play jitter is

still comparable to normal transmissions. Compared with the

audio stream, the video stream has a slightly smaller PRm

and larger PRl, since on average video packets are much

larger than audio ones, which makes them more susceptible

to being dropped at routers and APs. Moreover, their large

play interval (40 ms) makes them more immune to play

jitters caused by late arrivals of inbound packets.
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Figure 5. Transmission and recep-
tion time of audio RTP packets from
10 s to 12 s.
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Figure 5 shows the transmission and reception time of

audio RTP packets in a two-second interval (10s - 12s). The

X-axis indicates the running time while the Y-axis indicates

the RTP sequence number. It shows that packets are sent and

received in batch and most packet transmissions immediately

follow the end of receptions, eliminating extra timeouts.

Figure 6 shows the CDF (Cumulative Distribution Function)

of the sleep duration. We can see that 68.9% of the sleep

interval lasts no less than 20 ms.

2) Variable Timeout Interval: It can be observed from

the results in Section VI-B1 that the sleep percentage is

not significant. This is due to the adoption of a large

timeout value (100 ms), as on average only 40 ms can

be utilized for actual sleep during a network inactivity of

140 ms. The adoption of a large timeout value in dynamic

PSM is to prevent the drastic increase of measured RTT,

which has a detrimental effect on TCP throughput with

congestion control. However, this is not a necessary concern

Table VI
SLEEPING CONDITIONS AND ENERGY CONSUMPTIONS BETWEEN

DIFFERENT TIMEOUT VALUES.

Params 80 ms 60 ms 40 ms 20 ms

PRl (%)
A 0.150 1.118 3.453 5.907

V 0.712 1.282 3.876 6.361

PRm (%)
A 1.740 2.478 1.747 4.392

V 0.671 0.643 1.290 2.861

Jittplay (ms)
A 3.460 3.951 5.725 12.52

V 4.820 5.261 7.754 13.500

Psp (%) - 18.564 23.019 30.754 27.132

Dsp (ms) - 45.883 47.322 50.015 32.169

E (J) - 21.717 20.589 18.835 19.586

for UDP traffic. This reminds us that the timeout value can

be shortened to enable more sleep opportunities. As such,

we choose another four timeout values, i.e, 80 ms, 60 ms, 40

ms and 20 ms, and rerun the experiments. Figure 7 shows
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Figure 7. Packet loss rate, miss rate and play jitter with variable timeout.

the packet loss rate, miss rate and play jitter while Table VI

demonstrates the sleep conditions and power consumption of

the network interface under variable timeout settings. The

results of normal transmissions are omitted here as in all

cases the interface remains in CAM state for almost all the

time and therefore results are nearly identical to the 100

ms settings, except that under a 20 ms timeout setting a

negligible 0.73% sleep percentage is observed, due to the

small variations in the encoding latency for audio frames.

Table VI shows that energy savings increase with the

decrease of the timeout value, while performance for video

call slightly decreases but is still within acceptable ranges.

With a 40 ms timeout setting the energy savings reach

28.53%. However, the 20 ms case is an exception. It was

assumed to be the most energy-saving setting as the smaller

the timeout value, the faster it turns into sleep state. This

is caused by the high packet loss rate under such settings,

which triggers the delivery of outbound packets frequently

before they can stay long in the queuing buffer. This is due

to the variable latencies experienced by packets transmitted

through a network, as packets sent in a batch may not be

arriving at a receiver’s AP simultaneously. Most APs adopt a

normal scheduling algorithm by putting all inbound packets

into the tail of a long transmission queue and thus a late-

arriving packet for PSM clients would be served much later



[7]. As a result, after a short timeout value the client believes

that all inbound packets have been received and goes to

sleep, and the late packets are eventually dropped by the

AP due to buffer overflow. This also explains why static

PSM performs poorly in interactive applications, as it can be

viewed as an ’extreme’ dynamic PSM with a zero timeout.

Due to the inner working mechanism of WiFi there is

a tradeoff between energy savings and application perfor-

mance, and a timeout value should be carefully chosen with

regard to network conditions and scheduling policy, etc.

VII. CONCLUSIONS AND FUTURE WORK

By utilizing the dynamic Power Save Mode (PSM), we

propose an adaptive RTP packet transmission scheme for

real-time multimedia traffic. It involves no communication

overhead between applications and kernel driver. The ex-

perimental results show that considerable energy on the

WiFi interface can be saved while a comparable application

performance can be maintained.

As we have found, the fair scheduling adopted by standard

APs incurs undesirable packet losses for clients with an

aggressively small timeout value, and this prevents the client

from saving more energy by quickly transitioning to sleep

state. We plan to investigate this further.
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