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ABSTRACT

Mobile devices are increasingly popular for the versatile cap-
ture and delivery of video content. However, the acquisition
and transmission of large amounts of video data on mobile
devices face fundamental challenges such as power and wire-
less bandwidth constraints. To support diverse mobile video
applications, it is critical to overcome these challenges. We
present a design framework that brings together several key
ideas to enable energy-efficient mobile video management
applications. First, we leverage off-the-shelf smartphones
as mobile video sensors. Second, concurrently with video
recordings we acquire geospatial sensor meta-data to de-
scribe the videos. Third, we immediately upload the meta-
data to a server to enable low latency video search. This
last step allows for very energy-efficient transmissions, as
the sensor data sets are small and the bulky video data can
be uploaded on demand, if and when needed. We present
the design, a simulation study, and a preliminary prototype
of the proposed system. Experimental results show that our
approach substantially prolongs the battery life of mobile
devices while only slightly increasing the search latency.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems
and Software—Distributed Systems; I.4.8 [Image Process-
ing and Computer Vision]: Scene Analysis—Sensor Fu-

sion

General Terms

Algorithms, Measurement, Performance

Keywords

Mobile video, geotagging, video search, energy efficiency

1. INTRODUCTION
The influx of affordable, portable, and networked video

cameras has made various video applications feasible and
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practical. Furthermore, the combination of mobile cameras
with other sensors has extended plain video sensor networks
to wireless multimedia sensor networks. These are expected
to manage far more and diverse information from the real
world because videos with associated scalar sensor data can
be collected, transmitted, and searched to more effectively
support a wide range of multimedia applications. These
include both conventional and emerging applications such
as multimedia surveillance, environmental monitoring, in-
dustrial process control, and location based multimedia ser-
vices [1]. As a result, various mobile devices, sensors, net-
works, and multimedia search schemes have been designed
and tested to implement such systems.

Traditionally, any extensive sensor networks that have
been constructed with expensive, custom hardware and net-
work architecture work for specific applications only, lead-
ing to limited use. However, with rapid advances in com-
munication and cellular phone technologies, smartphones
have emerged as a possible off-the-shelf choice of mobile de-
vices since they can satisfy most technical requirements of
multimedia sensor networks, such as video capturing with
high resolution, meta-data collection from various sensors,
communication capabilities with widely available WiFi net-
works, and true handheld mobility. For example, smart-
phones such as Apple’s iPhone 3GS and 4 and Motorola’s
Droid have a quality camera, a GPS receiver, a digital com-
pass, an accelerometer, and considerable computing power.

Mobile multimedia applications have inherited the typical
challenges of mobile computing such as capacity constraints
of the battery and wireless bandwidth bottlenecks. Consid-
ering that both the video capture and wireless transmission
of large amounts of video data with mobile devices are highly
power intensive, it is fundamental to efficiently manage the
battery power. Furthermore, mobile video applications in-
troduce new challenges such as the searchability of online
videos, especially in large scale applications, because open-
domain video content is very difficult to be efficiently and
accurately searched.

There are currently two prevalent approaches to make
video content searchable. First, there is a significant body
of research on content-based video retrieval, which employs
techniques that extract features based on the visual sig-
nals of a video. While progress has been very significant
in this area, the semantic gap between identifying the low-
level features and recognizing important semantic themes in
the videos is still wide [14]. Achieving high accuracy with
these techniques is often limited to specific domains such as
sports or news content, and applying it to large-scale video



Hardware Description Parameter Coefficient (Cj) Range (of βj)

CPU Qualcommr MSM7201ATM, 528 MHz CPU hi CCPU hi = 3.97 mW/% βCPU hi : 0 − 100%
CPU lo CCPU lo = 2.79 mW/% βCPU lo : 0 − 100%

Screen 3.2-inch TFT-LCD flat, touch-sensitive LCD CLCD = 150 mW βLCD : 0, 1
screen with 320 × 480 (HVGA) resolution Brightness Cbr = 2.07 mW/step βbr : 0 − 255 steps

WiFi Texas Instruments WL 1251B network WiFi on CWiFi on = 39 mW βWiFi on : 0, 1
chipset WiFi trf CWiFi trf = 658.93 mW βWiFi trf : 0, 1

WiFi bytes CWiFi bytes = 0.518 mW/byte βWiFi bytes : ≥ 0
Storage MicroSD memory flash card SD CSD = 0.0324 mW/sector βSD : ≥ 0
GPS GPS receiver GPS CGPS = 430 mW βGPS : 0, 1
System Residual system power consumption in System CSystem = 169.08 mW βSystem : 0, 1

addition to the above components

Table 1: Parameters of the HTC G1 smartphone used in the power model.

repositories creates significant scalability problems. The sec-
ond approach utilizes searchable text annotations associated
with the video content; however high-level concepts must
often be added manually, rendering this method ineffective
for large video repositories. Furthermore, these text anno-
tations can be ambiguous and subjective.

Recent technological trends have opened another avenue
that fuses much more accurate, relevant contextual infor-
mation with videos: the concurrent collection of sensor-
generated geospatial meta-data. The aggregation of multi-
sourced geospatial data into a standalone meta-data tag al-
lows video content to be identified by a number of precise,
objective geospatial characteristics. For example, current-
generation smartphones have GPS receivers, compasses, and
accelerometers all embedded into a small, portable, energy-
efficient package. When aggregated, the resulting meta-data
can provide a comprehensive and easily identifiable model of
a video’s viewable scene, which can support a scalable orga-
nization, search, and streaming of large scale video reposi-
tories.

In the presence of such meta-data, there are two conven-
tional ways to transmit both meta-data and video jointly
from a mobile device: (1) immediate transmission after cap-
turing through wireless network, and (2) delayed transmis-
sion when a faster network is available. The former can
provide immediate availability of the data to users while
consuming lots of battery energy and scarce wireless band-
width. The latter consumes the minimum power while sac-
rificing real-time access to the captured videos. Thus, both
approaches are not very appealing.

Employing smartphones as the choice of mobile devices,
we propose a new framework to support an efficient mo-
bile video capture and their transmission as shown in Fig-
ure 3. Based on the important observation that not all col-
lected videos have high priority (i.e., many of them will not
be requested and viewed immediately), the core of our ap-
proach is to separate the small amount of text-based geospa-
tial meta-data of concurrently captured video content from
the large binary-based video content. This small amount
of meta-data is then transmitted to a server in real-time,
while the video content will remain on the recording device,
creating an extensive, resource efficient catalogue of video
content, searchable by viewable scene properties established
from meta-data attached to each video. Should a particular
video be requested, only then will it be transmitted from
the camera to the server in an on-demand manner (prefer-
ably, only the relevant segments, not the entire videos). The

delivery of unrequested video content to a server can be de-
layed until a faster connection is available.

This paper presents the design, a simulation study, and
a mobile device prototype implementation of an energy ef-
ficient mobile video management system. Our simulation
results show that the proposed approach can significantly
reduce the energy consumption of a smartphone while still
providing a satisfactory service latency when videos are re-
quested. Overall, the system achieves a balance between
resource demands and quality of service.

The remainder of this paper is organized as follows. In
Section 2, we present a mobile device power model. Section 3
describes the system design. In Section 4, a simulator is
introduced and we evaluate our system in terms of energy
and bandwidth efficiency, query response latency, and result
completeness. Section 5 outlines the implementation of a
device acquisition prototype. In Section 6, we summarize the
related prior work. Finally, Section 7 concludes the paper.

2. POWER MODEL
We define an estimation model to describe the power levels

of a mobile device operating under different modes. Our
target device is the HTC G1, a smartphone that is based on
the open source Google Android mobile device platform [8].

2.1 Modeled Hardware Components
We adapted the power estimation model introduced by

Shye et al. [18]. They proposed a linear-regression-based
power estimation model, which uses high-level measurements
of each hardware component on the mobile device, to esti-
mate the total system power consumption. In our work, we
used this model at the device level to understand and evalu-
ate the efficiency and feasibility of our proposed video search
technique.

We next describe the relevant details of each hardware
component on the target HTC G1 mobile phone. Table 1
lists the G1 hardware components that were considered in
the power model and their corresponding parameters. In
Table 1, Cj coefficients are the final regression coefficients
obtained for the chosen G1 hardware. Our search system
incorporates an additional GPS receiver unit to obtain loca-
tion meta-data. Therefore, we modified the original model
and included the power consumption for the GPS receiver.
For simplicity, we excluded the power consumption for the
Call, EDGE and DSP units.

CPU: The processor supports dynamic frequency scaling
(DFS) and it is rated at 528 MHz, but is scaled down in the



platform to run at 124 MHz, 246 MHz, and 384 MHz. The
highest frequency of 528 MHz is not used. The lowest fre-
quency is never used on consumer versions of the phone, and
is too slow to perform basic tasks. Thus, only the high (384
MHz) and medium (246 MHz) frequencies are considered
in the model. CPU power consumption is strongly corre-
lated with the CPU utilization and frequency. In Table 1,
the CPU hi and CPU lo parameters represent the average
CPU utilization while operating at 384 MHz and 246 MHz,
respectively.

Screen: The display is described by two parameters: a
boolean parameter LCD indicating whether the screen is on
or off and a Brightness parameter which models the effect
of the screen brightness with 256 uniformly spaced levels.

WiFi: The boolean parameter WiFi on describes whether
the WiFi network interface is turned on or off; additionally
WiFi trf and WiFi bytes indicate network traffic and the
number of bytes transmitted during a particular time inter-
val.

Storage: The number of sectors transferred to or from
the MicroSD flash memory card per time interval are repre-
sented by the parameter SD.

GPS: The boolean parameter GPS denotes the power
consumption coefficient when the GPS receiver is on.

System: There exists also a residual power consumption
parameter System. This parameter subsumes all power that
is not accounted for the hardware components listed above.
We refer to this as the baseline System power in Table 1.

2.2 Analytical Power Model
The described modeling parameters are incorporated into

the analytical power model that is utilized in our simula-
tion experiments. The power model determines the rela-
tionship between the system statistics (e.g., the value for
screen brightness) and the power consumption for each rel-
evant hardware component. The inputs to the model are
the statistics collected from the device (βj values), and the
output represents the total power consumption. The overall
system power consumption as a function of time t is deter-
mined as follows:

P (t) = (CCPU hi × βCPU hi(t)) + (CCPU lo × βCPU lo(t)) +

(CLCD × βLCD(t)) + (CBrightness × βbr(t)) +

(CWiFi on × βWiFi on(t)) + (CWiFi trf × βWiFi trf (t)) +

(CWiFi bytes × βWiFi bytes(t)) + (CSD × βSD(t)) +

(CGPS × βGPS(t)) + (CSystem × βsystem(t))

The ranges for the βj values are listed in Table 1. The
overall power consumption is calculated by substituting the
statistics collected at time t for the selected hardware com-
ponents into P (t).

2.3 Validation of the Power Model
To evaluate the accuracy of our power model, we mea-

sured the power consumption of an HTC G1 with Power-

Tutor [19], an application for Android-based phones that
displays the power consumed by major system components
such as CPU, network interface, display, and GPS receiver
(see Figure 1). According to the authors, PowerTutor was
developed on the HTC G1 in collaboration with Google, and
its accuracy should be within 5% of actual values for the G1.

With PowerTutor we obtained the various β-statistics for
different hardware units. Specifically, we collected logs on

Figure 1: Screenshot of the PowerTutor.

Hardware Parameter Video Capture WiFi Transmission

CPU βCPU hi 77.45 77.33
βCPU lo 0 0

LCD βLCD 1 0
βbr 102 0

Table 2: β-parameters under different operational
modes.

a G1 phone for different usage scenarios. For instance, we
captured video for one minute, or uploaded video for one
minute, and so on. During these tests, all non-essential pro-
cesses were disabled. After multiple experiments, we deter-
mined the values shown in Table 2.

In the next step, the measured parameters were substi-
tuted into our power model. We then performed the same
usage scenarios with the Android G1 phone for about two
minutes, and collected the trace logs from PowerTutor. We
measured the power consumption for various phone usage
scenarios such as capture+GPS (capturing video and using
GPS to obtain location information), capture+WiFi (cap-
turing video and using WiFi to obtain the location), cap-
ture+GSM (capturing video and using GSM to obtain the
location), and transmission+WiFi (transmitting data via
WiFi). Grouped by usage scenario, the average power con-
sumption obtained from the power model was compared to
the power values reported by PowerTutor. The results are
shown in Figure 2.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

capture+GPS

capture+WiFi

capture+GSM

transmission+WiFi

P
o
w

e
r 

(m
W

)

Usage Scenario

Power Model
PowerTutor

Figure 2: Comparison of the results from the power
model with logs from PowerTutor.



The modeled and measured power consumptions match
very well for each of the usage scenario. To calculate the
accuracy of the model, we used the following error metric e:

e =

˛

˛

˛

˛

Pmeasured − Pmodeled

Pmeasured

˛

˛

˛

˛

(1)

The results indicate that the power estimation model ac-
curately predicts the system-level power consumption. The
error e for each scenario is less than 4.9%, and the average
error across all the scenarios is 1.7%.

An important point to note is that capturing video and
then transmitting it through WiFi are both very energy-
consuming activities. With its standard 1,150 mAh-capacity
battery, the G1 phone would last less than three hours in the
worst case, when continuously capturing and transmitting
video. Our proposal is to extend battery life through more
selective transmissions.

3. SYSTEM DESIGN

Figure 3: System environment for mobile video
management.

Figure 3 shows an overview of the proposed system. Mo-
bile nodes collect the videos and the sensor-associated meta-
data such as GPS location, compass direction, capture time
and other camera-related information. The video files re-
main locally on the device until requested while the meta-
data are immediately uploaded to the server in real-time
where they are stored and indexed in a database. In a typ-
ical search scenario, other users (e.g., observers) can query
the videos that are being captured from many devices in
real-time or near real-time. We assume that a user pro-
vides a query as a geographical region of interest. The video
meta-data stored on the server are searched to identify and
retrieve the video clips that show the requested query re-
gion and the search results are presented to the user. Dur-
ing query processing, the video content already available on
the server is immediately sent to the user for viewing while
the missing video segments are requested on demand from
the mobile devices that captured the videos. Note that only
the precisely delimited parts (i.e., only the video segments
that actually overlap with the query region) are retrieved.
The complete video content may be uploaded later when the
device is in contact with a faster network connection.

The key idea of this approach is to save considerable bat-
tery energy by delaying the costly transmission of the large
binary video data that have not been requested, especially
when the transmission speed is low. We will describe the
components of the proposed system next.

3.1 Data Acquisition and Upload
A camera positioned at a given point P in geo-space cap-

tures a scene whose covered area is referred to as the cam-
era field-of-view (FOV, also called the viewable scene). We

adapt the FOV model introduced in our prior work [2],
which describes a camera’s viewable scene in 2D space with
four parameters: camera location P , camera orientation α,
viewable angle θ and visible distance R (see Eqn. (2)).

FOV ≡ 〈P, α, θ, R〉 (2)

The camera position P consists of the latitude and longi-
tude coordinates read from a positioning device (e.g., GPS)
and the camera direction α is obtained based on the orienta-
tion angle provided by a digital compass. R is the maximum
visible distance from P at which a large object within the
camera’s field-of-view can be recognized. The angle θ is
calculated based on the camera and lens properties for the
current zoom level [9]. The collected meta-data streams are
analogous to sequences of 〈nid,vid,tFOV ,tf ,P ,α,θ,R〉 tuples,
where nid represents the ID of the mobile device, vid is the
ID of the video file and tFOV indicates the time instant at
which the FOV is recorded. The timecode associated with
each video frame is denoted by tf .

In 2D space, the field-of-view of the camera at time tFOV

forms a pie-slice-shaped area as illustrated in Figure 4.

Figure 4: Illustration of FOV in 2D space.

When a mobile device begins video capture, the GPS
and compass sensors are turned on to record the location
and orientation of the camera. Our custom-written data-
acquisition software fetches such sensor values as soon as
new values are available. Video data are processed in real
time to extract frame timecodes (tf ). The visible distance
R is calculated based on the camera specifications. All col-
lected meta-data (i.e., location, direction, viewable distance,
frame timecode and video ID) are combined as a tuple and
uploaded to the server.

An appropriate meta-data upload rate should be deter-
mined such that the server is updated immediately for real-
time video search while the energy consumption for meta-
data uploads is minimized. Two policies are possible. First,
the system may send the meta-data whenever it is generated.
Second, it may buffer the meta-data locally and then send
the accumulated data periodically. Such meta-data aggre-
gation and delivery may utilize available network bandwidth
more efficiently. For the first policy, since meta-data is al-
ways ready to be uploaded, we assume that the WiFi inter-
face is always on when recording. Whereas for the second
policy, WiFi will be turned on and off periodically. Some
startup energy is consumed when WiFi is turned on. As
Cheung et al. measured [5], we set the startup energy as
6.47 J. We will further discuss this aspect in Section 4.

Another issue we would like to explore is energy-efficient
collection of location meta-data. GPS, WiFi and GSM pose
a challenging tradeoff between localization accuracy and en-
ergy consumption. While GPS offers good location accuracy
of around 10 m, it incurs a serious energy cost that can drain
a fully charged phone battery very fast. WiFi and GSM-



based schemes are less energy-hungry, however, they incur
higher localization errors (approximately 40 m and 400 m,
respectively). In our work we employ the GPS-based and
GPS-save strategies. GPS-based scheme refers to sampling
GPS data periodically, while GPS-save uses a more com-
plicated strategy. When the device orientation change is
within a limited range, we assume that the device user does
not change his/her moving direction, and the GPS receiver
is turned off to save energy. Once the direction changes, the
GPS receiver is turned on, reporting the current location.
When meta-data with two consecutive GPS data points is
uploaded, we can interpolate the device location between the
two GPS locations on the server. With this method consid-
erable energy can be saved. More details can be found in
Section 4.

3.2 Data Storage and Indexing
This module implements a storage server that manages

the video files and the associated meta-data streams. It
separately stores the video content and the meta-data. The
video files are linked to the the meta-data streams by device
ID (nid) and video ID (vid). Each FOV tuple in a meta-
data stream includes a frame timecode tf that points to a
particular frame within the video content. This ensures a
tight synchronization between the two streams.

The server keeps a data structure nodeInfo for each mo-
bile node, which includes the device MAC address, the unique
device ID, and the IP address. While the storage server
receives the meta-data from mobile devices, nid is added
automatically to each FOV tuple. An additional binary
tag (inServer) is maintained for each FOV tuple indicating
whether the corresponding binary data of the video frame
exists or not on the server. Spatial indices are built and
maintained to facilitate the efficient search of FOVs.

3.3 Query Processing
When a user issues a query, the video meta-data in the

server is searched to retrieve the video segments whose view-
able scenes overlap with the geographical region specified in
the query. The query region can be a point, a line (e.g., a
road), a poly-line (e.g., a trajectory between two points), a
circular area (e.g., neighborhood of a point of interest), a
rectangular area (e.g., the space delimited with roads) or a
polygon area (e.g., the space delimited by certain buildings,
roads and other structures). In our initial prototype we only
support rectangular queries.

Given a query Q, the query processing module returns a
list of the video segments whose corresponding FOVs overlap
with the query Q. Each video segment is identified with
a tuple 〈nid,vid,tstart, tend〉, where tstart and tend are the
timecodes for the first and last FOVs.

For each video segment in the query results, the query pro-
cessor checks for the availability of the corresponding video
content on the server. Recall that, the storage server keeps
track of which video files are uploaded to the server and what
parts of the meta-data they do belong to. For the FOVs with
the inServer field set to 1, the corresponding video content
is available on the server. And conversely, for those with
the inServer field equal to 0 the video content is not avail-
able and therefore needs to be requested from the capturing
mobile device. To acquire a missing video segment, a Video
Request Message (V RM) is sent to the mobile device. A
VRM message specifies the IP address of the target mobile

device as well as the corresponding video ID and the begin-
ning and ending timecodes for the requested video segment.

If the requested video with video ID vid is still available
on the mobile device, the video segment from tstart to tend

is uploaded to the storage server. The inServer tags for
the corresponding FOVs are set to 1. However, if the re-
quested video cannot be located, the mobile device notifies
the query processor by sending a Video does not Exist Mes-
sage (V NEM). If no response is received from the device
after n trials, the device is assumed to be turned off and
the VRM message is dismissed. If the query processor can
locate the videos for the search results on the server, it imme-
diately sends the video data to the user. The video segments
requested from the mobile devices are sent as soon as they
arrive at the server.

4. EXPERIMENTAL EVALUATION
To evaluate our framework we implemented an extensive

simulator and executed it on a server with two 4-core In-
tel(R) Xeon(R) X5450 3.0 GHz CPUs and 16 GB of memory,
running Linux 2.6.18.

4.1 Simulator Operation
We first provide an overview of the operation of the sim-

ulator before describing its internal details. We assume an
urban wireless communication infrastructure where mobile
users are moving on the road network of the city of San Fran-
cisco. The users capture and transmit videos with prede-
fined simulation models. Similarly, some other users launch
queries to retrieve the collected videos from the same region.

The simulated space is approximately 14.3 km × 13.6 km
in size. Within this area, Nnode mobile users and NAP WiFi
network access points are distributed. The simulation pro-
ceeds in discrete time steps ts (5 s each) for a total duration
of T . During T , two types of events occur: video capture

events and query events. In a capture event, each mobile
node independently starts to record video and the record-
ing duration follows a log-normal distribution. The capture
event arrival rate is λc per timestamp ts. Queries are issued
by observers and sent to the server with a query event ar-
rival rate of λq per timestamp ts. Queries are assumed to be
distributed within the simulation space either uniformly ran-
dom, or skewed with a clustering parameter h (0 ≤ h ≤ 1).
When an area is frequently queried, it is regarded as a “pop-
ular area”. The h parameter represents the popularity of
the area. A higher value of h denotes that more queries are
requested from that area. The query clustering is designed
to emulate areas of interest in the real world. The query
size Mq is chosen as a small fraction of the simulation space.
The simulation parameters are summarized in Table 3.

Captured videos are either (1) immediately and completely
uploaded to the server (Immediate) at a transmission rate
that is determined by the mobile node’s proximity to an
access point, or (2) alternatively, video upload is delayed
and only videos where a query request overlaps with the
region that was captured in the video will be uploaded in
an on-demand manner (OnDemand). Importantly, only the
video segments, not an entire video clip, that overlap with
the query are transmitted. The query response latency for
LImmediate is assumed to be zero (or close to zero), since the
data is readily available on the server and can be immedi-
ately returned to the observer. With the OnDemand policy,
the relevant video segments must be requested and uploaded



Module Parameter Description Values

Network Topology w WiFi type used 802.11b

Generator NAP Number of access points 400, 800, 1,000, 1,200, 1,600, 2,000
Simulation space 14.295 km × 13.623 km

Node Trajectory Nnode Number of mobile nodes 2,000

Generator T Simulation time in 1,000s 150

ts Timestamp in seconds 5

λq Query event arrival rate (per timestamp ts) 0.1 – 0.9, 0.5

Query Generator Mq Mean query rectangle size as a percentage of the map area 0.01 – 0.05, 0.03

h Query rectangle clustering parameter, see Figure 6 0 – 1, 0.5

FOV Generator λc Capture event arrival rate (per timestamp ts) 0.01 – 0.04, 0.02

Dc (eDc × ts) is the mean duration of a capture event 0.5 – 2.5, 1.5

Power Model Mobile device power parameters See Table 1

Table 3: Simulation parameters (values in bold are the default settings).

to the server before the query request is considered satisfied.
The worst case response latency of OnDemand, LOnDemand,
is hence determined by the worst case upload time (we as-
sume that all uploads start concurrently and in parallel from
the nodes involved).

Using our simulation testbed we evaluate the Immediate
and OnDemand strategies based on following three main
metrics: the energy consumption (and hence the lifetime)
of mobile nodes, the query response latency, and the total
amount of data transmitted to satisfy all queries.

4.2 Simulator Architecture and Modules

Figure 5: The block diagram of the simulator archi-
tecture.

Figure 5 provides a detailed architectural view of the sim-
ulator with the following components: generators for (1) the
network topology, (2) the node trajectories, (3) FOV view-
able scenes, and (4) queries. Additionally, the (5) power
model is a part of the (6) execution engine.

Network Topology Generator: A number of WiFi
access points (NAP ) are uniformly distributed in the simu-
lation area and this module emulates the mobile access range
with the realistic Auto-Rate Fallback (ARF) mechanism of
WiFi, which provides a number of declining transmission
rate levels with an increase in the distance between the ac-
cess point and a mobile client. We implemented and tested
both the 802.11b and 802.11g standards for our simulation.
However, we found that the results with 802.11g follow the
same trend as with the slower standard (i.e., the transmis-
sion times are proportionally reduced). Hence we present
only the results for 802.11b.

Node Trajectory Generator: We use the Brinkhoff

generator to produce movements of mobile objects along a
road network [3]. The input to the generator consists of a
TIGER/Line road network file of the city of San Francisco
from the U.S. Census Bureau. The output is a set of objects
that move on the road network of the city.

FOV Generator: This module synthesizes the mobile
nodes’ recording behavior and generates the representations
of nodes’ viewable scenes. The recording start times fol-
low an exponential distribution based on the capture event
arrival rate λc (expressed in events per timestamp ts, see
Table 3). The duration of recordings is log-normally dis-
tributed. The FOV generator obtains the camera location
information from the trajectory generator and, for the cam-
era direction, a random orientation is generated for each
node’s viewable scenes. The maximum visible distance R is
set to 200 m.

Query Generator: The query workload consists of a
list of query rectangles that are mapped to specific locations
in the simulation space. The query arrival interval is expo-
nentially distributed with λq (measured per timestamp ts,
see Table 3). The rectangle size is determined by a nor-
mally distributed random variable with the mean value Mq.
The parameter h is used to generate different distributions
of queries in the given space to evaluate the performance of
our proposed system framework and test its robustness with
different clusterings, both spatially and temporally. Figure 6
shows three spatial query distributions with different values
of h. As can be seen, the larger the value of h, the more
clustered the queries are.

Power Model: Power consumption is modeled for each
node based on the specifications presented in Section 2. The
power model is embedded in the execution engine so that
mobile nodes’ battery life can be updated during each time
step. The power level for the mobile nodes in different states
is summarized in Table 1.

Execution Engine: The simulation is executed after
reading in the access point (AP) layout, the trajectory plan,
the FOV scene plan, and the query list. The engine then
simulates the movement of the mobile nodes within the sim-
ulation space, keeps track of their video recordings, executes
the queries, and manages the simulation status. At every
timestamp, the engine computes all the evaluation metrics.

4.3 Experiments and Results
The utility of a mobile device depends on the duration

of operational hours before its battery needs re-charging.
Thus, one of the key metrics we use to evaluate the en-



(a) h = 0. (b) h = 0.5. (c) h = 1.

Figure 6: Spatial query distribution with three different clustering parameter values h.

ergy efficiency of our approaches is the expected reduction
in power consumption, which directly translates into an ex-
tended battery lifetime. We further evaluate the query re-
sponse latency that a user experiences when searching for
real-time mobile video. Finally, mobile bandwidth is still a
relatively scarce resource, especially in scenarios where the
infrastructure may be limited (e.g., after a disaster). Hence
we also calculated the overall size of the video data that
must be transmitted to satisfy all queries.

Through simulations our OnDemand approach is com-
pared to Immediate in terms of power-efficiency, latency to
obtain the results, overall bandwidth use and result com-
pleteness. Recall that using the Immediate approach nodes
upload videos without delay, therefore, we assume that the
query response latency is zero for this method.

4.3.1 Performance: Without Battery Recharging

In our first experiment we assume a closed system where
batteries cannot be recharged. Hence, all the nodes will
eventually run out of energy and cease operation. We are
interested in the system lifetime and the query complete-
ness under these conditions. The simulation area is popu-
lated with Nnode = 2, 000 mobile nodes. We track all the
nodes’ energy consumption and battery levels. The default
simulation parameters of Table 3 are used.

Figure 7(a) illustrates that the OnDemand method con-
sumes considerably less energy than the Immediate method,
and the lifetime of the last alive node is prolonged from
about 84,000 s (≈ 23.3 h) to 120,000 s (≈ 33.3 h). The
query workload imposed by the observing users leads to an
uneven utilization of the nodes and some deplete their bat-
teries earlier than others.

Once some nodes begin to cease operation, the results
of queries may increasingly become incomplete because the
requested data become unavailable. Figure 7(b) compares
the completeness of the query results returned by the two
strategies. We compute the completeness of results from
both methods every one thousand timesteps using the fol-
lowing fraction: (video segments actually returned)/(video
segments that should be returned). To compute the video
segments that should be returned, we assume an ideal base-
line case in which there are no battery constraints. Hence,
all requested video segments are never missed. Figure 7(b)
shows that as time advances, the completeness of results of
both methods decreases because the number of alive nodes
decreases and the number of videos uploaded to the server
also declines. However, the downward trend of OnDemand
begins later in time because the nodes with OnDemand last
longer. This is directly attributable to the energy saved from

fewer unnecessary video transmissions, so mobile nodes re-
tain more battery energy to capture additional videos.

Figure 7(c) shows the worst case query response latency
with OnDemand. The average query response latency is
8.08 s while there are some exceptionally long latency. It
should be noted that the latency represented here straight-
forwardly refers to the duration from the time when a query
is initiated by a user to the time when the last frame of
the latest arriving result video segment has been received.
With smarter streaming techniques some of the video seg-
ments can be browsed much earlier, which may significantly
reduce the effective response latency observed by users. The
figure shows some comparatively large values which are due
to some “lazy” mobile nodes (a property of the node mo-
bility model). These nodes almost do not move during the
simulation, but they keep capturing video and uploading
meta-data. For a long time initially, the videos captured by
these nodes may not be queried. However, once a query ar-
rives, many videos are to be uploaded consecutively, which
causes a considerable delay.

4.3.2 Performance: With Battery Recharging

In some large-scale application scenarios batteries can be
recharged or replaced so that the mobile node density will
eventually reach a dynamic equilibrium. In the steady state,
nodes continuously join and leave (i.e., their batteries run
out). We evaluate the Immediate and OnDemand approaches
in this scenario using the proposed metrics.

First, we would like to determine the appropriate rate for
meta-data uploading. Figure 8 shows the tradeoff between
energy consumption over an entire simulation and access
latency with varying meta-data rate, λs. The access latency
represents the average duration from the time meta-data are
produced until the time a user is able to search the data (i.e.,
the meta-data become available on the server). Since the size
of the meta-data file is very small, we can effectively ignore
its transmission time. When λs grows large, the meta-data
upload period (1/λs) approaches near zero and the node
sends the meta-data whenever it is produced. In this case,
the mobile device continuously uploads the meta-data and
it will not turn off the WiFi interface. Therefore, the mobile
device will continuously consume a certain amount of power
(i.e., 658.93 mW) for the meta-data transmission.

In general, the node sends meta-data every 1/λs seconds.
To save energy when using WiFi, the mobile device can turn
off the WiFi interface while it is not transmitting data. Dur-
ing this transition from the off to the on state, a startup
energy of 6.47 J will be consumed. Thus a higher number
of meta-data transitions means more startup energy over-
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Figure 7: Node lifetimes (i.e., energy efficiency), result completeness, and query response latency with
N = 2, 000 nodes.
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Figure 8: Energy consumption and access latency
with varying meta-data upload period (1/λs).

head. The figure shows a tradeoff between access latency
and energy-efficiency. As the meta-data upload period in-
creases, the energy consumption decreases while the access
latency grows.

Collecting location data itself costs a significant amount of
energy so we consider and compare the four different location
data collection schemes as mentioned in Section 3.1. With
the GPS-based scheme the GPS receiver is always on dur-
ing recording. The GPS-save scheme means that when the
device is not moving or changing direction, GPS sampling
is not executed. The WiFi-based and GSM-based schemes
are described in [4]. Figure 9 shows a comparison of the
energy consumption using these four approaches. The GPS-
based scheme consumes the most energy, while the GPS-save
scheme indeed saves a significant amount of energy. Also,
the energy consumption of the WiFi-based and GSM-based
schemes is much less than that of the GPS-based scheme.

Next we evaluate the impact of the capture and network
topology parameters on the performance. First, Figure 10(a)
shows the trend for an increasing video recording duration,
which is log-normally distributed based on parameter Dc.
We calculate the average duration with eDc × ts (see Ta-
ble 3). As expected for both Immediate and OnDemand, a
longer average recording duration results in a higher energy
consumption and a longer query response latency. However,
OnDemand consumes less energy, up to 30% less compared
to Immediate. Predictably, the query response latency for
OnDemand increases as the recording duration increases.
This is because more FOVs are captured in the simulation

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

GPS-based

GPS-save

WiFi-based

GSM-based
E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
 (

K
J
)

Location Data Collection Scheme

Immediate Energy
OnDemand Energy

Figure 9: Energy consumption with varying location
data collection scheme.

area. When the same query is executed within a region,
mobile nodes will have more video frames to upload, which
results in a longer latency. A similar trend can be observed
when nodes capture videos more frequently (Figure 10(b)).
When the capture event arrival rate λc increases, the energy
consumption and the latency will increase.

Next we investigate the impact of the number of access
points (NAP ). APs are uniformly distributed in the simu-
lation area. When more access points are deployed the av-
erage available data rate for video transmissions increases,
and conversely the average transmission duration decreases.
Our simulation results shows that energy consumption is
reduced for the Immediate strategy as the number of APs
grows (Figure 10(c)). However, with OnDemand the energy
usage remains steady while the latency decreases. This in-
dicates that OnDemand is less affected by the number of
APs than Immediate, implying that OnDemand utilizes the
limited bandwidth more effectively.

We next turn our attention to the impact of the character-
istics of queries on the performance metrics. For different
query model parameters (i.e., h, λq, and Mq), Figure 11
shows how the energy consumption and latency are affected
while Figure 12 plots the total amount of transmitted data.
Note that the performance of Immediate does not change
with the query model parameters because Immediate’s be-
havior determines the data collection and transmission in-
dependently from any query models.

Figure 11(a) illustrates the effects of increased query clus-
tering on the energy consumption and average query re-
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Figure 10: Energy consumption and average query response latency with varying FOV and Network topology
generator parameters.
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Figure 11: Energy consumption and average query response latency with varying query model parameters.
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Figure 12: Total transmitted data size as a function of various query model parameters.

sponse latency. OnDemand’s performance significantly im-
proves as the query distribution changes from uniformly
random (i.e., h = 0) to most clustered (h = 1). With
h = 1 some regions within the simulation space will never
be queried, thus the nodes in those areas do not need to
transmit collected videos to the server. Consequently, their
energy consumption becomes minimal. For popular areas,
when a query arrives most of the videos have already been
uploaded to the server. Thus, the query response latency
can be reduced. Figure 12(a) clearly indicates that the total
amount of video data transmitted is much less with OnDe-
mand than with Immediate. This is especially true when

queries are concentrated on some popular hotspots. Our
OnDemand strategy clearly demonstrates its strength over
Immediate in a highly clustered query distribution which
better reflects a realistic situation when user attention fo-
cuses on some popular areas.

Figures 11(b) and 12(b) show the trends for an increasing
query arrival rate λq. As the query frequency increases, the
energy consumption and the size of the transmitted video
data grow up with OnDemand. However, both metrics still
stay well below their corresponding values of Immediate,
demonstrating clear benefits. Furthermore, the query re-
sponse latency also decreases. Intuitively, if a node is in a



frequently queried area, the videos captured by the node will
be probably uploaded sooner rather than later. Therefore
the latency for each query can be reduced substantially. We
also evaluate the impact of a varying mean query size Mq

on the performance. As expected, Figures 11(c) and 12(c)
illustrate that for OnDemand the energy consumption, the
query response latency and the total transmitted data all
rise gradually with increased Mq.

4.3.3 Hybrid Strategy
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Figure 13: The overall energy consumption and
query response latency when using a hybrid strategy
with both Immediate and OnDemand as a function
of the switching threshold (h = 0.5).

As seen in the previous section, the Immediate strategy
has an advantage when it comes to query response latency,
since videos are always pro-actively uploaded to the server.
However, OnDemand has an advantage in power consump-
tion. To get the best combination of response time and
battery life one may devise a hybrid strategy that essen-
tially select a method based on the popularity of a region.
To achieve this we can divide the map into a grid of small
partitions and maintain a popularity threshold for each grid
cell. The server continuously computes the query arrival

rate λest
q for each partition per time interval t as λest

q =
Nq

t
.

Nq represents the number of queries that are executed dur-
ing time t. If λest

q is above the threshold for a partition,
the server will mark it as popular and ask the mobile nodes
moving in that area to switch to Immediate mode. Figure 13
shows the energy consumption and average query response
latency for the hybrid strategy under different threshold val-
ues. In the illustrated case, a threshold value in the range
of 0.01 to 0.02 may achieve a good compromise in terms of
both energy use and query latency.

5. PROTOTYPE
We are currently implementing the proposed system as

part of our ongoing project work (hence the reason for pre-
senting simulation results in Section 4). We implemented
a prototype geo-referenced video acquisition module on an
Android G1 handset, which provides the necessary built-in
GPS receiver and compass functionality. Below we describe
our current application implementation. Please note that we
are just starting to collect real-world data with this platform
for further studies.

Parameter Description
Format MPEG-4
Format profile 3GPP Media
Overall bit rate 349 Kbps

Video Audio
Format H.263 AMR
Format profile Baseline@4.0 Narrow band
Bit rate mode Variable Constant
Bit rate 334 Kbps 12.8 Kbps
Resolution (pixels) 320 × 240
Aspect ratio 4:3
Frame rate 15 fps
Colorimetry 4:2:0
Channel(s) 1 channels
Sampling rate 8.0 KHz

Table 4: Android audio/video capture parameters.

5.1 Android Geo-Video Application
Our Geo-Video App was developed with the Google An-

droid SDK v1.5 for Android OS 1.0 or later. The program
was written in Java. The Geo-Video App is composed of the
following six functional modules: (1) video stream recorder,
(2) location receiver, (3) orientation receiver, (4) data stor-
age and synchronization control, (5) data uploader and (6)
battery status monitor. Below we will describe each module
in more detail.

Video Stream Recorder. This module employs the
Android MediaRecorder to invoke the built-in camera. On
G1, H.263 is the only supported video encoder, together
with an AMR NB encoder for audio. Table 4 summarizes
the audio and video acquisition parameters.

Location and Orientation Receiver. Android pro-
vides some system services for getting data from the sen-
sors. Available sensors are an accelerometer, magnetic field
sensor, and a built-in orientation sensor. To get the cam-
era orientation, one can use either the orientation sensor or
compute it using the accelerometer and magnetic field sen-
sor. But the latter is more precise than the former, at the
cost of more computation. We choose the latter in our ap-
plication. The GPS data is straightforwardly provided by
location service.

An interesting aspect in sensor data acquisition is the sam-
pling frequency. In our application we set a fixed sampling
rate for the location and orientation information. The sam-
pling rate is set to 5 samples per second. Experimentally,
with these settings we can discover the changes in the view-
able scenes well while saving battery energy as much as pos-
sible.

Data Storage and Synchronization Control. This
module manages the storage of the sensor data on the de-
vice’s flash disk. The goal is to utilize a flexible data for-
mat that can be easily ingested at a server. In this situa-
tion we choose JSON (JavaScript Object Notation) as the
data interchange and storage, since it has the equal descrip-
tive power comparable to XML and an order of magnitude
less complexity than XML. The data format consists of four
mandatory key attributes:
format version: Version number of the data format.
video id : Relevant video ID associated with the sensor data.
owner properties: User account associated with sensor data.
device properties: Device dependent information.
sensor data: Raw sensor data collected from a mobile de-
vice.



Here is a sample specification of the data format that
stores sensor data.

{
"format_version":"0.1",
"video_id":"a uniquely identifiable video id",
"owner_properties":{

"id_type":"google account",
"id":someone@google.com

},
"device_properties":{

"SIM_id":"an id taken from SIM card",
"OS":"Android",
"OS_version":"1.0",
"firmware_version":"1.0"

},
"sensor_data":[

{
"location_array_timestamp_lat_long":[

["2010-03-18T07:58:41Z",1.29356,103.77],
["2010-03-18T07:58:46Z",1.29356,103.78]

]
},
{

"sensor_array_timestamp_x_y_z":[
["2010-03-18T07:58:41Z",180.00,1.00,1.00],
["2010-03-18T07:58:46Z",181.00,1.00,1.00]

]
}

]
}

To provide synchronization between meta-data and video
streams, we extract the duration, encoded date and time
from the video. We then add timestamp information to ev-
ery sensor data record to establish the relationship between
a video clip and its corresponding geo-sensor information.
Time is represented in Greenwich Mean Time (GMT), to
avoid time zone issues. Files include the timestamp as part
of their filename to avoid ambiguity..

Data Uploader. This module makes use of open source
class ClientHTTPRequest written by Vlad Patryshev. This
class helps to send POST HTTP requests with various form
data to the server, which is not natively supported by An-
droid environment. This third-party class makes some of
the more tedious aspects of communicating with web servers
easier. The Data Uploader transparently utilizes WiFi, 3G
or 2G cellular networks to transmit data files. Importantly,
this module implements our two different upload strategies:
(1) both video and sensor files are uploaded concurrently
and (2) only the sensor files are uploaded first, while the
video files may be transmitted later. Video files on the flash
disk are tagged whether they still need to be uploaded.

5.2 User Interface
Figure 14 shows two screenshots of our Geo-Video App.

When the user launches the software, he or she will first see
the main menu (Figure 14(a)). A list of the captured videos
is displayed on the screen. The user can choose to continue
to upload video clips, whose sensor data was previously up-
loaded, by choosing name of the needed video file. The main
menu consists two tabs: a submit tab for uploading videos,
and a query tab for future extension of video query function
on mobile device. When the user press MENU button, it
will show “Record a video” and “Exit”. If the user touches
the “Record a video” button, a camera viewfinder will be
displayed (Figure 14(b)) and the user can then record, stop,
cancel or edit a video clip via this interface just like they

(a) Main menu (b) Geo-Recorder

Figure 14: Geo-Video Android application proto-
type.

usually do in the G1’s default camera view. However, our
system additionally starts to record geo-referenced informa-
tion from the GPS and the digital compass and these infor-
mation is also shown on the phone screen. The sensor data
is stored to the device at the time when the video is saved
to the camera roll and flash disk. Next, an uploading screen
guides the user through the next step. A destination URL
is displayed (which can be changed) and either the sensor
information only or both the sensor and video files can be
uploaded. As mentioned earlier, saved videos can be up-
loaded at a later point in time directly from the main menu
screen.

6. RELATEDWORK
There exist only a few systems that associate a large set

of sensor values with mobile video. Most of the existing
work is limited to images and location coordinates, without
considering compass direction. There is no specific work
investigating energy issues for mobile video transmissions.
Below we provide an overview of some of the existing work.

6.1 Digital Media with Geo-Locations
Associating GPS coordinates with digital photographs has

become an active area of research [17]. There has been re-
search on organizing and browsing personal photos accord-
ing to location and time. Toyama et al. [21] introduced a
meta-data powered image search and built a database, also
known as World Wide Media eXchange (WWMX), which in-
dexes photographs using location coordinates and time. A
number of additional techniques in this direction have been
proposed [13, 15]. There are also several commercial web
sites (e.g., Flickr, Woophy) that allow the upload and nav-
igation of geo-referenced photos. All these techniques use
only the camera geo-coordinates as the reference location
in describing images. We instead propose a much broader,
sensor-based description of video scenes. More related to our
work, Ephstein et al. [6] proposed to relate images with their
view frustum (viewable scene) and used a scene-centric rank-
ing to generate a hierarchical organization of images. Some
approaches [20, 11] use location and other meta-data, as well
as text tags associated with images, and the images’ visual
features to generate representative candidates within image
clusters. Geo-location is often used as a filtering step. Our
work considers a much more comprehensive scenario that is
concerned with continuous sensor-streams of mobile videos,
which are dynamically changing over time.



6.2 Energy Management on Mobile Devices
Limited battery power has been a fundamental problem in

the field of mobile computing. A great deal of work has fo-
cused on energy management on mobile devices. Viredaz et

al. [22] surveyed many energy-saving techniques for hand-
held devices in terms of improving the design and coop-
eration of system hardware, software as well as multiple
sensing sources. Wang et al. [23] proposed a hierarchical
approach for managing sensors in order to achieve human
state recognition in an energy efficient manner. The SeeMon
system [10] is a scalable and energy-efficient context moni-
toring framework for sensor-rich and resource limited mobile
environments. Authors in [16] have drawn attention to the
tradeoff between energy and location accuracy. Our work
on mobile geo-referenced video management achieves energy
efficiency by separating the descriptive sensor information
from the bulky video data and by delaying the transmission
of the actual video.

6.3 Video Sensor Networks
A few video-based sensor networks have been developed

for monitoring and surveillance. Panoptes [7] used a camera
device based on a Intel StrongARM PDA platform with a
Logitech Webcam as the vision sensor and 802.11b for wire-
less communication. SensEye [12] is a multi-tier network of
heterogeneous wireless nodes and cameras. Low-power cam-
eras, which are capable of taking low-resolution images, form
the bottom level. When an object of interest is identified,
these sensors trigger cameras at a higher tier on demand to
take better images. In contrast, our proposed system uses
off-the-shelf mobile devices. This provides mobility and can
also simplify the deployment burden.

7. CONCLUSIONS
Capturing video in conjunction with descriptive sensor

meta-data allows a new strategy of uploading the sensor
information in real-time while transmitting the bulky video
data on demand later. This key idea can reduce the trans-
mission of uninteresting videos and hence significantly lower
the energy consumption in battery-powered mobile camera
nodes. In our study we presented the design and proto-
type implementation of a mobile video management system
that uses smartphones as mobile video sensors. We demon-
strated the energy efficiency of our system with simulations
and the experimental results showed that our technique can
substantially prolong the device usage time, while ensuring
a low search latency. We expect this method to be useful
for a wide range of novel applications.
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