
An Efficient Approach to Finding Potential Products Continuously

Yu-Ling Hsueha, He Mab,∗, Chia-Chun Lina, Roger Zimmermannc

aDept. of Computer Science & Information Engineering, National Chung Cheng University, Taiwan
bSino-Dutch Biomedical Information and Engineering School, Northeastern University, Shenyang, China, 110169

cSchool of Computing, National University of Singapore, Singapore

Abstract

Skyline points and queries are important in the context of processing datasets with multiple dimensions. As skyline points can
be viewed as representing marketable products that are useful for clients and business owners, one may also consider non-skyline
points that are highly competitive with the current skyline points. We address the problem of continuously finding such potential
products from a dynamic d-dimensional dataset, and formally define a potential product and its upgrade promotion cost. In this
paper, we propose the CP-Sky algorithm, an efficient approach for continuously evaluating potential products by utilizing a second-
order skyline set, which consists of candidate points that are closest to regular skyline points (also termed the first-order skyline
set), to facilitate efficient computations and updates for potential products. With the knowledge of the second-order skyline set,
CP-Sky enables the system to (1) efficiently find substitute skyline points from the second-order skyline set only if a first-order
skyline point is removed, and (2) continuously retrieve the top-k potential products. Within this context, the Approximate Exclusive
Dominance Region algorithm (AEDR) is proposed to reduce the computational complexity of determining a candidate set for
second-order skyline updates over a dynamic data set without affecting the result accuracy. Additionally, we extend the CP-Sky
algorithm to support the computations of top-k potential products. Finally, we present experimental results on data sets with various
distributions to demonstrate the performance and utility of our approach.

Keywords: Skyline Queries, Query Processing, Multi-dimensional Databases, Data Management.

1. Introduction

Skyline queries have made a huge contribution to data filter-
ing over large data sets with multiple dimensions for decision
makers. The formal definition of skyline queries is given as
follows: given a data set P in d-dimensional space, a distinct
object set S is returned, where S contains all objects pi which
are not dominated by another object p j in P. We say p1 domi-
nates p2 (p1 ≺ p2 for short), if and only if p1 is better than or
equal to p2 on all dimensions, and p1 is strictly better than p2
on at least one dimension. The early work on skyline queries
assumed that data objects are static [26, 28]. Subsequently, the
existing approaches [12, 16, 27, 38] have addressed the efficient
update support for skyline queries over moving objects with d
dynamic dimensions, each of which represents a spatial or non-
spatial value. As skyline points can be viewed as marketable
products, one may also consider the non-skyline points that are
highly competitive with the current skyline points, and we term
such non-skyline points as potential products. We use the fol-
lowing examples to describe the motivation of our key idea.

Example 1. (Finding Potential Products) For hotel customers,
the final decision regarding choosing hotels is made based on

∗Corresponding author: mahe@bmie.neu.edu.cn
Email addresses: hsueh@cs.ccu.edu.tw (Yu-Ling Hsueh),

mahe@bmie.neu.edu.cn (He Ma), lcc103p@cs.ccu.edu.tw (Chia-Chun
Lin), rogerz@comp.nus.edu.sg (Roger Zimmermann)

multiple hotel attributes (e.g., lower price, closer to the city
center, higher rating). With the assistance of skyline queries,
the candidate hotels are provided, while most of the undesir-
able hotels are filtered out, even those with very competitive
attributes. In Table 1, the skyline points are {p1, p2}. However,
one may also observe that p5, eliminated by p2 during the sky-
line query processing, is very competitive with p2. When the
two skyline points p1 with Price = $209, Distance (to the city
center) = 0.1 miles, and Rating = 3, and p2 with Price = $89,
Distance = 0.8 miles, and Rating = 4 are provided, p5 might
also be a good alternative for the customer, because the price
of p5 is only $1 more than that of p2 and it is a bit farther to the
city center. From another perspective, a hotel owner might be
seeking an opportunity to increase business sales. By search-
ing for the potential products, the owner may adjust the price
or other adjustable attributes of the hotel to increase its com-
petitiveness. We refer to p5 as a potential product, because the
cost of upgrading p5 to a marketable product is minimal among
other non-skyline products.

Example 2. (Finding Potential Products Continuously) For
stock traders, when they choose to either buy or sell a certain
stock, multiple attributes (e.g., current stock price, number of
shares they own, binding price and number of shares offered
by other traders, company news, etc.) affect their final deci-
sions. Similar to Example 1, stock traders also need to mon-
itor these potential products and buy/sell the shares once they
change to become skyline products, in order to earn maximum

Preprint submitted to Information Systems August 12, 2016



Table 1: An example of finding potential products using a hotel data set. The
skyline points are {p1, p2}

Hotel ID Price Distance Rating
p1 $209 0.1 miles 3
p2 $89 0.8 miles 4
p3 $95 5 miles 2
p4 $250 0.5 miles 3
p5 $90 1.1 miles 4

profits. Since these attributes are updated frequently, continu-
ously finding potential products for an extended period of time
is significantly important for stock traders.

A promotion [11, 20, 29–31] is a further action to upgrade a
potential product (i.e., to become a skyline point), when the
business owners are willing to adjust one or some of its at-
tributes. One must consider the promotion cost, which is the
least cost to perform a promotion operation.

Example 3. (Promotion) Consider that a promotion operation
is conducted on p5. The promotion cost for p5 is taken by de-
creasing the price (an adjustable attribute) by at least $1 + ϵ to
turn p5 into a marketable product, where ϵ is a small positive
value. For example, the price of p5 is set to $88.99, the largest
price strictly better (smaller) than $89. The final marketable
products (i.e., skyline points) after the promotion operation are
{p1, p2, p5}.

The objective of the proposed algorithm is to continuously
retrieve the potential products (i.e., non-skyline data points)
with the minimal promotion cost from a dynamic data set, as
some of the data attributes change over time. These changes
are caused by real time customer feedback (e.g., ratings) or the
adjustments made by the business owners for balancing the cost
and profit. Finding potential products is useful for further deci-
sion making, especially when investigating the potential prod-
ucts for promotion. To achieve an efficient computation of po-
tential products continuously, the following challenges must be
addressed: (1) an effective query result update mechanism is
needed to provide a short response time when reporting the cur-
rent query results, and (2) an efficient strategy to reduce the
search space dimensionality is also required.

Peng et al. [29–31] have addressed a similar idea for find-
ing potential products. Their main emphasis is to find potential
“stars” in social networks whose graphical data are transformed
into a coordinate system before the search is conducted. Sev-
eral pruning techniques, such as Skyboundary and Infra skyline,
have been designed to reduce the search space; however, heavy
computation is still incurred in order to retrieve the alternate
skyline set, and the performance degrades when processing a
large data set. Furthermore, none of these approaches consider
dynamic data, regardless of the fact that data attributes in social
networks change frequently. The use of a Skyband [27] query
helps to find a set of non-skyline points which are dominated by

at most k points. The potential products, however, have no di-
rect association with the number of dominated points. In other
words, the points in a 1-Skyband are not guaranteed to contain
the potential product, which might be dominated by several sky-
line points. As a result, one must perform k-Skyband, where k
is set to be as large as the number of skyline points to ensure
finding the potential products correctly.

In this paper, to efficiently answer the queries of potential
product computations from a dynamic data set, we utilize the
second-order skyline as a candidate set such that the query pro-
cessor can avoid accessing the entire dynamic data set with high
dimensionality. An example of finding potential products is
shown in Figure 1, where the black solid points are the sky-
line set (i.e., the first-order skyline, S 1 = {s1

1, s
2
1, s

3
1, s

4
1}), and

the solid grey points represent the second-order skyline set (S 2
for short). The potential product with the minimal promotion
cost is represented by s5

2 ∈ S 2, as an arrow from s5
2 indicates

the minimal cost to promote s5
2. The use of potential product

computations enables a user to search for such potential prod-
ucts that are highly competitive with the existing marketable
products. A promotion operation (i.e., reducing the dimen-
sional values) can be conducted afterwards to upgrade the po-
tential products. The second-order skyline is utilized as a fun-
damental technique to answer such a query over dynamic data
sets and enable to continuously maintain the efficient updates of
S 1 and S 2 sets. We propose the Continuous Potential Skyline
algorithm (CP-Sky for short) in this paper. We show that the
second-order skyline technique, which avoids expensive calcu-
lations on large data sets, facilitates the potential product com-
putations as well as the first-order skyline updates, which need
to be completed first before finding potential products, because
the promotion cost is computed based on the first-order skyline.

1

1

2

8

7

6

5

4

3

2 9876543

9

Dimension 1

D
im

e
n

s
io

n
 2

1

1
s

3

1
s

2

1
s

4

1
s

5

2
s

1

2
s

3

2
s

Figure 1: An illustration of the potential product: s5
2.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the related work. We formally define a poten-
tial product and address the problem statement of our work in
Section 3. Sections 4.1 and 4.2 present the details of the base-
line algorithm and our proposed approach to compute potential

2



products, respectively. In particular, we detail the updated tech-
nique for S 1 and S 2 in Section 4.2.1, and the CP-Sky algorithm
in Section 4.2.2. The CP-Sky algorithm is further extended to
support the computations of top-k potential products, and the
details of which are described in Section 4.2.3. We extensively
verify the performance of our technique in Section 5, and finally
conclude with Section 6.

2. Related Work

Börzsönyi et al. [5] proposed the straightforward non-
progressive Block-Nested-Loop (BNL) and Divide-and-
Conquer (DC) algorithms for static skyline processing. The
BNL approach recursively compares each data point with
the current set of candidate skyline points, which might be
dominated later. BNL does not require data indexing or sorting.
The DC approach divides the search space and evaluates the
skyline points from its sub-regions, respectively, followed by
merge operations to evaluate the final skyline points. Both
algorithms may incur many iterations and are inadequate for
on-line processing. Tan et al. [34] presented two progressive
processing algorithms: the bitmap approach and the index
method. The bitmap approach encodes dimensional values of
data points into bit strings to speed up the dominance com-
parisons. The index method classifies a set of d-dimensional
points into d lists, which are sorted in increasing order of the
minimum coordinate. The index scans the lists synchronously
from the first to the last entry. With the pruning strategies, the
search space is reduced.

The nearest neighbor (NN) method [15] indexes the data set
with an R-tree. NN utilizes nearest neighbor queries to find the
skyline results. The approach repeats the query-and-divide pro-
cedure and inserts the new partitions that are not dominated by
some skyline point into a to-do list. The algorithm terminates
when the to-do list is empty. Similar to the NN method, Papa-
dias et al. proposed the skyband query [27], where a k-skyband
query reports a set of points dominated by at most k points. The
skyband query is usually used to process top-k queries over dif-
ferent datasets. For example, Gong et al. [8] used the k-skyband
partition to complete the top-k query. The original dataset is
partitioned into two sub-datasets depending on whether they
fall into k-skyband or not. Another study [23] utilized the sky-
band to process the top-k query over incomplete datasets, i.e.,
data missing several dimensions. They designed multiple struc-
tures such as expired skyline, shadow skyline, and thickness
warehouse to improve the searching performance. The branch
and bound skyline (BBS) algorithm [26] traverses an R-tree to
find skyline points. Although BBS outperforms the NN ap-
proach, the performance can deteriorate due to many unnec-
essary dominance checks. In order to improve the efficiency of
searching for the skyline and pruning unnecessary search paths,
Bartolini et al. [2] proposed the S aLS a algorithm to pre-sort the
input data and to minimize the data accesses using a monotone
limiting function. Another study [4] that combines collabora-
tive filtering and the skyline operator was presented to generate
a skyline according to personalized features and requirements.

Bartolini et al. [1] proposed a distributed access model that pro-
cesses m sub-queries to find an overall best matching result by
integrating the results of each sub query that deals with only a
subset of the query features. The definition of the second-order
skyline was firstly introduced and the Best operator was de-
signed to search for a certain-order skyline (e.g., first-order sky-
line, second-order skyline). Furthermore, the MPO and iMPO
algorithms were presented to efficiently process data sets with
partial orders and to return the result objects ordered according
to user-specified preferences of the skyline attributes. Trim-
ponias et al. [36] introduced a distributed approach to vertically
reduce the search complexity by proposing a two-phase frame-
work. To solve size constrained skyline queries, Lu et al. [21]
proposed the skyline ordering algorithm to form a skyline-based
partition which is used to facilitate the computation of size con-
straints.

Many of the recent techniques aim to provide continuous
skyline support for moving objects and data streams. Although
the existing static methods can be applied to obtain continu-
ous results by repeatedly performing them over an interval of
time, the trade-off lies in compromising either the accuracy or
efficiency during query processing. If the query interval is too
short, the system incurs high computational cost. On the con-
trary, if the interval is too long, the query results are not accurate
since some data updates might not be detected by the system.
To achieve both accuracy and efficiency, it is essential to apply
continuous algorithms to deal with dynamic data sets. Lin et
al. [18] presented n-of-N skyline queries against the most re-
cent n of N elements to support on-line computation against
sliding windows over a rapid data stream. Morse et al. [24]
proposed a scalable LookOut algorithm for efficiently updating
the continuous time-interval skyline. Sharifzadeh et al. [33] in-
troduced the concept of Spatial Skyline Queries (SSQ). Given a
set of data points P and a set of query points Q, SSQ retrieves
those points of P which are not dominated by any other point
in P considering their derived spatial attributes with respect to
query points in Q. A continuous skyline query processing strat-
egy was presented in [12] with a kinetic-based data structure.
However, providing prompt query responses was not consid-
ered in the design. A suite of novel skyline algorithms based on
a Z-order curve [7] was proposed in [16]. Among the solutions,
ZUpdate facilitates incremental skyline result maintenance by
utilizing the properties of a Z-order curve. In our early work [9],
we proposed the ESC algorithm to efficiently manage the query
results by delegating the time-consuming skyline update com-
putations to another independent procedure, which is processed
after the query processor reports the latest skyline query results.
The key idea is to maintain a second-order skyline set which is
a skyline candidate set pre-computed when a traditional skyline
point requests an update. The approach had also been imple-
mented as a system framework presented in [10]. Other related
techniques can be found in the literature [3, 6, 19, 25, 35, 38].

Chan et al. [6] presented three algorithms for evaluating sky-
line queries with partially ordered attributes. Their solution
transforms each partially ordered attribute into a two-integer
domain value, which allows the users to utilize index-based al-
gorithms to compute skyline queries in the transformed space.

3



However, all of the techniques proposed in [6] have limited
progressiveness and pruning abilities. In real applications, dy-
namic preferences for categorical attributes are more common
than a fixed ordering for skyline query evaluation. One straight-
forward solution is to enumerate all of the possible preferences
and to materialize all of the results of the preferences; however,
the costs of a full materialization are usually prohibitive. There-
fore, Wong et al. [37] proposed a semi-materialization method
named the IPO-tree search, which stores only partial useful
results. With these partial results, the result of each possible
preference can be efficiently returned. However, an IPO-Tree
only considers very simple totally-order-like user preferences.
Sacharidis et al. designed a topological sort-based mechanism
called topologically-sorted skylines (TSS) [32], which involves
a novel dominance check function to eliminate false hits and
misses. In addition, TSS can handle dynamic skyline queries.
Zhang et al. [39] extended the lattice theorem and an off-the-
shelf skyline algorithm and then designed a mechanism that
employs an appropriate mapping of a partial order to a total
order.

In [13], Jang et al. used the Manhattan distance to evaluate
the cost between a skyline point and a query point. The skyline
minimum vector was utilized to promote a non-skyline point to
a new skyline point. Kim et al. [14] designed a grid-based cell
searching algorithm to prune out unnecessary searches. Based
on this structure, they sorted the cells in ascending order ac-
cording to the cost and found the cheapest updating region in
the early stage. Later, Peng et al. [29–31] proposed a series of
works on the topic of skyline promotion. In [31], the authors
designed a pruning mechanism for the potential rising stars re-
trieved from a social network. First, the social network graph
is transformed into a coordinate system by which they tried to
improve the inefficiency of the brute force algorithm which was
adopted in [29] for retrieving potential stars. Based on the char-
acteristics of a skyline set, the designed approach adds a pro-
motion boundary presented in [31] to achieve a boost to the
search for the potential stars. In [31], although optimization by
adding a boundary achieves better performance, the approach
still needs to search a large data space for the non-skyline points
set, which is not a promising solution. Therefore, reducing the
search space has become a key step. In order to reduce the
designated search space, an Infra skyline computation for the
skyline promotion was designed. The main emphasis of the
Infra-skyline design is to retrieve another skyline by excluding
the original skyline. However, this approach still incurs heavy
computation to retrieve the alternate skyline set, and the per-
formance degrades when processing a large data set. Lu and
Jensen [20] proposed a probing algorithm and a spatial-join ap-
proach to solve the top-k products updating problem. The R-
tree is used to index both the competitive objects and the up-
grading candidates so as to estimate the lower bound upgrading
cost. As a result, the spatial-join approach then returns the in-
cremental results on-the-fly before testing all the objects in the
dataset. Another related approach on a similar topic, named
skyline upgrade, was presented in [11], which tried to solve
the skyline distance by using a space partitioning mechanism to
enhance the original dynamic programming technique. How-

ever, all the aforementioned studies differ from the main goal
of this research which is to retrieve potential products continu-
ously from a dynamic data set while providing quick responses
to the users. Therefore, we utilize the concept of the ESC algo-
rithm [9] in this paper for efficient updates over moving objects
so as to further deal with the computations of top-k potential
products continuously.

3. Notations and Problem Definitions

We formally define potential products in this section. We first
introduce the notations of symbols used throughout the paper as
shown in Table 2. Note that some symbols may be used as pre-
fixes and their meanings are to be explained when used. The
definitions of potential product, promotion cost (pcost), and
skyline promotion operation are defined first. Subsequently,
the problem statement is addressed to clarify the purpose of our
work. Throughout this paper, the terms “skyline points”, “first-
order skyline points”, and “marketable products” are used in-
terchangeablly. A potential product is a non-skyline point with
the minimal promotion cost among all other non-skyline points.

Table 2: Symbols and functions.
Symbols Descriptions
P Number of data objects, where each point

in P, e.g., p1 = (x1, x2, . . . , xd) or p2 =

(y1, y2, . . . , yd), contains the d dimensional
values.

d Number of dimensions.
p1 ≺ p2 p1 dominates p2.
p1 ⊀ p2 p1 does not dominate p2.
S 1 and m S 1 is the first-order skyline point set (tra-

ditional skyline query result set). S 1 =
{s1

1, s
2
1, . . . , s

m
1 }, where m is the size of S 1.

S 2 and m′ S 2 is the second-order skyline point set. S 2
= {s1

2, s
2
2, . . . , s

m′
2 }, where m′ is the size of S 2.

EDR(si
1) Exclusive dominance region of si

1.
N and ni N = P − S 1 is a non-skyline set, consisting

of {n1, n2, . . . , nℓ}, where each ni ∈ N is a
non-skyline point and ℓ is the size of N.

Cni [1 . . . d] Dimensional promotion cost of dimension 1
to d of ni.

ni.pcost Promotion cost of a non-skyline point ni ∈
N.

corw(ni) A function to return the w-th dimensional
value of ni.

ϵ A user-specified small positive value that
makes the to-be-promoted product com-
pletely escape from the dominance of sky-
line points.

D(si
1) A dominance set containing a group of S 2

points which are dominated by si
1 to substi-

tute a removed or moving si
1 point.

Definition 1. (A Potential Product)
A potential product ni exists among N = {n1, ..., nℓ}, where N

4



is a non-skyline set (i.e., N = P − S 1), and ℓ is the size of
N. The following condition holds: ni.pcost ≤ n j.pcost, where
ni, n j ∈ N.

Definition 2. (Promotion Cost: pcost)
A promotion cost pcost is the minimal cost for upgrading a

non-skyline point ni to a skyline point. Let S 1′ ⊆ S 1 be a set of
skyline points that dominate ni ∈ N.

The list of dimensional promotion cost for all dimensions
is denoted by Cni = {c1, c2, ..., cd}, which is preserved for the
promotion operations defined in Definition 3. Cni [w], which
is the wth element in the Cni list, represents the dimensional
promotion cost for dimension w. Therefore, the promotion cost
(as a squared distance) of ni can be measured by Equation 1.

ni.pcost =
d∑

w=1

Cni [w]2 (1)

Specifically, the promotion cost of ni is given by the follow-
ing equations:

ni.pcost =

min(minCost,minCost′) : if |S 1′| > 1
minCost∗w : otherwise.

(2)

where

minCost =
d

min
w=1

(max(corw(ni)− corw(s j
1)+ ϵ),∀s j

1 ∈ S 1′)2 (3)

minCost′ =
d∑

w=1

min(corw(ni) − corw(s j
1) + ϵ,∀s j

1 ∈ S 1′)2 (4)

minCost∗ =
d

min
w=1

(corw(ni) − corw(s j
1) + ϵ)2 (5)

Equation 2, equivalent to Equation 1 and used for measuring
Cni [1 . . . d], shows the promotion cost for a non-skyline point ni.
There are two cases in Equation 2 to determine the promotion
cost. Assume that S 1′ ⊆ S 1 is a set of skyline points that dom-
inate ni. When ni is dominated by multiple skyline points (i.e.,
|S 1′| > 1), ni.pcost is set to the minimal cost chosen between
minCost (Equation 3) and minCost′ (Equation 4). minCost is
set to the minimal cost of the maximum difference between ni

and s j
1 ∈ S 1′ for each dimension among all skyline points in S 1′

as shown in Equation 3, where ϵ is a user-specified small pos-
itive value that makes the to-be-promoted product completely
escape from the dominance of skyline points in S ′. Similarly,
minCost′ is the minimal cost by calculating the minimal differ-
ence between ni and s j

1 ∈ S 1′ for each dimension among all
skyline points in S 1′ as shown in Equation 4. When ni is only
dominated by one skyline point s j

1 (i.e., |S 1′| = 1), ni is located
in an exclusive dominance region [27] (EDR). In such a case,
the promotion cost is set to corh(ni)−corh(s j

1)+ ϵ, when dimen-
sion h satisfies the minimal difference among all other dimen-
sions. As a result, we set minCost∗ to corh(ni) − corh(s j

1) + ϵ,
and set this value to Cni [h]. Otherwise, the rest of the other
promotion cost Cni [w] is set to 0, ∀w and w , h.

The example in Figure 2 illustrates the two cases of promo-
tion cost, where the black solid points are the first-order skyline
points. For the first case, in Figure 2(a), n3 is dominated by
more than one first-order skyline point. Based on Equation 3,
we first obtain the maximum difference λmax

x = n3.x − s1
1.x for

the x dimension, because it is larger than n3.x − s2
1.x. Next, we

obtain λmax
y = n3.y − s2

1.y as the maximum difference for the y
dimension. Therefore, minCost is set to λmax

x + ϵ, because it is
smaller than λmax

y + ϵ. The procedure then calculates minCost′

based on Equation 4. In Figure 2(b), for each dimension, we
obtain the minimal difference among s1

1 and s2
1, which are the

two points dominating n3. The minimal difference for the x
dimension is obtained by n3.x - s2

1.x + ϵ, and the minimal dif-
ference for the y dimension is obtained by n3.y - s1

1.y + ϵ. We
sum up the squared difference of each dimension to obtain the
minimal cost λ′, and set minCost′ = λ′. Because minCost′ is
smaller than minCost, the promotion cost is set to minCost′.
Furthermore, Cn3 [x] = λ′x + ϵ and Cn3 [y] = λ′y + ϵ. For the
second case, in Figure 2(c), n4 residing in an EDR (the gray-
shaded area) is only dominated by one first-order skyline point;
therefore, among all dimensions, the minimal difference indi-
cated by an arrow (i.e., minCost∗ = λ∗x+ ϵ) is obtained based on
the x dimension. We then set Cn4 [x] = λ∗x + ϵ and Cn4 [y] = 0.
Similarly, the minimal difference for n1 is obtained based on the
y dimension.

Algorithm 1 illustrates the calculation of the promotion cost
and Cni for a non-skyline point following Equations 2 to 5.
When the non-skyline point ni is dominated by more than one
first-order skyline point, there are two cases for the promo-
tion cost computation. One is: for each individual dimension,
the maximal value (denoted as cost+w) among the differences
between ni and each S 1 point that dominates ni (Lines 7−8).
The other is: for each individual dimension, the minimal value
(denoted as cost−w) among the differences between ni and each
S 1 point that dominates ni (Lines 9−10). The promotion cost
minCost′ is then the sum of C−ni

[w]2 for all the dimensions
(Line 11). The promotion cost minCost is then the square
of the minimal value of the set C+ni

among all the dimensions
(Line 12). Hence, the promotion cost is the minimal value be-
tween minCost and minCost′. In Lines 13−15, minCost is the
promotion cost and the promotion cost for each dimension of
Cni is set to 0 and Cni [h] is set to minCost, where h satisfies the
minimal difference among all other dimensions. Lines 16−18
show the other case. minCost′ is the promotion cost; therefore,
for all w = 1 to d, Cni [w] is set to C−ni

[w]. Otherwise, we calcu-
late the difference between ni and the only S 1 point dominat-
ing ni for each dimension, and treat the square of the minimal
value among all dimensions as the promotion cost minCost∗ in
Lines 19−24. The promotion cost for each dimension of Cni

is set to 0 and Cni [h] is set to minCost∗, where h satisfies the
minimal difference among all other dimensions.

The promotion costs defined in our paper (Definition 2) are
different from the upgrading cost [20] and the skyline dis-
tance [11]. In [20], the upgrading cost is computed based on
a product cost function, which was not specifically defined be-
cause the authors stated that there may be different ways to de-
fine a product cost function that captures the overall cost of

5



2
n
max

x

4
n

3
n

1
n

max

y

1

1
s

2

1
s

3

1
s

(a) minCost

4
n

2
n

3
n

1
n

'

x

'

y

'

1

1
s

2

1
s

3

1
s

(b) minCost′

1

1
s

2

1
s

3

1
s

4
n

2
n

3
n

1
n

*

x
*

y

(c) minCost∗

Figure 2: Examples of promotion cost of Equation 2.

Algorithm 1: pcost(ni)
1 Initialization:

let ni be a non-skyline point
S 1′ be a set of skyline points that dominate ni, s j

1 ∈ S 1′

2 pcost = 0, minCost =∞, minCost′ = 0, minCost∗ = 0
3 C+ni

[1 : d] = 0, C−ni
[1 : d] =∞, Cni [1 : d] = 0

4 if (sizeof(S 1′) > 1) then
5 for (w = 1 to d) do
6 for (∀s j

1 ∈ S 1′) do
7 if (corw(ni) − corw(s j

1) > C+ni
[w]) then

8 C+ni
[w] = corw(ni) − corw(s j

1) + ϵ

9 if (corw(ni) − corw(s j
1) < C−ni

[w]) then
10 C−ni

[w] = corw(ni) − corw(s j
1) + ϵ

11 minCost′ += C−ni
[w]2

12 minCost = minw=1···d C+ni
[w]2, where k finds the min value

13 if (minCost < minCost′) then
14 Cni [w] = 0,∀w = 1 to d, and Cni [k] = minCost
15 pcost = minCost

16 else
17 Cni [w] = C−ni

[w]2,∀w = 1 to d
18 pcost = minCost′

19 else
20 for (w = 1 to d) do
21 C−ni

[w]2 = corw(ni) − corw(s j
1) + ϵ

22 minCost∗ = minw=1···d C−ni
[w]2, where k finds the min value

23 Cni [w] = 0,∀w = 1 to d, and Cni [k] = minCost∗

24 pcost = minCost∗

25 ni.pcost = pcost

manufacturing the products. The upgrading cost is generally
obtained by fp(t′) − fp(t), where fp is a product cost function,
t is a potential product and t′ is a skyline point after t is up-
graded. In other words, the upgrading cost is the increased
cost to upgrade t. In our work, on the other hand, we basi-

cally generalize and quantify the promotion cost. We have de-
fined the promotion cost as the least cost to upgrade a potential
product. We have specifically defined the promotion cost in
Equation 2, which is fundamental to obtaining the minimum
difference among all the skyline points to promote the potential
product plus a small positive value ϵ.

As for the skyline distance in [11], a linear cost function was
adopted to evaluate the cost of moving a non-skyline point q to
a new position q′ so that q is not dominated by any other point in
the skyline set. The skyline distance is defined as the cost in the
form of cost(q, q′) =

∑d
i=1 wi(q′.Di−q.Di), where wi is a weight

for dimension i, representing the level of importance of the di-
mension, d is the total number of dimensions, and (q′.Di−q.Di)
represents the difference between the dimensional values of q
and q′. Therefore, the skyline distance is basically the summa-
tion of each weighed difference between the dimensional value
of q and q′. Similarly, our promotion cost is generally a squared
distance between q and q′. Although the definition of the pro-
motion cost used to serve the purpose of computing potential
products in the end is similar, we have clearly defined and pro-
vided an algorithm to compute the promotion cost in our paper.

Definition 3. (Promotion: f (ni))
Given a non-skyline point ni, a promotion can be performed by
corw(ni) − Cni [w], where w = 1 to d for each dimension and
corw(ni) returns the wth dimensional value of ni.

A promotion function f (ni) implemented based on the above
definition returns a newly promoted skyline point for a potential
product. The following lemma and proof of correctness support
this process.

Lemma 1. Given the current skyline set S 1={s1
1, s

2
1, . . . , s

m
1 },

and a newly promoted skyline point s′1, resulting from the pro-
motion operation (Definition 3), S 1 must contain s′1. That is, s′1
is the final skyline point after promotion.

Proof: (By definition) Since s′1 is a newly promoted skyline
point, s′1 cannot be dominated by another point in P. Therefore,
the S 1 set must contain s′1.

6



Problem Statement
The problem statement for our work is described as follows.

Given a set of dynamic data set P and a time period △t, a pair
of (ni, t j) is returned for each time period between t j−1 and t j,
where ni ∈ P − S 1 is a top potential product with the minimal
promotion cost (based on Equation 2), and t j−1 and t j are two
consecutive time stamps within △t.

arg min
ni∈P−S 1

ft j (ni)

where f (ni) indicates the promotion function at a given time
stamp t j ∈ △t.

4. Finding Potential Products Continuously

The general setup of the problem consists of a set of dynamic
data objects with d dimensions. Moving objects can freely ma-
neuver in an unrestricted and unpredictable fashion, meaning
that their parameters may arbitrarily change their values. As
a result, existing approaches have addressed designing a query
processor with the capability of processing skyline queries con-
tinuously when a set of dynamic data is given. In reality, in-
teresting features can be further discovered beyond the skyline
set. In particular, we term the continuous potential products
retrieved from the non-skyline set as the products that would
require the minimal cost to be promoted as marketable prod-
ucts (i.e., become skyline points). For example, investors might
seek profitable stocks to invest in, and a potential stock could be
a good candidate. For health care, physicians would want to dis-
cover the patients who have test screening results that are close
to approaching high risk levels. In the following sections, we
first introduce the baseline algorithm. Since the potential prod-
ucts are close to the existing skyline points in nature, we adopt
a range-based algorithm as the baseline approach, which uses
range queries to look for surrounding non-skyline points. Next,
we design a search algorithm termed CP-Sky, which efficiently
updates the query results as the data attributes change over
time, and retrieves potential products by utilizing the second-
order skyline set, which is essentially similar to skyline order-
ing in [21]. However, we consider a dynamic data set which im-
plies that the second-order skyline might be different from time
to time. Therefore, we propose an update strategy to efficiently
update the S 1 and S 2 sets, which need to be maintained always
up-to-date so that the potential products can be accurately re-
trieved continuously by the algorithms we developed based on
the S 1 and S 2 sets. The CP-Sky algorithm greatly reduces the
search space to look for potential products. Furthermore, we
extend our approach to compute the top-k potential products
ordered by the promotion cost in ascending order.

4.1. Range-based Query Processing

In this section, we introduce a baseline algorithm to find the
potential product shown in Algorithm 2. The basic idea is to
search around the skyline points and find the non-skyline point
with the minimal promotion cost as the potential product. Ini-
tially, the search radius of a range query along the skyline is

set to r, and it is set to be doubled in each search round if no
non-skyline point is found. The search procedure is not termi-
nated until at least one non-skyline point is found or all points
have been searched. The initial value of r has an impact on the
number of promotion cost calculations and the search rounds.
For example, when r is set to a small value, the range query can
possibly be processed several times in order to find the poten-
tial product. Conversely, the range query might involve a large
number of promotion cost calculations in the first round, when
r is set to a large number.

The procedure is continuously performed and the potential
product is re-evaluated only when a point in P changes its one
or more dimensional values (Lines 2−3). The skyline set is re-
trieved from the typical BBS algorithm (Line 4) [26]. Ideally,
a range query needs to be processed around the skyline points
(Figure 3(a)). In the skyline query, the exact query region is
shown in Figure 3(b). However, in practice, considering the
drawback between the value of r and the search cost, we ran-
domly choose one skyline point (e.g., s3

1 in Figure 3(c)), and
find its nearest neighbor (i.e., n3). The Euclidian distance be-
tween s3

1 and n3 is then set as the initial value of r (Lines 5−7
in Algorithm 2). Hence, the search region S R can be illustrated
with the shaded region (shown in Figure 3(c)), where all the
non-skyline points, whose distance to the skyline points is not
larger than r, are covered. These non-skyline points within S R
are considered as the candidate set and are inserted into the po-
tential product set named cpSkyLine. This method guarantees
that the potential product can be retrieved from the first search
round and no further search is necessary. The points in cpSky-
Line are then sorted by promotion cost in ascending order and
the potential product with the minimal promotion cost is the
first element (Lines 14−15). This algorithm can be easily mod-
ified to compute the top-k potential products. In Line 6, a k-NN
query is performed instead to obtain the kth nearest neighbor for
computing the search radius (i.e., the distance between sr

1 and
the kth nearest neighbor). Note that the calculation of the pro-
motion cost follows the rules stated in Equations 2 to 5 and is
detailed in Algorithm 1. The drawback of the range-based al-
gorithm is the random selection procedure of one skyline point
and finding its nearest neighbor. The best case is that this near-
est neighbor is exactly the potential product, and hence no other
point will be found within the distance r. Conversely, the worst
case is that this nearest neighbor makes all non-skyline points
be within r of the skyline points. Therefore, the performance of
the range-based algorithm depends on a random procedure and
the data distribution, which is not stable in terms of efficiency.

4.2. CP-Sky Query Processing

In this section, we introduce the CP-Sky algorithm by for-
mally defining the second-order skyline (S 2) utilized for the
efficient computations and updates for potential products. The
major challenging issue of continuous computations of poten-
tial products is to avoid unnecessary dominance checking on
irrelevant data points for query result updates. After observing
the BBS algorithm [26], we deduce that when evaluating the
skyline query results, a set of the second-order skyline points

7



1

1
s

3

1
s

2

1
s

4

1
s

Dimension 1

D
im

e
n

s
io

n
 2

r

(a) The search region of the range query around the
skyline points

r

r

r

r

1

1
s

3

1
s

2

1
s

4

1
s

Dimension 1

D
im

e
n

s
io

n
 2

(b) The exact search region

r

r

r

r

r

3
n

1

1
s

3

1
s

2

1
s

4

1
s

Dimension 1

D
im

e
n
s
io

n
 2

(c) The search region in practice

Figure 3: Illustration of determining the search region S R for the range-based algorithm.

Algorithm 2: Range-based Algorithm(P)
1 Initialization:

let r be the initial search radius for a range query
let cpSkyLine = ∅ be the potential product set
let top cpSkyLine = ∅ be the final potential product

2 while (TRUE) do
3 if (any point in P moves) then
4 S 1 = traditional-BBS(P)
5 randomly choose sr

1 ∈ S 1
6 find NN as the nearest neighbor of sr

1 , NN ∈ (P − S 1)
7 r = dist(sr

1, NN)
8 calculate the search region S R based on r
9 while (cpSkyLine.isEmpty()) do

10 for (∀ni ∈ S R) do
11 if (ni < cpS kyLine) then
12 ni.pcost = proCost(n j)
13 cpSkyLine.insert(ni, ni.pcost)

14 cpSkyLine.sort() /* sorting by ni.pcost
ascendingly */

15 top cpSkyLine← the top element in cpSkyLine

can always be obtained with a little extra work, while retriev-
ing the first-order skyline (S 1) points. We refer to the tradi-
tional skyline query result as the first-order skyline, consisting
of S 1 = {s1

1, ..., s
m
1 }, required to be available for finding potential

products. The second-order skyline S 2 = {s1
2, ..., s

m′
2 } is defined

as follows:

Definition 4. (Second-order Skyline)
A data point p is a second-order skyline point iff there exists
no p′ that dominates p, where p, p′ ∈ (P − S 1) and p , p′.
Informally, all S 2 points are dominated by S 1 and the rest of
the data points (P − S 1 − S 2) are dominated by both S 1 and
S 2.

Notably, as dynamic data sets are considered, we describe
how to efficiently maintain both S 1 and S 2 to support the eval-
uation of continuous query processing for potential products
in Section 4.2.1. Unlike the range-based algorithm (described
in Section 4.1) which processes the query results periodically
without considering previous results for updates, CP-Sky is an
efficient algorithm that utilizes the second-ordered skyline to
handle continuous computations of potential products. Finally,
we detail the CP-Sky algorithm in Section 4.2.2.

4.2.1. Efficient Update Techniques for S 1 and S 2
To handle continuous computations in a dynamic environ-

ment, we must first maintain the S 1 set before finding poten-
tial products, because the promotion cost is computed based on
the first-order skyline. With the knowledge of the second-order
skyline set, the system is able to efficiently find the substitute
skyline point from the S 2 set when it is removed or at least one
value of its dimensions changes. The S 2 set is further utilized
to retrieve the top-k potential products without accessing the
entire dynamic data set with high dimensionality. Therefore, in
this section, we describe how to efficiently maintain both S 1
and S 2 sets to support continuous computations for potential
products.

The features of an S 2 set are as follows: (1) it is a data set
that covers all the new S 1 candidate points, and (2) S 2 might be
a relatively small data subset of the entire data set. Therefore,
the query processor can efficiently update the S 1 set. The size
of the S 2 sets retrieved from different distributed data sets are
shown in our experiments (Section 5.1). An example is shown
in Figure 4. If an S 1 point s2

1 moves to Region I, the search
space for CP-Sky to update the query result only involves the
S 1 and the S 2 sets. In this case, s2

1 remains an S 1 point, but
it dominates s1

1. CP-Sky needs to remove s1
1 from the S 1 set

and s1
1 becomes a new S 2 point, since no existing S 2 point can

dominate it. Due to the movement of s2
1, CP-Sky searches for

new S 1 points from the S 2 set only. Since s2
2 (an EDR data

point which is only dominated by one skyline point) is left un-

8



dominated, s2
2 becomes a new S 1 point and is removed from the

S 2 set.

1

1

2

8

7

6

5

4

3

3

1
s

5

1
s

S1

2

1

1
s

9876543

4

1
s

Region I

9
edge of the universe

S2

1

2
s

2

1
s

2

2
s

Region II

Region III
2

1
s

Dimension 1

D
im

e
n
s
io

n
 2

Figure 4: Examples of first-order (S 1) and second-order (S 2) skyline sets.

To further reduce the search space of visiting S 2 points to
update the skyline query result, we define a dominance set in
Definition 5 for each S 1 point si

1. A dominance set contains
a group of S 2 points which are dominated by si

1 (denoted by
D(si

1)) to substitute a removed or moving si
1 point, when the

dominance relationship has changed. For example in Figure 2,
the dominance set of s3

1 includes s1
2 and s3

2. If s3
1 is removed, the

system only has to check the S 2 points in D(s3
1), instead of all

of the S 2 points. In this example, s3
2 becomes a new S 1 point,

so it is removed from S 2. We formally define a dominance set
and establish Lemma 2 which states that a dominance set must
contain all the necessary S 1 candidate points as follows:

Definition 5. (Dominance Set: D(si
1))

A dominance set (denoted by D(si
1) = {sr

2, ...s
v
2}) of a skyline

point si
1 is an S 2 subset where ∀sw

2 ∈ D(si
1), si

1 ≺ sw
2 .

Lemma 2. Let A be the skyline points extracted from EDR(si
1).

D(si
1) must contain A, which is a subset of D(si

1).

Proof: (By contradiction) Let p ∈ A be a point not included
in D(si

1). This is a contradiction, since p is only dominated by
si

1. Therefore, it must be in D(si
1). It follows that D(si

1) must
contain all points in A.

The CP-Sky algorithm delegates the necessary S 2 mainte-
nance (an independent procedure from S 1 updates) to the query
processor after the S 1 updates are completed. For example, new
S 2 points must be retrieved to substitute s2

2, which is now an S 1
point. To avoid scanning through all of the data points in Re-
gion III for new S 2 points, we propose an approximate exclu-
sive dominance region (AEDR) computation in contrast to a tra-
ditional exclusive dominance region (EDR) computation [27].
The existing work [27, 38] performs time-consuming EDR data
point computations for the skyline query result updates. An
EDR is not usually pre-computed because of the complexity of

the calculation, especially in higher dimensional spaces. In our
algorithm, we utilize the BBS approach to initially compute the
S 1 set, and the S 2 points are computed during the execution
of the modified dominance-checking procedure which runs a
window query to determine a set of candidate skyline points.

The main procedures for skyline updates include
S1Evaluation for the S 1 updates and S2Evaluation for
the S 2 set maintenance. To improve the performance of
S2Evaluation, we introduce the concept of an approximate
exclusive dominance region (AEDR), which helps to reduce
the amortized cost of the S 2 updates without affecting the
result accuracy. When d = 2, the traditional EDR is a regular
rectangle. However, an EDR has an irregular shape in higher
dimensions. For example, in Figure 5(a), si

2 is a skyline point
to be deleted. The EDR of si

2 is an irregular polygon after
deleting the overlapping area with the dominance area of sk

2 and
sv

2. Based on this observation, we can obtain a regular shaped
EDR only when we consider the skyline points which have a
value xh larger than that of si

2 in only one dimension. Because
these points are completely “outside” of the EDR, they can
trim all of the areas that represent the upper dimensional
value xh. Our AEDR may cover non-exclusive regions such
that the data points in AEDR are a super set of those in the
traditional EDR. Therefore, the result accuracy is not affected.
Using the data set in the AEDR to find the substitute skyline
point for a to-be-removed skyline point si

2 must incur higher
computational time than using the data points in the EDR,
because of the correspondingly larger number of data points
in an AEDR. However, in our experimental results, we show
that the amortized cost of the S2 update, including the cost
of AEDR computation and finding a new substitute skyline
point from the AEDR, is mostly lower compared to using a
traditional EDR. Therefore, we can confirm the usability of the
AEDR. The definition of an AEDR is given in Definition 6.

Definition 6. (Approximate EDR: AEDR(si
2))

Let si
2 = (x1, x2, ..., xd), and s j

2 = (y1, y2, ..., yd) be two
S 2 points. AEDR(si

2) = si
2.DomArea − (si

2.DomArea ∩
s j

2.DomArea), if there exists exactly one xh < yh, 1 ≤ h ≤ d,
∀s j

2 ∈ (S 2 − si
2).

For example, in Figure 5(b), si
2 is the skyline to be deleted

and the solid rectangular box is an AEDR, which is a regular
shape resulting from trimming the overlapping dominance areas
of si

2 and s j
2. We utilize the AEDR to search for the new S 2

points by traversing the data R-tree. Each MBR e extracted from
the heap is checked to find whether it intersects with the AEDR.
If true, we check whether e is dominated by the existing S 2
points.

The skyline update algorithm is implemented in an event-
driven fashion to handle the skyline query updates. Note that
each time stamp in this paper represents the triggering time
when a point (a S 1 point, a S 2 point, or a regular data point)
issues an update to the system. All the incoming update re-
quests with their time stamps are inserted into a queue and
the query processor then sequentially handles each request in
the queue. The S 1 and S 2 sets are up-to-date, assuming that

9



k
s
2

i
s
2

(12, 7, 9)

(16, 3, 18)

v
s
2

(21, 1, 13)

(a) A 3-d EDR example

j
s
2

i
s
2

(12, 3, 9)
(4, 1, 17)

(b) An AEDR example

Figure 5: Traditional EDR vs. AEDR.

the query processor is able to responsively complete the com-
putations and there is no communication delay. The update
procedure shown in Algorithm 3 includes S1Evaluation (Algo-
rithm 4) and S2Evaluation (Algorithm 5). The initial S 1 and S 2
sets are computed through the BBS algorithm in Line 1. When
the query processor receives an update request from p in Line 3,
which can be a first-order, second-order or a regular data point,
it first performs S1Evaluation to examine whether the request
affects the S 1 set (the query result). In Line 7, the existing S 1
and S 2 sets are passed into the procedure for updates. Addition-
ally, because of the update of p, S̃ 2 stores the new S 2 set and S 2
stores the S 2 points to be removed from S 2. The processes in-
volved with these two sets, which are subsequently passed into
S2Evaluation, do not impact the S 1 set. Therefore, the proce-
dure outputs the updated S 1 points as soon as S1Evaluation is
completed. In Line 9, S2Evaluation then processes the rest of
the non-S 1-related computations to update the S 2 set. Line 10
updates p to p′, which is the updated point of p.

In the S1Evaluation procedure (see Algorithm 4), Line 1 ob-
tains the updated point p′ with the new position of p. Lines 3−5
remove p, if p is currently in the S 1 set and checkFreeS 2 is set
to true, because we need to ensure the update of p results in any
new S 1 points released from the S 2 set. Lines 6−9 update the
S 1 set if p′ is a new S 1 point (i.e., when S 1 ⊀ (does not dom-
inate) p′), and delete the I set, which is the new S 2 set dom-
inated by p′. Since all the points in I become new S 2 points,
which are inserted into S̃ 2 in Line 9, the S 2 set is updated later
in the S2Evaluation procedure. Lines 10−15 check whether all
the S 2 points in D(p) are still dominated by p′. In Line 11, we
first obtain D(p), which contains the S 2 points originally dom-
inated by p. In Line 14, since o (a new S 1 point after p moves)

Algorithm 3: skylineUpdate(P)
1 (S 1, S 2) = modified-BBS(P)
2 while (TRUE) do
3 listen to an update request from p
4 if (p) then
5 let S̃ 2 = ∅ be a new S 2 point set
6 let S 2 = ∅ be the S 2 points to be removed
7 S1Evaluation(p, S 1, S 2, S̃ 2, S 2)
8 output the updated S 1 set to the query user and continue
9 S2Evaluation(p, S 1, S 2, S̃ 2, S 2)

10 update p to p′

Algorithm 4: S1Evaluation(p, S 1, S 2, S̃ 2,S 2)
1 let p′ be the updated point of p
2 checkFreeS2 = false
3 if (S 1.contains(p)) then
4 remove p from S 1
5 checkFreeS2 = true

6 if (S 1 ⊀ p′) then
7 find I ⊂ S 1 to be the new S 2 points dominated by p′

8 S 1 = S 1 ∪ p′ − I
9 S̃ 2.insert(I)

10 if (checkFreeS2) then
11 find D(p) ⊂ S 2 to be the S 2 points dominated by p
12 for (each o ∈ D(p)) do
13 if (S 1 ⊀ o) then
14 S 1 = S 1 ∪ o
15 S 2.insert(o)

can never dominate any S 1 point, o is directly added to the S 1
set. This is because o is an EDR data point, and therefore it
must not dominate any existing S 1 points. o is inserted into
the S 2 set, which is to be removed later in the S2Evaluation
procedure.

S2Evaluation (see Algorithm 5) is a more expensive proce-
dure than S1Evaluation, because it involves AEDR computa-
tions to find a set of new S 2 points to substitute a moving or
removed S 2 point. First, we insert p into the S 2 set before the
update procedure is performed. DataRtree-AEDR is performed
to find the I set, where each point is only dominated by a cor-
responding S 2 point in S 2. We find the I set to substitute the
to-be-removed S 2 points in S 2. Line 5 removes the entire S 2
set from S 2, and I, each of which is a new S 2 point, is added
to S 2. The S̃ 2 set contains new S 2 points to be inserted into
S 2. Line 6 finds the existing S 2 points that are dominated by
at least one point in S̃ 2. Therefore, each point in D(S̃ 2) be-
comes a regular data point. Subsequently, in Line 6, the S 2 set
is updated by adding the S̃ 2 set and removing the D(S̃ 2) set.
Similarly, since each point in S̃ 2 was originally an S 1 point, the
D(S̃ 2) set is directly removed from the S 2 set without further
checking whether any points in S 2 are dominated. Lines 7−10
are processed if p′ is a new S 2 point. The insertion of p′ may

10



Algorithm 5: S2Evaluation(p, S 1, S 2, S̃ 2, S 2)
1 let p′ be the updated point of p
2 if (S 2.contains(p)) then
3 S 2.insert(p)

4 I = DataRtree-AEDR(S 2)
/* I is a regular data set, each of which is only

dominated by a S 2 points in S 2 */

5 S 2 = S 2 ∪ I − S 2
6 find D(S̃ 2) ⊂ S 2 to be a regular data set due to the insertion of S̃ 2

S 2 = S 2 ∪ S̃ 2 − D(S̃ 2)
7 if (S 1 ≺ p′) then
8 if (S 2 ⊀ p′) then
9 find I′ ⊂ S 2 to be a regular data set due to the insertion

of p′

10 S 2 = S 2 ∪ p′ − I′

dominate some existing S 2 points; therefore, Line 9 finds the
dominated S 2 points (i.e., I′) and removes them from the S 2
set in Line 10.

4.2.2. The CP-Sky Algorithm
We propose the CP-Sky algorithm to search for the potential

products. The key idea is to continuously maintain the first-
order and the second-order skylines during the query procedure
such that we can efficiently retrieve the potential products. The
maintenance of the S 1 and S 2 skyline sets over dynamic data
have been detailed in Section 4.2.1. The lemma and the proof
of correctness related to the CP-Sky algorithm are provided as
follows.

Lemma 3. Given the S 1 and S 2 sets, the top potential prod-
uct n∗ can be found from S 2. There exists no ni, which has a
promotion cost smaller than that of any point in (P − S 1).

Proof: (By definition) A non-skyline point ni ∈ (P−S 1−S 2) is
dominated by at least one point s j

2 in S 2. Therefore, corw(ni) ≥
corw(s j

2),∀w = 1 to d. By the definition of a promotion cost
defined in Definition 2, the s j.pcost must be smaller than that
of ni. Let n∗ in S 2 be a point with the minimal promotion cost
among all S 2 points. n∗ must be the potential product with
the minimal promotion cost among all non-skyline points (P −
S 1). Therefore, using the S 2 set is sufficient to find a potential
product.

Algorithm 6 illustrates the algorithm to continuously search
for the potential products and efficient updates over moving
data, given S 1 and S 2 updated by skylineUpdate (Algorithm 3).
The procedure then updates potential products if either S 1 or
S 2 is updated (Line 3). Because all the second-order skyline
points in S 2 are treated as candidates of potential products, they
are sorted by promotion cost in ascending order (Lines 4−7).
The top potential product is then the first element (Line 8),
which is guaranteed to be the potential product with minimal
promotion cost.

Algorithm 6: CP-Sky(S1, S2)
1 Initialization:

let cPSkyLine = ∅ be the potential product set
let top cPSkyLine = ∅ be the final potential product

2 while (TRUE) do
3 if (S 1 or S 2 is updated) then
4 for (∀si

2 ∈ S 2) do
5 si

2.pcost = proCost(si
2)

6 cPSkyLine.insert(si
2, si

2.pcost)

7 cPSkyLine.sort()
8 top cPSkyLine← the top element in cPSkyLine

4.2.3. Top-k CP-Sky Query Processing
In this section, we discuss how to extend the CP-Sky algo-

rithm to find the top-k potential products from all non-skyline
points, and the modified approach is called kCP-Sky algorithm.
Based on Lemma 3, the system can only guarantee the top po-
tential product to be retrieved from S 2. Therefore, we need to
modify the CP-Sky algorithm to return the top-k potential prod-
ucts. We utilize the S 2 set to look for the initial top-k poten-
tial products (kPP for short) from S 2 first. Next, to guarantee
finding the top-k potential products, we must perform k range
queries (as the details described in Algorithm 2) over the non-
skyline points for each product in the kPP set. The lemma and
the proof of correctness followed by the pseudo codes for com-
puting top-k potential products are described as follows.

Lemma 4. Let kPP contain k products in ascending order of
their promotion cost retrieved from S 2 and let kPP′ contain the
kPP set and the union set of the products found in the range
queries performed on each product in kPP. The final top-k po-
tential products must be found from kPP′.

Proof: (By definition) Let si
2 be an S 2 point, si

2 < kPP. The
promotion cost of si

2 must be larger than that of any product in
kPP. According to the rule of transitivity, the promotion cost
of any product in the range query of si

2 must be larger than
that of any product in kPP. Therefore, the final top-k potential
products must be found from kPP′.

The time complexity of the kCP-Sky algorithm is bounded to
the number of potential products (i.e., k), whereas the range-
based algorithm checks the entire S 1 points to look for sur-
rounding points as the candidates of potential products. The
time complexity of the kCP-Sky algorithm is O(k × log|P|),
where |P| is the number of data points and the complexity of
each range query is O(log|P|), because a range query evalu-
ation is based on the R-tree index structure. Therefore, at
most k range queries are performed to obtain the top-k poten-
tial products. The time complexity of the range-based algo-
rithm is O(|S 1| × log|P|), since we need to check every skyline
point to find the top-k potential products. Generally, k is a rel-
atively smaller number than the size of the S 1 points, particu-
larly when the data cardinality is large and the dimensionality is
high. Therefore, kCP-Sky significantly outperforms the range-
based approach.

11



Algorithm 7: kCP-Sky(k, S1, S2)
1 Initialization:

let cpSkyLine = ∅ be the potential product set
let topK cpSkyLine = ∅ be the final top-k potential products

2 while (TRUE) do
3 if (S 1 or S 2 is updated) then
4 for (∀si

2 ∈ S 2) do
5 si

2.pcost = proCost(si
2)

6 cpSkyLine.insert(si
2, si

2.pcost)

7 cpSkyLine.sort()
8 let kPP be the top-k products retrieved from cpSkyLine
9 kPP′ ← kPP

10 for (∀s j
2 ∈ kPP) do

11 find kNN as the kth nearest neighbor of s j
2

12 r = dist(s j
2, kNN)

13 calculate the search region S R based on r
14 for (∀nw ∈ S R) do
15 nw.pcost = proCost(nw)
16 kPP′ ← nw

17 cpSkyLine.sort()
18 topK cpSkyLine← the top-k products from cpSkyLine

Finally, Algorithm 7 illustrates the approach of continuously
finding the top-k potential products, where Lines 1−7 are iden-
tical to Algorithm 6. The procedure is performed in an event-
driven fashion. That is, if any S 1 or S 2 point is updated
(Line 3), the potential products are also re-evaluated. Line 8
obtains the initial top-k products from S 2 and Line 9 first in-
serts the initial top-k products into kPP′. In Lines 10−16, the
promotion cost is calculated for each product in the range query
of each product in kPP. As a result, all candidates for top-k po-
tential products are found and stored in Line 18.

5. Experimental Evaluation

The experiments were conducted to evaluate the performance
of potential product computations. We compared the proposed
CP-Sky approach with the range-based algorithm stated in Sec-
tion 4.1 and the Infra skyline algorithm [30]. We use k = 1
as the default value in all experiments. All of these algorithms
utilize R-trees as the underlying structure for indexing the data
and skyline points. We use the Spatial Index Library [17] for
the R-tree index. A page size of 4Kbytes is deployed, resulting
in node capacities between 94 (d = 5) and 204 (d = 2). The S 1
and S 2 sets are indexed by a main-memory R-tree to improve
the performance of the dominance checks. Our data sets were
generated on a terrain service space of [0, 1000]2. We initially
generated from 64,000 to 1,024,000 (1) uniformly distributed
and (2) anti-correlated data points with dimensions in the range
of 2 to 5, respectively. The dimensional values of the gener-
ated data points were then updated based on the random-walk
mobility model [22] to simulate the movement patterns of the
moving data objects. Each object moves with a constant ve-
locity until an expiration time. The velocity is then replaced

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

64K 128K 256K 512K 1024K

P
er

ce
nt

ag
e 

of
 S

ky
lin

e 
P

oi
nt

s 
(%

)

Number of Data Points (P )

S1
S2

(a) Uniform distribution

 0

 0.5

 1

 1.5

 2

 2.5

64K 128K 256K 512K 1024K

P
er

ce
nt

ag
e 

of
 S

ky
lin

e 
P

oi
nt

s 
(%

)

Number of Data Points (P )

S1
S2

(b) Anti-correlated distribution

Figure 6: The ratios of the size of S 1 and S 2 to the entire data set (d = 5,
fupdate = 3%, k = 1).

by a new velocity with a new expiration time. The object up-
date ratio, defined as the percentage of all data points that issue
updates, is set in a range from 1% to 5%. Additionally, we ob-
tained two real-world data sets of the air quality and households
in our experimental evaluation.

The query results are evaluated in an event-driven fashion.
Therefore, the query processor calls different procedures based
on each specific event type. We consider the overall CPU and
I/O cost because the CP-Sky, range-based and Infra algorithms
that we evaluated return potential products after the second-
order skyline or a candidate set is found. Our experiments use
several metrics to compare these algorithms and the details of
the experimental results are presented in the following sections.
In summary, Sections 5.1− 5.5 contain the evaluation results us-
ing the synthetic data sets. Subsequently, Section 5.6 presents
the performance evaluation using the real-world data sets. Ta-
ble 3 summarizes the default parameter settings in the following
simulations.

Table 3: Simulation parameters.
Parameter Symbol Default Range
Number of data
points

P 128,000 64,000, 128,000,
256,000, 512,000,
1,024,000

Number of
dimensions

d 5 2, 3, 4, 5

Update ratio fupdate 3% 1%, 2%, 3%, 4%,
5%

Number of re-
quested potential
products

k 1 1, 5, 10, 15, 20

5.1. Sizes of S 1 and S 2 on Different Distrusted Datasets

The second-order skyline set as defined in Definition 4 is a
relatively small data set based on our observation. Both S 1 and
S 2 are accessed by the CP-Sky algorithm; therefore, the size
of both sets affects algorithm performance. In this section, we
show the ratios of the sizes of S 1 and S 2 to the entire data set
in percentages for three different distributed datasets used for
our experiments. As shown in Figure 6(a) for the uniformly
distributed data set, we can see that the percentages for S 1 and
S 2 are only up to 1%, and 3%, respectively. The ratio decreases

12



as the data cardinality increases, because the sizes of the S 1
and S 2 sets do not significantly affected by the data cardinality.
Figure 6(b) show the percentages for S 1 and S 2 on the anti-
correlated data set. The percentages for both sets are small. As
a result, the use of S 1 and S 2 greatly reduces the the update cost
of continuous skyline queries and continuous computations of
potential products.

5.2. Effect of Update Ratios

Figures 7(a)−(b) show the average CPU time by varying
the update ratio for evaluating the performance of the CP-Sky,
range-based, and Infra algorithms during the potential product
computations for the uniformly and anti-correlated distributed
data sets, respectively, while Figures 7(c)−(d) show the I/O cost
for each distributed data set. The data cardinality is fixed at
128,000, the dimensionality at 5, and k at 1. For the uniformly
distributed data set, as we can see in Figures 7(a) and (c), com-
pared with the range-based algorithm and InfraSky algorithm,
the CP-Sky approach outperforms them both in terms of both
CPU time and I/O cost. With an increase in the update ratio,
the overall CPU time and I/O cost of all these three approaches
also increases. Dealing with the point updates, the InfraSky al-
gorithm monitors whether the updated points are promoted by
comparing them with the promotion boundary, which applies
the BBS algorithm two times.

This results in the InfraSky algorithm performing the worst.
Conversely, the range-based and the CP-Sky approaches only
apply the BBS algorithm once. The proposed CP-Sky approach
calculates the update only when the S 1 or S 2 sets are updated,
which results in less calculation and fewer page accesses. We
can observe that for the uniformly distributed data set in Fig-
ures 7(a) and (c), all of the three approaches take less computa-
tional cost both in CPU time and I/O cost, because most of data
points are dominated, resulting in fewer steps to terminate the
computations. Furthermore, because the number of the S 2 set
is small, the computation time is less, while looking for poten-
tial products. Therefore, since these three approaches perform
extremely well, the performance gap among these algorithms
can be ignored. For the anti-correlated distributed data set in
Figures 7(b) and (d), similar results are produced.

5.3. Effect of Dimensionality

Next, we studied the impact of dimensionality on the perfor-
mance of computing potential products. The data cardinality is
fixed at 128,000, the update ratio at 3%, and k at 1. As shown in
Figures 8(a)−(d), the CP-Sky approach achieves better perfor-
mance in terms of CPU time and I/O cost. As the dimensional-
ity increases, the performance of the range-based algorithm and
InfraSky algorithm is degraded significantly, while the CP-Sky
approach is not affected much. The gap between the CP-Sky
approach and the other two approaches grows sharply. The rea-
son is that fewer points can be placed on the same page and the
CP-Sky approach accesses fewer pages. It is inferred that the
CP-Sky approach can continuously handle the computation of
potential products in a higher dimension.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 2 3 4 5

O
ve

ra
ll 

C
P

U
 T

im
e 

(s
ec

)

Update Ratio fupdate (%)

 
CP-Sky Range InfraSky

(a) Uniform dist. vs. CPU time

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 2 3 4 5

O
ve

ra
ll 

C
P

U
 T

im
e 

(s
ec

)

Update Ratio fupdate (%)

 
CP-Sky Range InfraSky

(b) Anti-correlated dist. vs. CPU time

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 3 4 5

O
ve

ra
ll 

I/O
 C

os
t (

K
)

Update Ratio fupdate (%)

 
CP-Sky Range InfraSky

(c) Uniform dist. vs. I/O cost

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 3 4 5

O
ve

ra
ll 

I/O
 C

os
t (

k)

Update Ratio fupdate (%)

 
CP-Sky Range InfraSky

(d) Anti-correlated dist. vs. I/O cost

Figure 7: Effect of update ratios: performance comparison among three ap-
proaches with various update ratios and data distributions (P = 128k, d = 5,
k = 1).

 0

 500

 1000

 1500

 2000

 2500

2 3 4 5

O
ve

ra
ll 

C
P

U
 T

im
e 

(s
ec

)

Number of Dimensions (d )

 
CP-Sky Range InfraSky

(a) Uniform dist. vs. CPU time

 0

 200

 400

 600

 800

 1000

2 3 4 5

O
ve

ra
ll 

C
P

U
 T

im
e 

(s
ec

)

Number of Dimensions (d )

 
CP-Sky Range InfraSky

(b) Anti-correlated dist. vs. CPU time

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2 3 4 5

O
ve

ra
ll 

I/O
 C

os
t (

K
)

Number of Dimensions (d )

 
CP-Sky Range InfraSky

(c) Uniform dist. vs. I/O cost

 0

 500

 1000

 1500

 2000

 2500

 3000

2 3 4 5

O
ve

ra
ll 

I/O
 C

os
t (

K
)

Number of Dimensions (d )

 
CP-Sky Range InfraSky

(d) Anti-correlated dist. vs. I/O cost

Figure 8: Effect of dimensionality: performance comparison among three
approaches with various dimensionality and data distributions (P = 128k,
fupdate = 3%, k = 1).

5.4. Effect of Cardinality

The correlation of the performance and cardinality are re-
ported with dimensionality fixed at 5, the update ratio at 3%,
and k at 1. Figures 9(a)−(d) show the average CPU time and I/O
cost with respect to different cardinalities. As the dataset size
increases, the performance of all three algorithms deteriorates.
The difference lies in the speed of performance degradation,
with the CP-Sky approach achieving almost constant I/O cost
and smaller CPU time growth. The reason is that the CP-Sky
approach is affected only when the S 1 or S 2 sets are updated.
It can be inferred that the CP-Sky approach is scalable among
large-scale datasets.

13



 0

 10000

 20000

 30000

 40000

 50000

64K 128K 256K 512K 1024K

O
ve

ra
ll 

C
P

U
 T

im
e 

(s
ec

)

Number of Data Points (P )

 
CP-Sky Range InfraSky

(a) Uniform dist. vs. CPU time

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

64K 128K 256K 512K 1024K

O
ve

ra
ll 

C
P

U
 T

im
e 

(s
ec

)
Number of Data Points (P )

 
CP-Sky Range InfraSky

(b) Anti-correlated dist. vs. CPU time

 0

 15000

 30000

 45000

 60000

 75000

 90000

64K 128K 256K 512K 1024K

O
ve

ra
ll 

I/O
 C

os
t (

K
)

Number of Data Points (P )

 
CP-Sky Range InfraSky

(c) Uniform dist. vs. I/O cost

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

64K 128K 256K 512K 1024K

O
ve

ra
ll 

I/O
 C

os
t (

K
)

Number of Data Points (P )

 
CP-Sky Range InfraSky

(d) Anti-correlated dist. vs. I/O cost

Figure 9: Effect of cardinality: performance comparison among three ap-
proaches with various cardinality and data distributions (d = 5, fupdate = 3%,
k = 1).

5.5. Effect of k Value

Finally, we evaluate the effect of k. The data cardinality is
fixed at 128,000, the dimensionality at 5, and the update ratio
at 3%. We extend the three approaches to compute top-k po-
tential products. In Figures 10(a)−(d), as k increases, we can
see that the kCP-Sky algorithm remains stable in terms of aver-
age CPU time and I/O cost, because kCP-Sky performs at most
k range queries at the S 2 set regardless the size of S 2. While
the range-based, and Infra algorithms perform range queries at
every point in S 1 to guarantee to get top-k potential products.
Therefore, the CPU and I/O performance are affected by the
size of the S 1 set. Hence, we can see that both range-based and
Infra algorithms also have stable performances. However, be-
cause both algorithms perform more range queries, their CPU
time and I/O cost are significantly higher than those of the kCP-
Sky algorithm for uniform and anti-correlated data sets only.

5.6. Real-world Data Set Evaluation

In this section, we evaluate the CP-Sky, range-based, and In-
fra algorithms with two real-world data sets of US air quality
and households. The air quality data was downloaded from
the United States Environmental Protection Agency website
(https://www3.epa.gov), which publishes air quality data of 288
counties in the United States in 2015. There are five dimensions
(i.e., air quality indicators) for each county, including PM2.5,
PM10, S O2, NO, and O3, which change their values every day.
As we can see in Figure 11(a), our CP-Sky algorithm outper-
forms the other two approaches in terms of CPU time. The
range-based and Infra algorithms have worse, but not terrible,
performance. The reason is that the cardinality of the real-world
data set is quite small, and hence the methods incur no signifi-
cant performance gap. The second real-world data set is a static
data set containing 127,931 US households downloaded from

 0

 500

 1000

 1500

 2000

 2500

 3000

1 5 10 15 20

O
ve

ra
ll 

C
P

U
 T

im
e 

(s
ec

)

Number of Requested Potential Profducts (k )

 
kCP-Sky Range InfraSky

(a) Uniform dist. vs. CPU time

 0

 200

 400

 600

 800

 1000

1 5 10 15 20

O
ve

ra
ll 

C
P

U
 T

im
e 

(s
ec

)

Number of Requested Potential Profducts (k )

 
kCP-Sky Range InfraSky

(b) Anti-correlated dist. vs. CPU time

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 5 10 15 20

O
ve

ra
ll 

I/O
 C

os
t (

K
)

Number of Requested Potential Profducts (k )

 
kCP-Sky Range InfraSky

(c) Uniform dist. vs. I/O cost

 0

 500

 1000

 1500

 2000

 2500

 3000

1 5 10 15 20

O
ve

ra
ll 

I/O
 C

os
t (

K
)

Number of Requested Potential Profducts (k )

 
kCP-Sky Range InfraSky

(d) Anti-correlated dist. vs. I/O cost

Figure 10: Effect of k value: performance comparison among three approaches
with various k and data distributions (P = 128k, d = 5, fupdate = 3%).

http://www.ipums.org. In Figure 11(b), we can see that our CP-
Sky algorithm outperforms the other two approaches, and the
Infra algorithm has the worst performance. Therefore, we can
conclude that CP-Sky is an efficient approach in practice.

 0

 50

 100

 150

 200

 250

 300

 350

O
ve

ra
ll 

C
P

U
 T

im
e 

(s
ec

)

 
CP-Sky Range InfraSky

(a) Air quality dataset

 0

 4000

 8000

 12000

 16000

 20000

O
ve

ra
ll 

C
P

U
 T

im
e 

(s
ec

)

 
CP-Sky Range InfraSky

(b) US household dataset

Figure 11: Experimental evaluation using real-world data sets.

6. Conclusions

In this paper, we formally define potential products and pro-
pose the CP-Sky algorithm by leveraging the second-order sky-
line set that facilitates efficient updates for continuous compu-
tations of potential products. Our CP-Sky algorithm achieves a
faster response time and better overall CPU performance. With
the adoption of the S 2 sets, CP-Sky can efficiently update the
potential products. An approximate exclusive dominance re-
gion (AEDR) is proposed, and our experiments confirm the fea-
sibility of AEDR which has a low amortized cost of the exclu-
sive data evaluation in high dimensional and dynamic data en-
vironments. The S1Evaluation procedure first examines all the
incoming data requests and updates the S 1 result if necessary,
while the S2Evaluation procedure integrates our lemmas and
heuristics to achieve a low CPU overhead and reduced I/O cost.
Additionally, we further extend the CP-Sky algorithm to sup-
port the computations of top-k potential products. An extensive
experiment on various data sets with different distributions indi-
cates that our system outperforms the range-based and the Infra

14



skyline approaches and is especially well-suited for interactive
applications that require a shorter response time.

7. References

[1] Ilaria Bartolini, Paolo Ciaccia, Vincent Oria, and M. Tamer Özsu. Flex-
ible Integration of Multimedia Sub-queries with Qualitative Preferences.
Multimedia Tools and Applications, 33(3):275–300, 2007.

[2] Ilaria Bartolini, Paolo Ciaccia, and Marco Patella. Efficient Sort-based
Skyline Evaluation. ACM Transactions on Database Systems (TODS),
33(4):133–135, 2008.

[3] Ilaria Bartolini, Paolo Ciaccia, and Marco Patella. The Skyline of a Proba-
bilistic Relation. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 25(7):1656–1669, 2013.

[4] Ilaria Bartolini, Zhenjie Zhang, and Papadias. Collaborative Filtering
with Personalized Skylines. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 23(2):190–203, 2011.

[5] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The Skyline
Operator. In Proceedings of the 17th IEEE International Conference on
Data Engineering (ICDE), pages 421–430, 2001.

[6] Chee Yong Chan, Pin-Kwang Eng, and Kian-Lee Tan. Stratified Compu-
tation of Skylines with Partially-Ordered Domains. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages
203–214, 2005.

[7] Volker Gaede and Oliver Günther. Multidimensional Access Methods.
ACM Computing Surveys (CSUR), 30(2):170–231, 1998.

[8] Zhenqiang Gong, Guangzhong Sun, Jing Yuan, and Yanjing Zhong. Ef-
ficient top-k query algorithms using K-skyband partition. In Proceed-
ings of the 4th International Conference on Scalable Information Systems
(ICST), pages 288–305, 2009.

[9] Yu-Ling Hsueh, Roger Zimmermann, and Wei-Shinn Ku. Efficient up-
dates for continuous skyline computations. In Proceedings of the 19th
International Conference on Database and Expert Systems Applications
(DEXA), pages 419–433.

[10] Yu-Ling Hsueh, Roger Zimmermann, Wei-Shinn Ku, and Yifan Jin.
Skyengine: Efficient skyline search engine for continuous skyline com-
putations. In Proceedings of the 27th IEEE International Conference on
Data Engineering (ICDE), pages 1316–1319, 2011.

[11] Jin Huang, Bin Jiang, Jian Pei, Jian Chen, and Yong Tang. Skyline dis-
tance: a measure of multidimensional competence. Knowledge and In-
formation Systems, 34(2):373–396, 2013.

[12] Zhiyong Huang, Hua Lu, Beng Chin Ooi, and Anthony K. H. Tung.
Continuous Skyline Queries for Moving Objects. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 18(12):1645–1658, 2006.

[13] Su Min Jang, Choon Seo Park, and Jae Soo Yoo. Skyline Minimum Vec-
tor. In Proceedings of the 12th International Asia-Pacific Web Conference
(APWEB), pages 358–360, 2010.

[14] Youngdae Kim and You Seung Won Hwang. Escaping a Dominance Re-
gion at Minimum Cost. In Proceedings of the 19th International Confer-
ence on Database and Expert Systems Applications (DEXA), pages 800–
807. Springer, 2008.

[15] Donald Kossmann, Frank Ramsak, and Steffen Rost. Shooting Stars in
the Sky: An Online Algorithm for Skyline Queries. In Proceedings of the
28th International Conference on Very Large Data Bases (VLDB), pages
275–286, 2002.

[16] Ken C. K. Lee, Baihua Zheng, Huajing Li, and Wang-Chien Lee. Ap-
proaching the Skyline in Z Order. In Proceedings of the 33rd Interna-
tional Conference on Very Large Data Bases (VLDB), pages 279–290,
2007.

[17] Spatial Index Library. http://www.research.att.com/ mar-
ioh/spatialindex/index.html.

[18] Xuemin Lin, Yidong Yuan, Wei Wang, and Hongjun Lu. Stabbing the
Sky: Efficient Skyline Computation over Sliding Windows. In Proceed-
ings of the 21st IEEE International Conference on Data Engineering
(ICDE), pages 502–513, 2005.

[19] Xuemin Lin, Yidong Yuan, Qing Zhang, and Ying Zhang. Selecting Stars:
The k Most Representative Skyline Operator. In Proceedings of the 23rd
IEEE International Conference on Data Engineering (ICDE), pages 86–
95, 2007.

[20] Hua Lu and Christian S. Jensen. Upgrading Uncompetitive Products Eco-

nomically. In Proceedings of the 28th IEEE International Conference on
Data Engineering, pages 977–988, 2012.

[21] Hua Lu, Christian S Jensen, and Zhenjie Zhang. Flexible and efficient res-
olution of skyline query size constraints. IEEE Transactions on Knowl-
edge and Data Engineering (TKDE), 23(7):991–1005, 2011.

[22] Andrew Bruce McDonald. A Mobility-Based Framework for Adaptive
Dynamic Cluster-Based Hybrid Routing in Wireless Ad-Hoc Networks.
Ph.D. Dissertation proposal, University of Pittsburgh., 1999.

[23] Xiaoye Miao, Yunjun Gao, Lu Chen, Gang Chen, Qing Li, and Tao Jiang.
On Efficient k-Skyband Query Processing over Incomplete Data. In Pro-
ceedings of the 18th International Conference on Database Systems for
Advanced Applications (DASFAA), pages 424–439, 2013.

[24] Michael D. Morse, Jignesh M. Patel, and William I. Grosky. Efficient
Continuous Skyline Computation. Information Sciences, 177(17):3411–
3437, 2007.

[25] Michael D. Morse, Jignesh M. Patel, and H. V. Jagadish. Efficient Skyline
Computation over Low-Cardinality Domains. In Proceedings of the 33rd
International Conference on Very Large Data Bases (VLDB), pages 267–
278, 2007.

[26] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. An Optimal
and Progressive Algorithm for Skyline Queries. In Proceedings of the
2003 ACM SIGMOD International Conference on Management of Data,
pages 467–478, 2003.

[27] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. Progres-
sive Skyline Computation in Database Systems. ACM Transactions on
Database Systems (TODS), 30(1):41–82, 2005.

[28] Jian Pei, Wen Jin, Martin Ester, and Yufei Tao. Catching the Best Views
of Skyline: A Semantic Approach Based on Decisive Subspaces. In Pro-
ceedings of the 31st International Conference on Very Large Data Bases
(VLDB), pages 253–264, 2005.

[29] Zhuo Peng, Chaokun Wang, Lu Han, Jingchao Hao, and Yiyuan Bai. Dis-
covering the Most Potential Stars in Social Networks. In Proceeding of
the third International Conference on Emerging Databases (EDB), 2011.

[30] Zhuo Peng, Chaokun Wang, Lu Han, Jingchao Hao, and Xiaoping Ou.
Discovering the Most Potential Stars in Social Networks with Infra-
skyline Queries. In Web Technologies and Applications, pages 134–145.
Springer, 2012.

[31] Zhuo Peng, Chaokun Wang, Fangbo Tao, and Lu Han. SkyBoundary:
An Improved Approach to Member Promotion in Social Networks. In
Proceedings of the 9th IEEE International Conference on Dependable,
Autonomic and Secure Computing (DASC), pages 838–845, 2011.

[32] Dimitris Sacharidis, Stavros Papadopoulos, and Dimitris Papadias. Topo-
logically Sorted Skylines for Partially Ordered Domains. In Proceedings
of the 25th IEEE International Conference on Data Engineering (ICDE),
pages 1072–1083, 2009.

[33] Mehdi Sharifzadeh and Cyrus Shahabi. The Spatial Skyline Queries. In
Proceedings of the 32nd International Conference on Very Large Data
Bases (VLDB), pages 751–762, 2006.

[34] Kian-Lee Tan, Pin-Kwang Eng, and Beng Chin Ooi. Efficient Progressive
Skyline Computation. In Proceedings of the 27th International Confer-
ence on Very Large Data Bases (VLDB), pages 301–310, 2001.

[35] Li Tian, Le Wang, Peng Zou, Yan Jia, and Aiping Li. Continuous Mon-
itoring of Skyline Query over Highly Dynamic Moving Objects. In Pro-
ceedings of the 6th ACM International Workshop on Data Engineering
for Wireless and Mobile Access (MobiDE), pages 59–66, 2007.

[36] George Trimponias, Ilaria Bartolini, Dimitris Papadias, and Yin Yang.
Skyline Processing on Distributed Vertical Decompositions. IEEE Trans-
actions on Knowledge and Data Engineering (TKDE), 25(4):850–862,
2013.

[37] Raymond Chi-Wing Wong, Ada Wai-Chee Fu, Jian Pei, Yip Sing Ho,
Tai Wong, and Yubao Liu. Efficient Skyline Querying with Variable
User Preferences on Nominal Attributes. Proceedings of the Very Large
Database Endowment (PVLDB), 1(1):1032–1043, 2008.

[38] Ping Wu, Divyakant Agrawal, Ömer Egecioglu, and Amr El Abbadi.
Deltasky: Optimal Maintenance of Skyline Deletions without Exclusive
Dominance Region Generation. In Proceedings of the 23rd IEEE Inter-
national Conference on Data Engineering (ICDE), pages 486–495, 2007.

[39] Shiming Zhang, Nikos Mamoulis, Ben Kao, and David Wai-Lok Cheung.
Efficient Skyline Evaluation over Partially Ordered Domains. Proceed-
ings of the Very Large Database Endowment (PVLDB), 3(1):1255–1266,
2010.

15


