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ABSTRACT
This paper proposes a novel fine-grained image categorization model
where no object annotation is required in the training/testing stage.
The key technique is a dense graph mining algorithm that local-
izes multiscale discriminative object parts in each image. In par-
ticular, to mimick human hierarchical perception mechanism, a
superpixel pyramid is generated for each image, based on which
graphlets from each layer are constructed to seamlessly describe
object parts. We observe that graphlets representative to each cat-
egory are densely distributed in the feature space. Therefore a
dense graph mining algorithm is developed to discover graphlets
representative to each sub-/super-category. Finally, the discovered
graphlets from pairwise images are encoded into an image kernel
for fine-grained recognition. Experiments on the UCB-200 [32]
shown that our method performs competitively to many models re-
lying on the annotated bird parts.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and Soft-
ware
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1. INTRODUCTION
A large number of object recognition models have been devel-

oped in multimedia retrieval and analysis. Many of them focus on
discriminatively learning to distinguish objects belonging to differ-
ent basic-level categories. Inspired by applications in areas such
as agriculture, medicine, and forestry, fine-grained domain recog-
nition has become a hot research topic recently. For example, some
Apps have been developed to recognize different species of pests,
based on which suitable chemicals can be employed to eliminate
them. Intuitively, successfully recognizing objects from multiple
sub-categories is a difficult task. Even a knowledgeable person
might be confused to distinguish poisonous/non-poisonous mush-
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rooms. In summary, existing approaches suffer from the following
challenges:

Figure 1: Left: bird beak/eye detectors built upon graphlets
(red) and rectangular window (yellow) respectively; Right: dis-
tribution of graphlets from the sub-category “black foot al-
batross” (the yellow points denote the non-discriminative bird
parts).

• Many fine-grained recognition models are part-based mod-
els, where object parts are either manually annotated or dis-
covered by a set of object detectors. For the former, the an-
notation quality is good but the annotation process is labor-
intensive. For the latter, a set of object component detectors
are pre-defined for a specific data set, making the model dif-
ficult to be transferred from one data set to another.

• Fine-grained recognition discriminates similar objects with
subtle differences. It requires the recognition model can dis-
cover the discriminative object details. Typically, a scanning
window is used for part detection. However, the rectangu-
lar scanning window cannot well capture those arbitrarily
shaped object components, such as the bird beak in Figure 1.

To solve the above problems, this paper presents hierarchical graphlet
matching (HGM) for fine-grained image categorization. The key
advantage is that discriminative object parts with different scales
can be localized automatically from unannotated images. As shown
in Figure 2, to mimick the coarse-to-fine visual perception of hu-
mans, a KL-divergence-based clustering is employed to construct
the hierarchy of the super-/sub-categories. To seamlessly describe
an object in each hierarchy layer, we construct a superpixel pyramid
and further propose graphlets by connecting spatially connected su-
perpixels from each pyramid layer. As the number of graphlets
is huge, only those discriminative for fine-grained categorization
should be preserved. As shown on the right of Figure 1, highly dis-
criminative graphlets to each super-/sub-category are densely
distributed in the feature space, as these graphlets are similar
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Figure 2: The pipeline of the proposed fine-grained image categorization model

in appearance. Therefore, an affinity graph is constructed to de-
scribe the similarity of graphlets to each super-/sub-category, based
on which dense subgraphs containing the discriminative graphlets
are selected. Finally, an image kernel is calculated by matching the
selected graphlets from pairwise images hierarchically.
The contributions of this paper are two-fold: 1) the first fine-

grained recognition model discovering multiscale discriminative
object parts from unannotated training and testing images; and 2) a
graphlet matching kernel that stimulates human hierarchial visual
perception.

2. RELATED WORK
Our work is closely related to the graph-based image modeling

in multimedia retrieval [38, 39, 40, 41]. As a natural binary rela-
tionship descriptor, graphical models are frequently used to exploit
the geometric property of different regions in an image. In [5], Har-
chaoui et al. proposed walk-/tree-kernel that capture the walk/tree
structures among local image regions using a finite sequence of
neighboring regions. In [6], Duchenne et al. proposed a graph
matching kernel for object categorization. That is, the graph ver-
tices correspond to a set of image grids, and the edges reflect the
grid structure, functioning as springs preserving the geometry of
neighboring grids. Lin et al. [7] introduced an object categoriza-
tion framework based on sketch graphs, i.e., a learnable And-Or
graph model. Further, in [8], Zhang et al. proposed to measure the
similarity between aerial images by selectively matching their re-
spective graphlets. Note that all these graphical models exploit ge-
ometric descriptors for basic-level categories, which fail to capture
the detailed visual cues discriminative to sub-categories. Besides,
many of them rely on the prior knowledge of a specific data set,
limiting the application across different data sets.
Recently, many fine-grained categorization models have been

developed. Most of them focus on learning part detectors from
training annotated images [10, 11, 12, 14, 45, 34, 35, 36, 37], or lo-
calizing distinctive object details by human interaction [15, 17]. A
few approaches are reviewed as follows. Yao et al.[12] represented
an image by pooling template matching responses. The templates
are sampled from 1.5× the size of the object bounding box. In [14],
Berg et al. proposed a grid-level saliency model for describing fine-
grained image categories. Annotated object parts are aligned and
cropped to indicate the discriminative parts. Deng et al. [15] de-
signed a human interactive crowdsourcing system allowing users to
localize discriminative object parts. Angelova et al.[18] “zoom in”
the foreground objects segmented from an image for fine-grained
recognition. Compared to the previous fine-grained models, our
approach is free from annotated object parts in both the training
and the testing stages. Zhang et al.[44] proposed a one-vs-all mid-
level features for fine-grained recognition. The method is dimen-
sion friendly since the dimension of learned mid-level features is

only related with the number of classes and far less than that of the
low level ones.

3. CATEGORY HIERARCHY CONSTRUC-
TION

3.1 Topological Object Descriptors
As aforementioned, besides the large object components reflect-

ing the basic-level category, fine-grained recognition depends on
an accurate description of the tiny object parts. In our work, both
the large objects and their tiny parts are constructed from superpix-
els, which align neatly with object boundaries. More specifically,
objects and their parts are described by graphlets:

G = (V, E), (1)

where V is a set of vertices, each representing a superpixel; E is a
set of edges, each connecting pairwise spatially adjacent superpix-
els. The number of constituent superpixels of a graphlet is called
the graphlet size. As shown in Figure 3, graphlets well capture dif-
ferent object parts, which are descriptive to each sub-category.B o d y H e a d a n d t a i lB e a k a n d c l a w
Figure 3: Left: A single superpixel mosaic describing a bird
and its parts; Right: A superpixel pyramid where differently
sized object parts are described in different layers.

3.2 KL-divergence-based Category Hierarchy
To mimick the hierarchical perception of humans, we cluster the

sub-categories into super-categories. We first measure the similar-
ity between images from two sub-categories. Unfortunately, global
feature-based distance or unselectively local feature matching is not
suitable here. We want to compare the object parts that are repre-
sentative to each sub-category. For pairwise images, we first es-
tablish the matchings between their SIFT descriptors. Among all
the SIFT descriptor matchings, some are between patches from the
foreground objects, while the rest are between patches from the
backgrounds. As shown in Figure 4, if we model the distribution



of all the pairwise matched SIFT descriptors from a sub-category,
those from the foreground objects will closely distributed since they
have similar appearance. While SIFT descriptors from the back-
ground will distribute dispersedly, since the patches can have arbi-
trary appearances. This reveals that the divergence between SIFT
distribution from two sub-categories can well distinguish two sub-
categories. In this work, the distribution of the matched SIFT de-
scriptors from a sub-category is modeled by a GMM N . Then,
the similarity between sub-categories can be described by the KL-
divergence between their SIFT distributions. Due to the non-symmetry
of KL-divergence, it is difficult to integrate it into a semi-definite
matrix for clustering. Instead, we use the square root of Jensen-
Shannon divergence [22], a symmetric metric derived from KL-
divergence.

Based on the Jensen-Shannon divergence, we encode it into

Figure 4: Left: SIFT descriptor matching between images;
Right: distribution of matched SIFT descriptors (red: objects,
blue: background).

spectral clustering for building the category hierarchy. More specif-
ically, we construct an affinity matrixW wherein the ij-th element
is computed as:

Wij = exp

(
−DJS(Ni||Nj)

2ψ2

)
, (2)

whereNi andNj denote the SIFT distributions of i-th and the j-th
sub-categories respectively, and DJS is the Jensen-Shannon diver-
gence. Then, we calculate the Laplacian matrix accordingly and
group the sub-categories intoH parent-categories1. We empirically
observe that a three layer hierarchy achieves a good performance.
And the number of categories from the i-th layer is fixed to 1/7 to
that from the (i + 1)-th layer (i = 1, 2).

4. DISCRIMINATIVE OBJECT PARTS DIS-
COVERY

Obviously, discriminative object parts from each sub-category
(e.g., the bird beaks) distribute densely in the feature space (can be
quantified into an affinity graph). In contrast, non-discriminative
object components distribute dispersedly. Thus, a dense graph min-
ing framework is proposed to discover graphlets representative to
different sub-/super-categories, as the pipeline shown in Figure 5.

4.1 Affinity Graph Construction
To construct an affinity graph that describes the similarity be-

tween graphlets, a similarity measure is required. In the color chan-
nel, the appearance similarity between graphlets can be measured
by a Gaussian kernel, i.e., Sc

i,j ∝ exp
(−||xc

i − xc
j ||2/σ2

)
, where

xc
i describes the color channel graphlets by a 9-dimensional color

moment (CM) [25], and σ2 is the empirical variance.
1In this work, parent-categories are super-categories one layer
higher than the those in the current layer.

Figure 5: Detecting discriminative object parts using the dense
graph mining technique. Each purple vertex denotes a graphlet
and each edge connects pairwise similar graphlets.

Though it is common to use color channel as the similarity met-
ric for object classification. It is not sufficiently descriptive for our
object parts detection. HOG [24] based sliding window is standard
for object detection. Thus, the similarity between graphlets is cal-
culated by combining both the CM and the HOG descriptors:

Si,j = Sc
i,j · St

i,j , (3)

where St
i,j denotes the similarity in the textural channel, which is

computed similarly to Sc
i,j .

4.2 Mining Dense Subgraphs by Graph Shift
To effectively discover dense subgraphs from an affinity graph,

two conditions are required. First, compatibility with graph repre-
sentation: many similarity metrics are defined based on binary rela-
tion, such as our color+texture-based similarity. Only graph-based
clustering can utilize this pairwise relation directly. Second, robust-
ness to outliers: many graphlets, such as those from the background
and highly occluded, may not belong to any sub-category. Methods
insisting on partitioning all input data into coherent groups without
explicit outliers may fail to preserve the structure of sub-categories.
Conventional clustering algorithms, e.g., k-means, are not suitable
here as they insist on partitioning all the input data. Comparatively,
graph shift [26], which is efficient and robust for graph mode seek-
ing, is particularly suitable for the discriminative graphlet mining.
It directly works on graph, supports an arbitrary number of clusters,
and leaves the outlier points ungrouped.
Formally, we define an individual graph G = (V,A) for each

category, V = {v1, v2, · · · , vNi} is a set of vertices denoting the
graphlets extracted from images in category i. A is a symmetric
matrix with non-negative elements. The diagonal elements of A
are one while the non-diagonal element measures the similarity be-
tween graphelts, as detailed in (3). The modes of a graphG are de-
fined as local maximizers of graph density function g(y) = yT Ay,
y ∈ ∆Ni , where ∆Ni = {y ∈ RNi : y ≥ 0 and ||y||l1 = 1}.
More specifically, the similarity between graphlets is expressed as
the edge weights of graph G. The vertices represent the graphlets
corresponding to a category. Therefore, discriminative object parts
correspond to vertices of those strongly connected subgraphs. It
is worth emphasizing that those strongly connected subgraphs cor-
respond to large local maxima of g(y) over simplex, which is an
approximation of the average affinity score of these subgraphs.
The target patterns are the local maximizers of g(y), which are

detected by solving the quadratic optimization problem as follows:

max
y

g(y) = yT Ay, s.t. y ∈ ∆n, (4)

Obtaining an analytic solution of (4) is difficult. Therefore, we
employ replicator dynamics to find the local maxima of (4). Given



an initialization y(0), the corresponding local solution y∗ can be
iteratively computed by the discrete-time version of the first-order
replicator equation:

yi(t + 1) = yi(t)
(Ay(t))i

y(t)T Ay(t)
. (5)

5. HIERARCHICAL GRAPHLET MATCH-
ING KERNEL

After discovering the discriminative graphlets for each sub-/super-
category, each image can be represented by a collection of planar
visual features in R2. Unfortunately, conventional classifiers such
as SVM can only handle 1-D vector form features. Moreover, the
number of discovered graphlets from each image varies. Thus, it
would be impractical for a conventional classifier such as SVM
to carry out classification directly. To tackle this problem, a hi-
erarchical graphlet kernel is calculated by quantizing the extracted
graphlets from an image into a 1-D vector.

The proposed quantization method is built upon the Euclidean

 ! " #
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Figure 6: Hierarchical graphlet matching kernel calculation.

distance between images, which is computed based on the extracted
graphlets. As shown in Figure 6, given an image, discriminative
graphlets corresponding to sub- and super-categories are extracted.
The extracted graphlets are then converted into a vectorB = [β1, β2,
· · · , βM ], where each element of B is computed as:

βi ∝ exp

(
− 1

T · T ′
3∑

i=1

∑
G∈Hi

G′∈H′
i

dE(f(G), f(G′))

)
, (6)

where dE(·, ·) is the Euclidean distance; M is the number of train-
ing images; T and T ′ denote the number of discovered graphlets
in image I and I ′; Hi and H′

i contains the discovered graphlets in
the i-th level category, from image I and I ′ respectively; f(G) and
f(G′) are the combined color and texture descriptors of graphletG
and G′.
Based on the feature vector B, a multi-class SVM is trained for

fine-grained label prediciton. For the training images from the p-th
and the q-th sub-categories, we construct a binary SVM classifier
as:

max
α∈RMpq

W (α) =
∑Mpq

i=1
αi − 1

2

∑Mpq

i=1
αiαj liljk(Bi,Bj)

s.t. 0 ≤ αi ≤ C,
∑Mpq

i=1
αili = 0, (7)

where Bi ∈ RM is the quantized vector from the i-th training im-
age; li is the category label (+1 for the p-th sub-category and -1
for the q-th sub-category) to the i-th training image; α determines
the hyper-plane that separates images in the p-th sub-category from
those in the q-th sub-category; C > 0 trades the complexity of the
machine off the number of nonseparable images; and Mpq is the

number of training images either from the p-th or from the q-th
sub-category.
We summarize the procedure of our fine-grained image catego-

rization framework in Algorithm 1.

Algorithm 1 Fine-grained Image Categorization based on Dense
Subgraph Mining

//Training stage:
Input: Training images {I1, I2, · · · , IM} and their sub-category labels;
Output:Discovered object parts, and the trained SVM classifier.
1) Extract graphlets from the M training images, and build a category
hierarchy based on KL-divergence;
2) Construct an affinity graph to model the similarity between graphlets,
based on (3). Then apply dense graph mining technique to discover
discriminative graphlets to each sub-/super-category;
3) Calculate an image kernel using the discovered graphlets from the
training data using (6); learn a multi-class SVM.
//Testing stage:
Input: A test image Itest; Output: the sub-category label of Itest;
1) Extract graphlets from the image Itest, discover the discriminative
object parts by dense graph mining;
2) Compute the vector representation of Itest based on (6), and use
the trained SVM to predicted its sub-category label.

6. EXPERIMENTS
In this section, we evaluate our fine-grained recognition model

based on four experiments. The first experiment compares our ap-
proach with some previous categorization models. Then, we testify
the important components in our model. Third, we evaluate the
influence of different parameter settings. Finally, we visualize the
detected discriminative graphlets, which can explain the impressive
performance of our approach.
We experiment on four popular fine-grained data sets: the CUB-

200 [32], the Standford dogs [20], the Oxford flowers [21], and the
Leeds butterflies [33]. Different from the other fine-grained cate-
gorization models we compared, our approach does notrequire the
object or object part annotations in the four data sets.

6.1 A Comparative Study
This section compares our method with 1) a series of SPM-based

generic classification models, and 2) several well-known fine-grained
recognition models.
We first compare our method with SPM [27] and its two variants:

SC-SPM [28] and LLC-SPM [29]. The parameter settings are as
follows. For SPM, SC-SPM, and LLC-SPM, we construct a three
layer spatial pyramid. Then we extract nearly one million SIFT
descriptors from 16× 16 patches computed over a grid with spac-
ing of eight pixels for all the training images. Finally, a codebook
with size 256 is generated by k-means clustering on the one million
SIFT descriptors. For our method, a three layer superpixel pyramid
is constructed. Each image is represented by nearly 150 (i.e., 110
(the 3rd layer)+ 30 (the 2nd layer)+10 (the 1st layer)) graphlets
mined from the superpixel hierarchy. For each of the three data
sets, 30% and 50% images are used for training respectively, while
the rest are for testing. We report the categorization accuracy in Ta-
ble 1. As can be seen, the proposed method outperforms SPM and
its two variants. This is because the discovered graphlets from mul-
tiple pyramid layers are more descriptive to object parts than the
grids in the SPM. Further, our algorithm performs better than Rus-
sakovsky et al. [4]. This reflects the advantage of mining object-
shape parts for fine-grained categorization.
Besides, we compare our method with five recent fine-grained

categorization models that are proposed by Yao et al. [12], Berg et
al. [14], Duan et al.[17], Angelova et al.[18], and Zhang et al.[31],
respectively. The parameters are the same as in the publication.



Table 1: Comparison of of our approach with SPM-based mod-
els

Method CUB-200 Leeds SF dogs OF flowers

30% train

SPM 35.4% 31.6% 17.65% 62.23%
SC-SPM 38.9% 32.4% 18.23% 63.35%
LLC-SPM 38.7% 31.9% 18.01% 64.11%
Russakovsky 41.9% 36.4% 19.26% 65.58%

Our 44.1% 39.6% 20.6% 68.87%

50% train

SPM 40.1% 36.4% 17.65% 63.2%
SC-SPM 44.3% 39.1% 18.42% 70.34%
LLC-SPM 44.1% 37.7% 19.68% 72.13%
Russakovsky 47.8% 74.32% 41.3% 19.38%

Our 49.1% 47.7% 25.78% 76.47%

Different proportion of training images are adopted by selecting
30%, 50%, and 70% training images respectively. As shown in
Figure 7, our approach outperforms its competitors. Noticeably,
the first three approaches depend on the bird parts annotation dur-
ing training. However, our method can detect tiny object parts from
unannotated images automatically.

Figure 7: Comparison of the five state-of-the-art fine-grained
categorization models on the CUB-200

6.2 Important Components Evaluation
In this experiment, we evaluate the two key components in our

method: 1) the KL-divergence-based category hierarchy, and 2) the
dense-graph-mining-based discriminative graphlets discovery.

Component 1We calculate the distribution of the matched SIFT
descriptors from images in each sub-category. For the testing im-
ages in the CUB-200, we manually annotate the distinctive object
parts, i.e., bird beak, head, body, tail and claw. Then, graphlets cor-
responding to the five parts are represented as differently colored
points in the scatter plots. As shown in the first two rows of Fig-
ure 8, we select 10 scatter plots from the 200 bird sub-categories.
As can be seen, in each sub-category, SIFT descriptors from dis-
criminative object parts are densely distributed. And the SIFT dis-
tribution of each sub-category is unique. Therefore, the KL-divergence
between SIFT distribution of two sub-categories can quantify their
similarity. In addition, we visualize SIFT distribution by combin-
ing sub-categories randomly. As shown in the last row of Fig-
ure 8, SIFT descriptors from discriminative bird parts are dispers-
edly scattered, since the appearance of the discriminative bird parts
are different across sub-categories.

Component 2To evaluate the second component, we compare
the affinity graph constructed based on different local descriptors

in each image: 10 × 10/20 × 20 grids respectively, and 100/400
superpixels respectively. As the scatter plots shown in Figure 9,
different discriminative object parts are densely distributed in the
constructed affinity graph. These discriminative object patterns can
be easily discovered by graph shift [26]. Comparatively, affinity
graphs generated using the above four schemes are sub-optimal, as
different object parts are mixed. Besides the qualitative results, we
further calculate the ratio of accumulated distance within and be-
tween sub-categories as in LDA [19]. As shown in Table 2, the
lowest ratio is achieved by our graphlet-based affinity graph.

6.3 Parameters and Time Consumption
This subsection evaluates the performance of our approach un-

der different parameter settings: 1) the structure of the category
hierarchy; and 2) the number of outliers (i.e., non-discriminative
graphlets) in graph shift [26].

First, we evaluate our approach under different ratios between

2 3 45 6 78 9 1 01 1 1 2 1 31 4 1 5r d n d
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Figure 10: Influence of fine-grained categorization under the
influence of the structure of the three layer category hierarchy.

the number of categories from the (i + 1)-th layer and that from
the i-th layer (i = 1, 2). As shown in Figure 10, when the ratio
between the third and the second layer is tuned from 2 to 15, the
categorization accuracy increases and peaks when the ratio is seven
or eight. Then, the category accuracy decreases to a low level. Fur-
ther, we notice that the best performance is achieved when the ratio
between the second and the first layer is seven. Based on this, we
set the ratio between the (i+1)-th layer and that from the i-th layer
to seven in our experiment.

Second, we evaluate our approach when different numbers of
outliers are adopted in the graph shifting [26] algorithm. As shown
in Figure 11, when a small or a moderate number of outliers are
used, our graph-shifting mining outperforms the conventional clus-
tering algorithms such as k-means [23] and spectral clustering [30].
This is consistent with the theoretical analysis in Sec 4.2. When a
large number of outliers are used, some discriminative graphlets
are abandoned in the fine-grained categorization, which hampers
the fine-grained categorization.
The time consumption analysis of the proposed method is as fol-

lows. All experiments are carried out on a computer equipped with
an Intel Xeon X5482 CPU and 8GB RAM. All the comparative al-
gorithms are implemented on the Matlab 2011 platform. Take the
CUB-200 [32] for example, there are about 12,000 images in total.
We use a half images for training. For each image, it takes about
0.12 seconds to extract all the graphlets (1330 graphlets in each im-
age on average) based on the depth-first-search [43]. Then, it takes



Figure 8: The first two rows: Distribution of SIFT descriptors from images belonging to the same sub-category. The last row:
Distribution of SIFT descriptors from images from two and three sub-category (red points: beak, pink points: head, blue points:
body, green points: tail, and cyan points: claw).
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Figure 9: Affinity graphs generated using different schemes.

Table 2: The ratio φ = Sw/Sb of affinity graphs generated using different schemes
Data set 10× 10 grids 20× 20 grids 100 superpixels 400 superpixels graphlets
CUB-200 0.0121 0.0171 0.008 0.0076 0.0042

Table 3: Comparison of Time Consumption of Different Categorization Models
Model SPM SC-SPM LLC-SPM Yao etal. Berg etal. Duan et al.
Time 0.76 seconds 1.12 seconds 0.87 seconds 2.34 seconds 1.05 seconds 1.37 seconds
Model Algelova et al. Zhang et al. [31] Walk kernel Tree kernel PM
Time 2.13 seconds 1.34 seconds 2.87 seconds 3.34 seconds 0.51 seconds



Figure 11: Performance under different number of outliers in
the graph-shift-based discriminative graphlet discovery.

about 0.16 seconds to construct the KL-divergence-based category
hierarchy. The dense graph mining for all training graphlets takes
5.23 minutes. Finally, the graphlet-based kernel construction and
SVM learning take 1.21 minutes. Therefore, our training stage con-
sumes about 20 minutes. Comparatively, the test stage is carried
out rapidly. Given a test image, it takes 0.12 seconds to extract the
graphlets and 0.31 seconds to detect the discriminative graphlets.
Then, it consumes 0.06 seconds to calculate the feature vector as
shown in Figure 6. Finally, the SVM classification takes 0.02 sec-
onds. In total, it takes 0.51 seconds to predict the category label
of a test image. In Table 3, we present the average time consump-
tion of categorizing an image using different models. Our model
requires the lowest time to predict the fine-grained category label
for an image.

6.4 Visualization of the Discovered Graphlets
This subsection visualizes the discovered discriminative object

parts from the CUB-200 [32]. As shown in Figure 12, by utilizing
the dense graph mining technique, our approach seamlessly con-
structs the discriminative/salient objects in each image. Discrimi-
native object parts with multiple sizes are captured by superpixel
hierarchy from multiple layers. Our approach can accurately local-
ize tiny object parts and then seamlessly capture them by graphlets.
This is the underlying reason why the fine-grained categorization
accuracy can be greatly improved by our approach.

7. CONCLUSIONS
This paper presents a novel fine-grained image categorization al-

gorithm. The key is a graph mining algorithm that detects discrim-
inative object parts with multiple scales. By extracting graphlets
from the training images, an affinity graph was constructed to de-
scribe their similarity. Since discriminative object parts are densely
distributed in each sub-category, we used graph shift [26] to mine
them efficiently. Finally, these discovered object parts were en-
coded into an image kernel for categorization.

8. APPENDIX
Theoretically, our hierarchical graphlet-based image kernel is an

extension of many existing image kernels. This can uncover the
good performance of our method.
The proposed image kernel is closely related to several graph-

based image kernels: walk-/path-/tree-kernels [5] and the two graphlet

kernels [8, 42]. As elaborated in Figure 13, graphlet can generalize
topologies like path, walk, and tree. Each of the three topologies
have certain constraints (e.g., the hierarchical structure of the tree).
In addition, in Zhang et al. [42]’s model, all the graphlets from
an image are integrated into the kernel. Some graphlets might be
non-discriminative or even noisy. Moreover, Zhang et al. [8] se-
lects graphlets in the topology level. This scheme is less effective
as graphlets with the same topology may have different discrimina-
tion. In summary, the graphlet kernel in our work either generalizes
or improves the previous graph-based image kernels.

Figure 13: Topologies in different image kernels (The yellow
arrows in the walk kernel indicate that each vertex can be re-
visited.)
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