Geoinformatica
DOI 10.1007/s10707-013-0199-6

Large-scale geo-tagged video indexing and queries

He Ma - Sakire Arslan Ay - Roger Zimmermann -
Seon Ho Kim

Received: 14 December 2012 / Revised: 8 August 2013 / Accepted: 28 November 2013
© Springer Science+Business Media New York 2013

Abstract With the wide spread of smartphones, a large number of user-generated videos
are produced everyday. The embedded sensors, e.g., GPS and the digital compass, make it
possible that videos are accessed based on their geo-properties. In our previous work, we
have created a framework for integrated, sensor-rich video acquisition (with one instanti-
ation implemented in the form of smartphone applications) which associates a continuous
stream of location and viewing direction information with the collected videos, hence
allowing them to be expressed and manipulated as spatio-temporal objects. These sensor
meta-data are considerably smaller in size compared to the visual content and are helpful
in effectively and efficiently searching for geo-tagged videos in large-scale repositories. In
this study, we propose a novel three-level grid-based index structure and introduce a num-
ber of related query types, including typical spatial queries and ones based on bounded
radius and viewing direction restriction. These two criteria are important in many video
applications and we demonstrate the importance with a real-world dataset. Moreover, exper-
imental results on a large-scale synthetic dataset show that our approach can provide a

H. Ma (<) - R. Zimmermann
School of Computing, National University of Singapore, Singapore 117417, Singapore
e-mail: mahe @comp.nus.edu.sg; he.ma@nusri.cn

R. Zimmermann
e-mail: rogerz@comp.nus.edu.sg

S. Arslan Ay

School of Electrical Engineering & Computer Science, Washington State University,
355 Spokane St. Pullman, Washington, DC 99164-2752, USA

e-mail: sakire.arslanay @ wsu.edu

S. H. Kim
Integrated Media Systems Center, University of Southern California, Los Angeles, CA 90089, USA
e-mail: seonkim@usc.edu

H. Ma

Center of Interactive Media and Software Development, National University of Singapore (Suzhou)
Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiang Su 215123,

People’s Republic of China

Published online: 28 December 2013 4\ Springer

mailto:mahe@comp.nus.edu.sg
mailto:he.ma@nusri.cn
mailto:rogerz@comp.nus.edu.sg
mailto:sakire.arslanay@wsu.edu
mailto:seonkim@usc.edu

Geoinformatica

significant speed improvements of at least 30 %, considering a mix of queries, compared to
a multi-dimensional R-tree implementation.

Keywords Geo-taggeed video search - Grid-based index - Meta-data generation -
Query processing

1 Introduction

With the recent developments in the video capture technology, a large number of user-
generated video (UGV) are produced on a daily basis. For example, the smartphones, which
are carried by users all the time, have become extremely popular in capturing and sharing
online videos due to their handiness, enhanced quality of images and wireless bandwidth.
YouTube [23] has indicated that by the end of July 2013, over six billion hours of videos
are watched each month and 100 hours of video are uploaded every minute. 25 % of global
YouTube views come from mobile devices. According to another study from Cisco [5],
the overall mobile data traffic reached 885 petabytes per month at the end of 2012, 51
percent of which is on mobile video. It is forecast that mobile video traffic will grow at a
Compound Annual Growth Rate (CAGR) of 75 percent between 2012 and 2017 and reach
at 7.4 exabytes per month by 2017. In the presence of a huge size video depository such as
YouTube, effectively and efficiently searching such a repository for meaningful results is
still a challenging problem. Current video search techniques that annotate videos based on
the visual content are struggling to achieve satisfactory results in online UGVs, particularly
in accuracy and scalability.

Alternatively, the embedded sensors (e.g., GPS and compass units) have been cost-
efficiently deployed on video cameras. Consequently, the related meta-data of videos,
especially geographical properties of video scenes can easily be collected during video
capturing. This association of video scenes and their geographic meta-data has raised inter-
esting research topics in the multimedia community, for example, the captured sensor
meta-data can be utilized to aid in modeling, indexing and searching of geo-tagged videos
at the high semantic level preferred by humans.

In our earlier work [1], we proposed to model the coverage region (i.e., field of view, and
FOV for short) of video frames as a pie-shaped geometric area described by the geospatial
sensor data, such as camera location, viewing direction and visible distance. This approach
treats the visual content as a series of spatial objects. Compared to visual content, the
meta-data occupies much less space, which makes searching among large scale of videos
practical. Consequently, the challenging video search problem is transformed into a known
spatial data selection problem. The objective is then to index the spatial objects and to
search videos based on their geographic properties. Our previous study [15] demonstrated
the effectiveness of geographic sensor meta-data for searching a huge amount of videos.

For a practical implementation of search engine with a large amount of geo-tagged
videos and their associated geospatial meta-data, there remain some other critical issues
to be resolved. For example, the performance of searching sensor meta-data should effi-
ciently handle large video depositories (such as YouTube). Therefore, it is essential to
develop a study of high performance index structure which can effectively harness the cap-
tured geospatial meta-data. The widely used index structures, i.e., the R-tree [10] (and/or
its variations [3, 22]) has been the chosen structure to index geometric figures. However, its
performance deteriorates as the number of figures indexed increases greatly. Assuming all

@ Springer

Geoinformatica

videos in a huge depository are represented using sensor meta-data, i.e., streams of geospa-
tial objects, a R-tree may suffer significantly to provide enough search performance due to
its increased heights.

Furthermore, from the semantic perspective, in searching videos through their geo-
graphic coverage, distance and direction are two important criteria that can help to improve
query functionality. Not every view from any direction or distance to a location is distinctive
or attractive to users [24]. For example, people are searching for a video that records a large
building (e.g., the Marina Bay Sands Hotel). Some people would like to see the panoramic
view while others prefer to discover a specific part of the building. In such application,
searching videos based on distance helps to accelerate the query processing and retrieve
meaningful results to end-users. However, due to the large geographical coverage region of
the FOV, indexing FOVs with a R-tree or its variations can only provide overlap calculation
but not prune any unnecessary search on-the-fly if the query is with distance restriction.
Moreover, searching for videos captured from a specific direction is helpful in applications
such as event reviews and video summaries. Another possible application can be to automat-
ically extract panoramic images of a building from a video and use these images to construct
the 3D model of the building. With the viewing direction information of the camera, we
can select the smallest subsets from the images, which are with complete coverage but least
redundant details, to finish the target. The R-tree can support this query functionality by
adding one more dimension, but its performance will deteriorate.

The above drawbacks with the R-tree based structures on searching large-scale geo-
tagged videos raise the question that it is essential to develop a study of high performance
index structure which can effectively harness the captured geospatial meta-data. An
important observation is that the geo-space is bounded while the number of videos is
almost un-bounded. Based on this observation, we propose a new three-level grid-based
index structure for geo-tagged video search by fully utilizing their geographic proper-
ties. Specifically, this index structure is created to allow efficient access of FOVs based
on their distance to the query location and the cameras viewing direction. Based on
these criteria, we introduce a number of related query types which support better human
perception of images in resulting videos, including typical spatial queries (i.e., point
queries, range queries, and kNN queries) and the queries with bounded radius or direction
restriction.

Among these, the most unique query types proposed in this work is Nearest Video
Segments query (k-NVS). This query retrieves the k closest video segments that show a
given query point. k-NVS query can significantly enhance human perception and deci-
sion in identifying requested video images, especially when search results return a large
number of videos in a highly populated area. Moreover, the query can additionally spec-
ify a bounded radius range to get the closest video segments that show the query point
from a distance within a given radius range. Alternatively, the query may specify a cer-
tain viewing direction to specifically retrieve the k closest segments that show the query
point from that direction, which is critical in human perception of objects. Similarly,
k-NVS can serve as a useful feature for video browsing applications. For example, on
a map-based interface the videos that show important landmarks from the user’s view-
ing point can be quickly retrieved as the user navigates by issuing continuous k-NVS
queries.

In the remaining sections of the manuscript we describe our geo-tagged video index-
ing and searching approach, and report on an extensive experimental study with a synthetic
dataset. The results we have obtained illustrate that the three-level grid index structure

@ Springer

Geoinformatica

supports new geospatial video query features. It efficiently scales to large datasets and sig-
nificantly speeds up the query processing (compared to the R-tree) for finding the related
video segments, especially for queries with direction. The rest of this paper is organized as
follows. Section 2 provides the background information and summarizes the related work.
Section 3 details the proposed data structure. Section 4 introduces the new query types and
details the query processing algorithms. Section 5 reports the results on the performance
evaluations of the proposed algorithms. Finally, Section 6 concludes the paper.

2 Background and related work
2.1 Modeling of camera viewable scene

The camera viewable scene is what a camera in geo-space captures. This region is referred to
as camera field-of-view (FOV in short) with the shape of a pie-slice [1]. The FOV coverage
in 2D space can be defined with four parameters: the camera location P, the camera view-
ing direction vector 7, viewable angle «, and maximum visible distance Ry (see Fig. 1).
The location P of camera is the < latitude, longitude > coordinate reading from a posi-
tioning device (e.g., GPS and/or Cricket coordinates [20]). The camera viewing direction
vector d is acquired from a digital compass. We use 6 to represent its value with respect to
the North. The camera viewable angle («) is calculated based on the camera and lens prop-
erties for the current zoom level [8]. The visible distance Ry is the maximum distance at
which a large object within the camera’s FOV can be recognized. Then, the camera viewable
scene at time t is denoted by the tuple FOV (P (lat,Ing), 0, a, Ry, t). These geospatial
meta-data can be obtained from the embedded sensors during the video recording.

2.2 Related work

Associating geo-location and camera orientation information for video retrieval has become
an active topic. Research [25] used the 3D geo-data to help on video mosaicing for environ-
ment monitoring. Hwang et al. [11] and Kim et al. [12] proposed a mapping between the 3D
world and the videos by linking the objects to the video frames in which they appear. Their
work used GPS location and camera orientation to build links between video frames and
world objects. Liu et al. [14] presented a sensor enhanced video annotation system (referred
to as SEVA). Navarrete and Blat [16] utilized geographic information to segment and index
video. Our prior work [1] proposed a viewable scene model to link the video content and
sensor information. However, none of the above methods addresses indexing and searching

P <latitude, longitude>:
camera location

o; viewable angle

d: camera direction vector
R,: visible distance

Fig. 1 Illustration of the field-of-view (FOV) model in 2D space

@ Springer

Geoinformatica

issues based on the geo-properties of the videos, on the large scale, especially for processing
queries with distance and direction restrictions.

Our approach represents each video frame as a spatial object. There exist two categories
of spatial data indexing methods: data-driven structures and space-driven structures [21].
The R-tree family (including R-tree [10], R -tree [22], R*-tree [3]) belongs to the category
of data-driven structures. Guttman [10] proposed the R-tree, which is a dynamic tree data
structure, as an extension of the ubiquitous B-tree in multi-dimensional space, for spatial
data indexing. Each node in the R-tree is represented as a bounding rectangle. To access a
node of the indexed collection, one typically follows a path from the root down to one or
several leaves, testing each bounding rectangle at each level for either containment or over-
lap. However, these methods are designed mainly for supporting efficient query processing
when the construction and the maintenance of the data structure is computationally expen-
sive. The space-driven structures include methods such as the grid file [17], quadtree [7],
and Voronoi diagram [19]. Recent researches use either the grid structure [4], the skip
quadtree [6] or Voronoi diagram [18] to process multiple types of queries. These structures
split the cell when the maximum capacity is reached. The difference is that each time the
grid file splits the cell into two while quadtree splits it into four. Moreover, indexing using
Vonoroi diagram keeps safety region for each object so as to quickly process kNN query.
However, these data structures consider spatial objects as points or small rectangles, and
none of them are appropriate to index our FOV model. The reason is that the FOV model
has a large coverage region and consecutive FOVs have large overlap region. This results
in the difficulty in partitioning the space while guaranteeing each FOV only belongs to one
cell without cell overlapping.

Our prior work [13] proposed a vector-based approximation model to efficiently index
and search videos based on the FOV model. It mapped an FOV to two individual points
in two 2D subspaces using a space transformation. This model works well on supporting
the geospatial video query features, such as point query with direction and bounded dis-
tance between the query point and camera position. However, it does not investigate query
optimization issues. The vector model works effectively for basic query types, such as
point and range query, however does not support the k-NVS query. Moreover, there was no
consideration in scalability. Next, we will introduce the proposed three-level index structure.

3 Grid based indexing of camera viewable scenes

We present our design of the memory-based grid structure for indexing the geographic cov-
erage area of each camera viewable scene. The grids can cover the whole Earth but only
those are recorded by videos are indexed. The proposed structure constructs a three-level
index, where the first level indexes the video FOVs according to location, the second level
indexes them based on the distance to the overlapping cell, and the third level builds an
index based on FOV viewing direction. That is, the FOV is indexed by any first level cell if
its coverage region overlaps with the cell. If the FOV overlaps with the first-level cell, the
distance between the camera location P and the center of the first-level cell is then indexed
in the second-level cell by which subcell P locates. The proposed three-level index struc-
ture is illustrated in Fig. 2. The collections of cells at the first, second, and third level are
denoted by Cy1, Cy2, and Cy3, respectively, and s is a system parameter indicating the num-
ber of subcells within a row or a column. Note that, each level of the index structure stores
only the ID numbers of the FOVs for the efficient search of the video scenes. The actual
FOV meta-data (i.e., P, 6, o, Ry and ¢ values) are stored in a MySQL database where the

@ Springer

Geoinformatica

T
—

Cy /}(m,n) FOVy (1)
/ FOVy,(7))

FOV, (1)
X v yas i
F R 7 7~ FOVy,(725)
C 77 77X 7 Z
7 == == 7~ 54 ..\./J'()
// ¢ // ~ // // ~
K 7 7 FOVy.(77)
/. \ N / /. +

X FOV, (1
0 2 0 D)
C (x";2x") (x5 2x) FOV\,’h (fl’;)
i " |]

(360x°;360°),7,/(360-x";360°) FOV meta-data

Fig. 2 The three-level grid data structure

meta-data for a particular FOV can be efficiently retrieved through its ID number. Figure 3
illustrates the index construction with an example of a short video file. In Fig. 3c, only the
index entries for the example video file are listed.

The first level organizes the embedding geo-space, which covers all the regions that geo-
tagged videos are recording, as a uniform coarse grid. The space is partitioned into a regular
grid of M x N cells, where each grid cell is an § x § square area, and § is a system parameter
that defines the cell size of the grid. A specific cell in the first-level grid index is denoted
by Cy¢i(row, column) (assuming the cells are ordered from the bottom left corner of the
space). The 2D geographical coverages of the FOVs are indexed in this coarse grid structure.
Specifically, FOVs are mapped to the grid cells that overlap with their coverage areas and
each grid cell maintains the IDs of the overlapping FOVs. In Fig. 3c, the set of FOVs that
overlap with the first-level cells are listed in the upper table.

The second-level grid index organizes the overlapping FOVs at each first-level cell based
on the distance between the FOV camera locations and the center of the cell. To construct
the second-level grid, each Cy cell is further divided into s x s subcells of size (‘; X ‘;),
where each subcell is denoted by Cya(f, g) (see Fig. 2). s is a system parameter and defines
how fine the second-level grid index is. For each first level grid cell Cy (m, n), we maintain
the range of the second-level subcells, covering the region in and around Cyj(m, n) and
containing all the FOVs that overlap with the cell Cyq(m, n). In Fig. 2, the shaded region
at C¢p shows the range of Cy subcells corresponding to the first-level cell Cyq(m, n). Note
that the FOVs whose camera locations are at most Ry away from cell Cy; (m, n), will also be
included in that range. In the example shown in Fig. 3, the second-level range for Cy (m, n)
includes all subcells Cya(1, 1) through C¢2(8, 8). While the first-level cells hold the list of
the FOVs whose viewable scene areas overlap with the cell, the second-level subcells hold
the list of FOVs whose camera locations are within those subcells. For example in Fig. 3c,
the table in the middle lists the non-empty second-level subcells and the set of FOV IDs

@ Springer

Geoinformatica

C(8.8)
A

; Cll C,(mn-1) |FOVI, FOV2, FOV3
FOVI, FOV2, FOV3,
Ca(mn) | rov4, FOVS, FOV6
Cu(m*1n-1) %mﬂ,nﬂ) /\ C,(mn+1) |FOV6
|~ / ovel_— C,(m+1,n) |FOV6
C,y(m+1,n+1)| FOV6
Fovi | Cp,[Cae2) rovaFovs
DT faia | C,(44) |FOV4
F Vl% H ‘% FO §7>\I C,(5.1) _|FOVI
\Z\ C,(54) _|FOV5
Cpy(mn-1) Cy(mant1) Co(66) | FOV6

Cy;[045> [rove
450900 |FOV2 FOV3 FOV4,

FOVS5,FOV6
g 90°-135°_| FOV1, FOV2, FOV3
3:(1,1) s=4 x =45° e=15°
(a) First-level grid. (b) Second-level grid. (c) Index tables.

Fig. 3 Illustration of Index construction. a First-level grid. b Second-level grid. ¢ Index tables

assigned to them. In order to retrieve the FOVs closest to a particular query point in the cell
Cy¢1(m, n), first, the second-level cell Cp2(f, g) where the query point resides is obtained,
and then the FOV IDs in and around subcell C¢y(f, g) are retrieved. The second-level index
enables the efficient retrieval of closest FOVs in the execution of queries with bounded
radius restriction, e.g., a k-NVS (k Nearest Video Segments) query.

The first- and second-level grid cells hold the location and distance information only,
therefore cannot fully utilize the collected sensor meta-data, such as direction. Direction can
be an important cue in retrieving the most relevant video results when the videos showing
the query location from a certain viewpoint are of higher interest. To support the directional
queries we construct a third-level in the index structure that organizes the FOVs based on
the viewing direction. The 360 ° angle is divided into x ° intervals in clockwise direction,
starting from the North (0 °). We assume an error margin of +¢° around the FOV orientation
angle 6°. Each FOV is assigned to one or two of the view angle intervals with which its
orientation angle margin (6° % €°) overlaps. The value of ¢ can be customized based on
the application. In Fig. 3c, the lower table lists the third-level index entries for the example
video forx =45°and ¢ = 15°.

For a video collection with about 2.95 million FOVs, the index size for the three-level
index structure is measured as 1.9 GB. As the dataset size gets larger the index size grows
linearly. For example, for datasets with 3.9 million and 5.4 million FOVs, the index size is
measured as 2.5 GB and 3.3 GB, respectively. In our experiments in Section 5, we report
the results for a dataset of 5.4 million FOVs. Next we will describe the query processing for
various query types.

4 Query processing

We represent the coverage of a video clip as a series of FOVs where each FOV corresponds
to a spatial object. Therefore the problem of video search is transformed into finding the
spatial objects in the database that satisfy the query conditions. In searching video meta-
data, unlike a typical spatial query (i.e., point queries, range queries and kNN queries), the
query may enforce additional application specific parameters. For example, it may search
with a range restriction for the distance of the camera location from the query point, which is
interpreted as the query with bounded radius. Or the query may ask only for the videos that

@ Springer

Geoinformatica

show the query location from a certain viewpoint, then it may restrict the FOV direction to a
certain angle range around the specified viewing direction, which is interpreted as the query
with direction. In this section we introduce several new spatial query types for searching
camera viewable scenes. We will formulate these query types in Section 4.1. All the queries
work at the FOV level. In Section 4.2 we will provide the details about the query processing
and present the algorithms of the proposed queries.

4.1 Query definitions

Let FOV,, = {FOV,;(),i = 1,2, ..., 7j} be the set of FOV objects for video v; and
let FOV = {FOV,;,j = 1,2, ..., m} be the set of all FOVs for a collection of i videos.
Given FOV, a query ¢ returns a set of video segments {VSv/. (s, e)}, where VSv/. (s,e) =
{F 0] ij (i), s<i< e} is a segment of video v; which includes all the FOVs between
FOV,, (s) and FO W, (e), where i stands for the ith frame, and < s, e >. denotes the
starting and ending frame of a video segment respectively.

Definition 1 Point Query with Bounded Radius (PQ-R):

Given a query point g in geo-space and a radius range from MINg to M AXg, the PQ-R
query retrieves all video segments that overlap with ¢ and whose camera locations are at
least MI Ny and at most M AX g away from g, i.e.,

PQ-R(q, MINg, MAXR) :
g x FOV — {VSUj(s,e), where Vj Vi s < i < e such that FOVUj(i) Ng #9,
and MINg < dist(P(FOVy,(i)),q) < MAXRg},

where P returns the camera location of an FOV and function dist calculates the distance
between these two points. Here, we define N as the geographic overlap between the two
factors.

Definition 2 Point Query with Direction (PQ-D):

Given a query point g in geo-space and viewing direction 3, the PQ-D query retrieves all
FOVs that overlap with g and that were taken when the camera was pointing towards
with respect to the North. The PQ-D query exploits the camera’s bearing to retrieve the
video frames that show the query point from a particular viewing direction. Since slight
variations in the viewing direction does not significantly alter the human perception, using
only a precise direction value B may not be practical in video search. Therefore a small
angle margin ¢ around the query view direction is introduced, and the query searches for
the video segments whose directions are between § — ¢ and 8 + .

PQ-D(q, B):
g x FOV — {VSUj(s,e), where Vj Vi s < i < e such that FOVUj(i) Ng #9,
and B —e < D(FOV,,(i)) < B +¢},

where D returns an FOV’s camera direction angle with respect to North.

Definition 3 Range Query with Bounded Radius (RQ-R):

Given a rectangular region g, in geo-space and a radius range from M1 Ng to M AXg, the
RQ-R query retrieves all video segments that overlap with ¢, and whose camera locations
are at least M I Ng and at most M A X g away from the border of g,. RQ-R definition is very
similar to PQ-R query, therefore we omit further details here.

@ Springer

Geoinformatica

Definition 4 Range Query with Direction(RQ-D):

Given a rectangular region ¢, in geo-space and a viewing direction §, the RQ-D query
retrieves all video segments that overlap with region g, and that show it with direction
interval between 8 — ¢ and B + €. We also omit the details for RQ-D query, as the definition
is similar to PQ-D query.

Definition 5 k-Nearest Video Segments Query (k-NVS):

Given a query point g in geo-space, the k-NVS query retrieves the closest k video segments
that show the query point g. The returned video segments are ordered from closest to the
farthest based on their distance to g.

k-NV S(q,k) :
g x FOV — {(VSUj (s1,€1), -- VSv/. (sk, ex)) where Vsy, e, (t = 1, .., k),
and VjVi s; <i < e, such that FOV,,(iYNqg # 9

dist(VSy,(sr.e0). q) < dist(V Sy, (1. er+1). @)} |

The function dist calculates the minimum distance between the camera locations of a video
segment and the query point.

Definition 6 k-Nearest Video Segments Query with bounded Radius (k-NVS-R):

The k-NVS-R query is similar to the k-NVS and PQ-R queries. Give a query point g in geo-
space and a radius range from M INg to M AXR, the k-NVS-R query retrieves the closestk
video segments that show the query point ¢ from a distance between MINg to MAXkg.
Similar to the k-N'VS query, the returned video segments are ordered from the closest to the
farthest based on their distance to g.

Definition 7 k-Nearest Video Segments Query with Direction (k-NVS-D):

The k-NVS-D query is also similar to the k-NVS and PQ-D queries. Given a query point
q in geo-space and a viewing direction B, the k-NVS-D query retrieves the closest k video
segments that show the query point g with the direction S.

4.2 Algorithm design

The query processing is performed in two major steps. In the first step, the FOVs (i.e., the
video frames) that satisfy the query conditions in the set FOV are retrieved. The returned
FOVs are grouped according to the video files that they belong to. And in the second step,
the groups of adjacent FOVs from the same videos are post processed to retrieve as the video
segments in the query results. We argue that, the length of the resulting video segments
should be larger than a certain threshold length for visual usefulness. For some query types,
such as RQ-R and RQ-D queries, the number of consecutive FOVs that match the query
requirements is usually large enough to form a reasonable length video segment, therefore
this post processing step is straightforward. However, for more restricted queries such as k-
NVS query, often the formed video segments may contain only a few FOVs. Therefore this
post processing step may add additional video frames to the video segments according to
the requirements of the search application.

Next we will further elaborate on these two major steps of the query processing. In
Section 4.2.1, we will describe the retrieval of the FOVs that match the query requirements
for each of the proposed query types. In Section 4.2.2, we will describe a simple approach
for the post processing of the retrieved FOVs to form the resulting video segments.

@ Springer

Geoinformatica

4.2.1 Query processing: retrieval of matching FOVs

In this section, we will present the algorithms for running the proposed query types on our
three-level grid structure. We will describe these queries under three groups: Point query
(PQ-R and PQ-D), Range query (RQ-R and RQ-D) and k-NVS query (k-NVS and k-NVS-
D). Within each query group, we will further elaborate on the direction and bounded radius
queries.

We retrieve the FOVs that match the query requirements in two steps: a filter step fol-
lowed by a refinement step. First, in the filter step, we search the three-level index structure
starting from the first level and then moving down to the second and third level, if needed.
The set of FOVs resulting set from the filter step are referred as the candidate set. In the
refinement step, an exhaustive method is applied to check whether an FOV actually satisfies
the query conditions.

Point Query The video segments, that show a certain object of interest at a specific location,
can be retrieved through the point query. When the object size is small, it would be preferred
to retrieve the close-up views of the object, with a reasonable size for better visual percep-
tion. The PQ-R query searches the video frames with a certain radius range restriction for
the distance of the camera locations from the query point, according to the required level
of details in the video. Additionally, the camera viewing direction when the query object
appears in the video can be an important factor for the image perception of the observer.
For example, an object’s images from a certain viewing direction (e.g., the frontal view,
when the object is viewed from the North) can be of higher importance. The PQ-D query
can exploit the collected camera directions for querying video segments when the camera is
pointing towards the requested direction (e.g., the North).

Algorithm 1: Point query with bounded radius (PQ-R) and direction (PQ-D).
Input: query type: gtype (PQ-R, or PQ-D), query point: g(lat,lng),
(for PQ-R) min and max radius: MINp, MAXpg,
(for PQ-D) viewing direction : 8
Output: vector segments (vj,VS(s¢,et))

1 Cypp = getCellID(q); /* First-level cell */
/* Point Query with bounded Radius */
2 if g_type is PQ-R then
3 Cyo = getSubCelllD(q); /* Second-level cell */
4 subCellsInR = applyRadius(q, Cy2, MINR, MAXR);
5 candidate FOV s = fetchData(subCellsInR);
6 end
/* Point Query with Direction */
7 if g_type is PQ-D then
8 Cy3 = getDirCelHD(Cgl,ﬁ,E); /* Third-level cell */
9 candidate FOV s = fetchData(Cpg);
10 end

11 res = refinementStep(candidate FOV s);
12 segments = getVideoSeg(res,q_type);
13 return segments

Algorithm 1 formalizes the query execution for point queries PQ-R and PQ-D. When
processing the point query, we first calculate the first-level cell ID Cy; where the query
point is located. For a typical point query (PQ), the candidate FOVs would include all FOV's
indexed at the cell Cyy. For the Point Query with bounded Radius (PQ-R), we addition-
ally apply the distance condition given by the radius range (M I Ng, M AXg). The function

@ Springer

Geoinformatica

applyRadius reduces the search area for the candidate FOVs in the second-level index by
eliminating the subcells outside of the radius range (see Algorithm 2). In function applyRa-
dius, we first retrieve the Cyo subcell where query point g is located. Then we find out all the
second-level subcells around Cy,, which are within distance range M I Nr to MAX g from
the query point. For example, in Fig. 4, according to the minimum (M I Ng) and maximum
(M AXR) distance conditions, only the FOVs located between the two dot circles will be
returned. Since this function works on subcell level, it takes all the subcells that overlap with
the region between two circles (i.e., the shadow region) into account. In this example, both
video frames FOV1 and F O V2 overlap with g. However, since the location of FOV?2 is
outside of the shadow region, it won’t be returned by the function applyRadius, and there-
fore FOV?2 will not be included in the candidate set. For the Point Query with Direction
(PQ-D), we check the third—level index cell to find cells that cover the query angle range
given by (8 —e¢, B+¢). We return the FOVs indexed in the cells {Cy3(h1), ..., Ce3(h2)} where
B — ¢ falls into the angle range of Cy3(h) and B+¢ falls into the angle range of Cy3(h2).
As an example, let us assume that the 360 ° viewing angle range is divided into x = 45°
intervals in the third-level index. When 8 = 0° (i.e., North) and ¢ = 5°, we would retrieve
the FOVs in the third-level cells Cy3(7) and Cy3(0) as the candidate FOVs.

After the candidate FOVs are retrieved, we run the refinement step (through the function
refinementStep) to get the actually matching FOVs (See Algorithm 3). For each FOV in the
candidate set we check whether the FOV overlaps with ¢g. In the refinement step of PQ-
R query, we also check whether the distance between the camera location and the query
point is within radius range (M I Nr, M AX g). While for PQ-D query, we check whether
the viewing direction of the camera falls into the angle range (8 — &, B+¢). These FOVs,
along with their video file IDs (v;) are stored in the vector res.

The last step in the point query processing is the generating of resulting video segments
from the retrieved FOVs. The function getSegments organizes the group of consecutive
FOVs from the same video as video segments V Sy, (st, er), where s, is the starting FOV ID

/

I

|

‘ H 1
v \\\ E.--ll/-llllllllllllr-"FOVZ
\. \ ys /

N
~

Fig. 4 Illustration of the function applyRadius

@ Springer

Geoinformatica

and ¢, is the ending FOV ID for the segment. The details of the getSegments function is
explained in Section 4.2.2.

Algorithm 2: applyRadius()

Input: query point: g(lat, Ing),
Minimum and maximum bounded radius: MINgr, MAXR,
first—level cell: Cyq, second—level cell: Cyo
Output: set of second-level cells: check Radius
1 distClose = compMinDist(q, Cy2);
while distClose < MAXpr do
/* Find out the minimum distance between the ¢ and Cyo */

[V

3 distFar = compMaxDist(q, Cy2);

4 if distFar > MINR then

5 | checkRadius.add(getCellsAtDist(q,distClose));
6 end

7 distClose += GRIDSIZE/s;

8 end

9

return check Radius

Algorithm 3: refinementStep()

Input: query type: ¢type (PQ-R, or PQ-D)
FOV candidate set: vector candidate FOV s,

(for PQ-R) min and max radius: MINg, MAXg
Output: vector res (vj, FOV.id)

1 for all the FOV's in the candidate FOV's do
2 if q_type is PQ-R then
3 distP2P = dist(q, FOV .P); /* distance between two points */
4 if distP2P > MINR AND distP2P < MAXpg then
5 if pointInFOV(q, FOV) then
6 | res.push((FOV.wj, FOV.id));
7 end
8 end
9 end
10 if q_type is PQ-D then
11 if FOV.0 > 3 —¢ AND FOV.0 < B+ ¢ then
12 if pointInFOV(q, FOV) then
13 | res.push((FOV.wj, FOV.id));
14 end
15 end
16 end
17 end

Range Query When the search application asks for the videos that show a large region in
geo-space, rather than a point location, it may issue a range query. The queried region is
estimated with a bounding rectangle. Similar to the PQ-R query, the closeness to the query
region, therefore the level of details in the video, can be customized through the RQ-R
query. Additionally, the RQ-D query retrieves videos of the query region from different
view points.

In the range query processing, a naive approach is to access only to the first-level index to
get the candidate FOVs. Since the first-level grid cells are larger, each FOV appears only in
afew Cyj cells. When the overlap area between the Cy cell and the query rectangle is large,
using the first-level index is more efficient, since the duplicate FOV IDs in the candidate set
is minimized. On the other hand, if the query rectangle overlaps with a small percentage of

@ Springer

Geoinformatica

the Cy; cell, the retrieved candidate set will have many false positives due to FOVs covering
parts of the Cy; cell but not the query region. Therefore, in our range query processing
algorithm, we use a hybrid approach where we try to cover the query region with a mixture
of C¢1 and Cyy cells. We try to minimize the uncovered regions in cells (i.e., minimizing
the false positives) and at the same time, we also minimize the duplicate FOV IDs in the
candidate set, by using as many Cy; cells as possible. The goal is to reduce the size of the
candidate set, so that the time required to process and sort the FOVs in the refinement step
is minimized.

Algorithm 4 formalizes the query execution for the range queries RQ-R and RQ-D. In
Algorithm 4 we first find out which cells will be accessed from the first-level and second-
level indexes. Among the Cy cells that overlap with ¢g,, we choose the cells whose overlap
areas are larger than a certain threshold value ¢ (e.g., the overlap area is 40 % of that of the
Cy cell). If the overlap area is less than ¢, we cover the overlap region with the Cy, subcells.
Recall that the second-level subcells hold the list of the FOVs whose camera locations are
within those subcells. Therefore, to retrieve the candidate FOVs from a Cy;(m, n) subcell,
we need to search for the neighboring subcells around it, and find out the FOVs in those
subcells which overlap with the Co(m, n). After finding out the cells and subcells that we
would retrieve the candidate FOVs from, the rest of the query processing is similar to PQ-R
and PQ-D queries.

k-NVS Query Typical kNN queries consider only the distance between a query point and
the objects in the database. In our geo-tagged video search system, we consider not only
the distance between the query point and camera location in the database, but also the vis-
ibility of the query point from the camera location. Here, we propose the k-Nearest Video
Segments query as, “For a given point ¢ in geo-space, find the k nearest video segments that
overlap with ¢”. Taking Fig. 5 as an example, the camera locations of the video segment
V1 are closer to the query point ¢ than that of V,. Due to the camera’s location and view-
ing direction, the FOVs of V| cannot cover g while the FOVs of V; can. In typical kNN
queries, V| will be selected before V, because Vj is closer to g. However, in the k-NVS
query, V, will be selected as the nearest neighbor instead of V| because of the visibility. The
k-NVS query can be utilized in various video search applications to continuously retrieve

///\\

\

Fig. 5 Illustration of k-NVS query

@ Springer

Geoinformatica

the most related videos that show a frequently updated query point. Additional radius range
and viewing direction requirements can be added to the query through the k-NVS-R and
k-NVS-D queries.

Algorithm 4: Range query with bounded radius (RQ-R) and direction (RQ-D).

fun

© 0N A WN

10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Input: query type: g-type (RQ-R, or RQ-D)
query rectangle: gr(latl, Ingl;lat2,lng2),
(for RQ-R) min and max radius: MINg, MAXRg,
(for RQ-D) viewing direction : 3
Output: vector segments (vj, VS(s¢,er))
Cp1 = getCelllD(gr)
/* Range Query with bounded Radius */
if q_type is RQ-R then
cellsInR = applyRadius(q,, Cp1, MINR, MAXR);
for each cell Cpy(m,n) in cellsInR do
overlapArea = compOverlap(Cy1 (m, n),qr); /* Compute the overlap area */
if overlapArea > ¢ then
| candidateFOV s.append(fetchData(Cyy (m,n)));
end
else
subCellsInR = applyRadius(overlapArea,Cyo,MINr,MAXR);
candidate FOV s.append (fetchData(subCellsInR));
end
end

end

/* Range Query with Direction */

f q_type is RQ-D then

for each cell Cpy(m,n) in cellsInR do

overlapArea = compOverlap(Cyy (m,n),qr);

if overlapArea > ¢ then

| Cis = getDirCelllD(Cyq (m, n),B,¢);

end

else
subCells = applyRadius(overlapArea,Cy2,0,Ry);
Cl3 = getDirCellID(subCells,3,e);

end

candidate FOV s.append(fetchData(Cp3));

end

end

res = refinementStep(candidate FOV s);

segments = getVideoSeg(res,q-type);

return segments

.

Algorithm 5 formulates the k-NVS query processing. We first retrieve the Cy» cell where

the query point is located and, similar to the PQ-R query, we find out the neighboring
subcells around Cyy from which the FOVs can see g. For the k-NVS-R query, the search
range around the Cy; cell is (M I Ngr, M AXr) whereas for the k-NVS and k-NVS-D queries
search range is (0, Ry). For the the k-NVS queries, we need to return only the closest k
video segments. Therefore, in order to find the candidate FOVs, we gradually search the
neighboring subcells in the search range, starting with the closest subcells. As shown in
Algorithm 5, we first retrieve the candidate FOVs in the subcells closest to Cyy (within
distance O or M I Ng). And at each round we increase the search distance by é/s and retrieve
the FOVs in the next group of cells within the enlarged distance (§/s is the size of a second-
level subcell). We apply the refinement step on these candidate FOVs and store them in

@ Springer

Geoinformatica

priority queue, in which the FOVs are sorted based on their distance to ¢ in ascending order.
The refinement steps for the k-NVS-R and k-NVS-D queries are similar to PQ-R and PQ-
D queries. After each round of candidate retrieval, the candidate FOVs are organized as
videos segments, i.e., the consecutive FOVs from the same video file are grouped together.
The search for candidate FOVs ends either when the number of video segments reaches k
or when there are no more subcells that need to be checked. The output of the algorithm is
the list of the retrieved video segments, ordered from closest to the farthest.

Algorithm 5: k-Nearest Video Segments Queries: k-NVS, k-NVS-R, and k-NVS-
D

Input: query point: g(lat,lng), number of output video segments: k,
(for k-NVS-R) min and max radius: MINr, MAXg,

(for k-NVS-D) viewing direction : 3,

Output: vector segments <VSUJ. (s¢, et)>

1 Cypp = getCelllD(q), Cpo = getSubCellID(q);

2 priority_queue sortedFOV's { FOVID, distance to q) = (J;

3 if g_type is k-NVS-R then

4 | subCellsInR=applyRadius(q,C¢a, MINp,MAXR);

5 end

6 else

7 | subCellsInR = applyRadius(q, Cy2, 0, Ry);

8 end

9 i=0; distClose=4/s;

10 while not enough FOV's AND nextSubCells= getNeighbors(q,subCellsInR,i++) is

not empty do

11 candidate FOV s = fetchData(nextSubCells);

12 for all the FOV's in the candidate FOV's do

13 distP2P = dist(q, FOV);

14 if q_type is k-NVS then

15 if pointInFOV(q, FOV) then

16 | sortedFOVs.push((FOVID,distP2P));

17 end

18 end

19 if q_type is k-NVS-R then

20 if distP2P > MINp AND distP2P < MAXp AND pointInFOV(q,
FOV) then

21 | sortedFOVs.push(< FOVID,distP2P >);

22 end

23 end

24 if g_type is k-NVS-D then

25 if FOV.0 >3 —ec AND FOV.0 > B+ ¢ then

26 | sortedFOVs.push(< FOVID,distP2P >);

27 end

28 end

29 end

30 while sortedFOV s.top() < distClose AND numsegments < k do

31 topFOV = sortedFOV s.pop();

32 if isNewSegment(topFOV ,res) then

33 | numsegments—+-;

34 end

35 res.push(topFOV);

36 end

37 i++; distClose+ = §/s;

38 end

39 segments = getVideoSeg(res,q-type);
40 return segments

@ Springer

Geoinformatica

4.2.2 Query processing: returning video segments

As explained in Section 4.2.1, in query processing after retrieving the FOVs that satisfy the
query requirements, the groups of adjacent FOVs from the same videos are returned as the
resulting video segments. The length of the returned segments may vary extensively for dif-
ferent query types. For example for the range query, when the query region expands to a
large area, the number of consecutive FOVs that overlap with the query region is usually
large. However for more selective queries, such as k-NVS query, the length of an individ-
ual segment can be as short as a few seconds. In Table 1, we report the number of FOVs
returned from the k-NVS query and the number of video segments that these FOVs form
for different values of k. The average segment length for £ = 20 is around 3 seconds, with
a maximum segment length of 20 seconds. As the k value increases, the segment lengths
also get longer. Practically, for visual clarity, the length of the resulting video segments
should be larger than a certain threshold length. Depending on the requirements of the video
search application, the query processing unit should customize the creation of the returned
segments.

In our current implementation, for the point and range queries, the returned FOVs are
post-processed to find out the consecutive FOVs that form the segments. If two separate
segments of the same video file are only a few seconds apart, they are merged and returned
as a single segment. For the k-NVS query, the video segments are formed simultaneously as
the closest FOVs are retrieved. For each video segment the video ID, the starting and ending
FOV IDs and the segments distance to the query point are maintained, i.e., (v s Sty e, di st).
When the next closest FOV is retrieved, if it is adjacent to one of the existing segments
it is merged with it, otherwise a new segment is formed. The s;, ¢;, and dist values are
updated accordingly. For example, in our current configuration of the experiments, we set
that the returned segments should be at least 20 seconds long. Therefore the short segments
are expanded to 20 seconds. The segment’s starting and ending offsets are adjusted so that
the dist value for the segment is minimized.

5 Experimental evaluation

In this section, we elaborate on the experiments carried out on two datasets: one small set
of real-world videos and sensor meta-data, and one large synthetic dataset. We use the real-

Table 1 Statistics for k-NVS

queries with different k values k # of FOVs # of Segments Segment Max Length
20 109,847 35,391 20
50 212,746 56,664 50
100 291,957 72,179 71
150 318,504 77,096 89
200 326,110 78,523 89
300 327,541 78,796 89

@ Springer

Geoinformatica

world dataset to show the importance of the bounded radius and direction restrictions on
displaying videos, and the synthetic dataset to demonstrate the scalability of the proposed
structure for large-scale applications.

5.1 Experiments with a real-world dataset

We collected 1200 geo-tagged videos (representing about 38.55 hours) all around Singa-
pore. The lengths of videos vary from less than one minute to 18.45 minutes. To show how
the bounded radius and direction restriction affects the video searching results, we presented
two representative query results on two landmarks: Q1 targets at the Merlion (a small statue)
while Q2 targets the Marina Bay Sands (a tall and wide building).

5.1.1 Importance of bounded radius

Figure 6 shows the sampling frames from the resulting videos that answering Q1 and Q2
with various distances from the query locations. All the frames shown in Fig. 6a actually
capture Q1 in the scene, but only the first one from a closed position less than 50 meters
away from Q1 displays a clear view. Due to the large distance, although Q1 appears in the
other three frames, it is meaningless to end-users who want to see the the Merlion. The
situation is quite different when processing Q2 (shown in Fig. 6b). The frames captured
from closed positions only show parts of the building, while users can have a panoramic
view of the whole building from far away. Consequently, typical spatial queries on video
search might sometimes not satisfy users’ demands, and it is helpful to have spatial queries
with bounded radius. For example, displaying small objects from a closed position, while
displaying large buildings from a far-away location can help to show meaningful videos to
users.

44.9 meters 123.5 meters 223.6 meters 434.1 meters
(a) Sampling frames from Q1.

et P
90.6 meters 189.4 meters 472.6 meters 635.5 meters
(b) Sampling frames from Q2.

Fig. 6 Sampling frames from the video searching results with various distances. a Sampling frames from
Q1. b Sampling frames from Q2

@ Springer

Geoinformatica

5.1.2 Importance of viewing direction

The sampling frames in Fig. 7 are extracted from the same video and all of them capture
the Merlion from different directions. The first two frames record Q1 from the best place
while the last one records it from the back, which is not desired by users. Thus, direction
restriction is also an important factor for video searching on displaying best results.

5.2 Experiments on a synthetic dataset

Due to the difficulty of collecting large set of real videos associating with meta-data, a
synthetic dataset that simulate the movements of cameras was used to test the performance
of the grid-based index structure with large-scale data.

5.2.1 Synthetic data generation

The dataset for moving camera trajectories was generated with positions inside a 75 km x
75 km region in the geo-space using the Georeferenced Synthetic Meta-data Generator [2].
The generated synthetic meta-data exhibit equivalent characteristics to the real world data.
The camera’s viewable angle is 60 ° and the maximum visible distance is 250 m [1]. In the
experiments, we chose 100 randomly-distributed center points within the area and generate
5,500 moving cameras around these center points. Hence each one of the cameras is traced
for 1, 000 seconds, with snapshot of one frame per second, due to the sampling rate of GPS
and the compass. (Note that the digital compass can achieve 30 or 40 readings per second
but GPS can only get one sample per second. Thus, we only collect one snapshot per sec-
ond). Therefore we have a dataset with about 5.4 million video frames. The center points
are randomly distributed in the experiment region, which are used as the initial positions of
the camera location. Subsequently, the cameras start to move inside the region under a max-
imum speed limit, as well as a viewing direction rotation limit. The speed of the cameras,
and the position of center points, affect the final distribution of the frames. Faster move-
ment causes the frames distributed uniformly throughout the region in contrast to slower
movement. To simulate real-world case, we set the maximum speed of moving cameras as
60 km/h, with the average speed as 20 km/h. Besides the speed limit, we also set the cam-
era’s maximum rotation limit as 30 ° per second, which guarantees that the camera rotates
smoothly and not jump from one direction to another, the same as what people do when
they are capturing videos. With restriction to these limitations, unexpected data (e.g., the
object’s speed is larger than the speed threshold, viewing direction rotates over the rotation
limit and etc.) are thrown away from the dataset. The parameters used are summarized in
Table 2.

Fig. 7 Sampling frames from the video searching results with various directions on Q1

@ Springer

Geoinformatica

Table 2 Parameters of the

synthetic dataset Parameter Value
of Center points 100
Speed Limit 60 km/h
Average Speed 20 km/h
Rotation Limit 30°/s
of Cameras 5500
of Snapshots 1000
of FOVs 5405051
viewable angle of FOV («) 60°
visible distance of FOV (Ry) 250 m

5.2.2 Experimental settings

For all the experiments we constructed a local MySQL database and stored all the FOV
meta-data, as well as the index structure tables. All the experiments were conducted on
a server with two quad core Intel(R) Xeon(R) X5450 3.0GHz CPUs and 16GB memory
running under Linux RedHat 2.6.18. All the comparisons used in the experiments are based
the geo-coordinates (latitude and longitude). The experiment results reported here show the
cumulative number of FOVs returned for 10, 000 randomly generated queries within the
experiment region. In our experiments, we mainly measure the Processing Time (PT for
short) and the number of Page Access (PA for short). The PT includes the total amount of
time for searching for the candidate set through the index structure in the filter step and the
time for using the exhaustive method to process overlap calculation in the refinement step.
We assume that even if the index structure was in memory, when we access to it, we count
the PA as it is on disk. Additionally, we set the page cache size as one page large. Therefore,
when there is no page hit in the cache, the PA will be increased by one. This also helps to
analyze the performance if the index structure is disk-based instead of memory-based. In
our experiments, we try to fully utilize the space inside each one page by storing as many
nodes as possible for both the grid-based approach and R-tree. The page has empty space
only when there exists no exact match between the page space and the node size.

In the next two experiments, we process the typical queries without any distance or direc-
tion condition as preliminary experiments to decide the basic parameters: the value of the
grid size § and the overlap threshold ¢. In the following experiments, if not specifying, the
default value of k is 20, and query rectangle size is 250 m x 250 m. When generating the
moving objects, the maximum viewable distance (Ry) of the camera is set as 250 m. As
shown in Fig. 8, grid with size equalling to Ry /2 or Ry performs better than larger sizes.
The performance of grid-based index structure with size of Ry is better in some cases while
worse in others compared to that of Ry /2. Since our structure is mainly designed for k-
NVS query and the value of the PT and the PA to process k-NVS query is minimum when
8 equals to Ry, we thus choose § equalling to Ry as the optimized configuration.

As well as the grid size, the overlap threshold ¢ for range query also affects the perfor-
mance of the grid-based index structure. As presented in Section 3, both the first-(Cy;) and
second-level(Cyy) indices are loaded into memory. To decide the value of ¢, we ran a series
of typical range queries without distance and direction conditions. As shown in Fig. 9, the
PA of grid-based index structure is smaller than that of R-tree when ¢ is smaller than 40 %.

@ Springer

Geoinformatica

8k T 500k
Tk .
2 ol 4, 400kt -
® @
£ Skr 1 2 300k | .
bt [$]
2 4kr 1 8
2 o f 1 ¢ 200k .
©
o | | Q
g 2 100k - .
1K . o
0 — = 0 o
point range k-NVS point range k-NVS
different types of queries different types of queries
(a) Processing time. (b) Page accesses.
Fig. 8 Effect of grid size. a Processing time. b Page accesses

Moreover, the grid approach is faster than R-tree for most of the cases, and we achieve the
fastest performance at value of 30 %. Consequently, ¢ is chosen as 30 %. The parameters
used in the experiment are summarized in Table 3.

5.2.3 Comparison

The R-tree is one of the basic index structures for spatial data which is widely used. In
our experiments, we insert the Minimum Bounding Rectangle (MBR for short) of all FOVs
into R-tree and process all types of queries based on R-tree [9] implemented by Melinda
Green for comparison. To the best of our knowledge, this implementation achieves the best
performance compared to others. We use Eq. 1 to calculate the MBR of an FOV with geo-
coordinates. The parameter o, and oy denotes the factor of converting distance to geo-
coordinate difference in the x-axis or y-axis directions, respectively. The query procedure is
to search for all the FOVs whose MBRs overlap with the query input in the filter step and
hence to use the exhaustive method to calculate the actual overlap in the refinement step.

ek T T T T T T T T T 500k T T T T T T T T T
R-tree —— R-tree ——
L Grid —--x--- J Grid ---x--- LX)
- 5k 3 ri) 400k ri o 7
E N 2 X
o 4k X X _ 2 o
£ %, xS 8 B00K [
2 3k R 18 <
B o 200k - —
3 2k 1 2 e
8 I
S 1k b i 100k - 4
0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
0 0.102030405060.70809 1 0 0.10203040506070809 1
value of ¢ value of ¢
(a) Processing time. (b) Page accesses.
Fig. 9 Effect of the overlap threshold ¢ on range query performance. a Processing time. b Page accesses

@ Springer

Geoinformatica

Table 3 Experiment parameters and their values

Parameter Value
Page Size 4,096
Page Cache Size 4,096
Non-Leaf Node Size(R-tree) 64
Leaf Node Size (R-tree) 36
Non-Leaf Node Size (R-tree with viewing direction as a dimension) 80
Leaf Node Size (R-tree with viewing direction as a dimension) 52
Cy¢1 Node Size 68
Cy» Node Size 36
C¢3 Node Size 4
FOV Meta-data Size 32
Grid Size § 250 m
K 4
Angle Error Margin ¢ 15°
Overlap Threshold ¢ 30 %

Consequently, some of the parameters (e.g., value of k for k-NVS query, distance condition,
etc.) have no effect on PA for R-tree.

MBR.left =min(Ing,Ilng = Ry x sin(0 £ «a/2)/0y) €))]
MBR.right = max(Ilng,Ilng =+ Ry x sin (0 £ «/2)/oy) 2)
M BR .bottom = min(lat,lat &= Ry x cos (6 = «a/2)/oy) 3)
M BR.ceil = max(lat,lat = Ry x cos (0 £ a/2)/oy) 4

Effect of distance condition We study the effect of the distance condition by vary-
ing the radius range from 25 m to 250 m. For each one of the radius range, we
start from the minimum distance condition MINg equalling to O m until the maxi-
mum distance condition M AXg reaching 250 m. For example, when the radius range
is equal to 25m, the value of the tuple (MINgr, MAXpg) can be one of the followings:
{{0,25), (25,50), (50, 75) , ... (200, 225) , (225, 250)}. While the radius range is equal to
225 m, the value of (MINg, M AXg) can only be either (0, 225) or (25, 250). The results
shown in Fig. 10 are the averages of the different radius ranges. Since the Ry of an FOV is
set as 250 m when generating the synthetic data, the last point with radius range of 250 m is
the result of processing queries without distance condition. Figure 10a, b and c illustrate the
PT of PQ-R query, RQ-R query and k-NVS-R query respectively, while Fig. 10d, e and f
illustrate the PA for each type of query. In general, the performance of our grid-based index
structure works better than R-tree on both the PT and the PA. Figure 10a and b show that
the PT for radius range of 250 m is a little shorter than that of 225 m. The reason is that all
the subcells in the second-level index Cy needs to be checked for large radius range and
this costs extra PT compared to queries without distance condition. As shown in Fig. 10d,
e and f, the PA using the R-tree remains the same because the R-tree finds out all the FOVs
whose MBRs overlap with the query in the filter step, regardless of the radius range. It can-
not prune unnecessary search based on the radius range. The PA of the grid-based structure
grows as the radius range becomes larger but is still smaller than that of the R-tree even
when the radius range reaches the largest number.

@ Springer

processing time (ms) processing time (ms)

page accesses

1.2k

1.0k

800.0

600.0

400.0

200.0

0.0

(a) Processing time for PQ-R query.

1.2k

1.0k

800.0

600.0

400.0

200.0

T T T T T T
R-tree —+—
L Grid - |
B
L e 4
=X
X7

3 .

1 1 1 1 1 1 1 1

25 50 75 100 125 150 175 200 225 250
radius range (m)

T T T T T T T
R-tree —+—
L Grid ---x--- |
4_/—x—f»—x/—/*’"X""XW’*-”X—\"X/'
1 1 1 1 1 1 1 1

0
25 50 75 100 125 150 175 200 225 250

(c) Processing time for k-NVS-R query.

radius range (m)

400k T E— T T
R-tree —+—
350k - Grid -
300k
250k - P
e
200k IS .
150k %7 .
100k - .
50k - i
0 1 1 1 1 1 1 1 1
25 50 75 100 125 150 175 200 225 250
radius range (m)
(e) Page accesses for RQ-R query.

page accesses processing time (ms)

page accesses

Geoinformatica

T T T T T th T T
5k L -tree —— |
Grid ---x---
4k W
3k e
X
=X
2k | -
L -
1k B
0 1 1 1 1 1 1 1 1
25 50 75 100 125 150 175 200 225 250
radius range (m)
(b) Processing time for RQ-R query.
250k T T T T T T T
R-tree ——
Grid -~
200k B
150k B
100k B
[SUNIVINIIVIVISSEESS RS S i S
0 1 1 1 1 1 1 1 1
25 50 75 100 125 150 175 200 225 250

radius range (m)

(d) Page accesses for PQ-R query.

250k

200k

150k

100k

50k

VISR

0
25 50 75 100 125 150 175 200 225 250

radius range (m)

(f) Page accesses for k-NVS-R query.

Fig. 10 Effect of distance condition. a Processing time for PQ-R query. b Processing time for RQ-R query.
¢ Processing time for k-NVS-R query. d Page accesses for PQ-R query. e Page accesses for RQ-R query. f
Page accesses for k-NVS-R query

Effect of direction condition We proceed to evaluate the efficiency of our grid-based index
structure with directional queries. In this experiment, the query datasets are the same as
those used in queries without direction condition, except the additional viewing direction
constraint. As presented in Table 3, the angle margin ¢ in this experiment is 15°. The 2D
and 3D R-trees used in Fig. 11 denote the R-tree for processing queries without direction
condition and queries with direction condition, respectively. Figure 11a shows that, in the
processing of PQ-D query and k-NVS-D query, the PT of the R-tree is almost two times
of that without direction condition. The reason for this is that searching one more dimen-
sion in the R-tree slows down the performance of the R-tree. The situation is different for
RQ-D query because of less number of candidates obtained from the filter step so that the

@ Springer

Geoinformatica

7k T T T 25M T T T
2D R-tree mmmm 2D R-tree
_ 6k 3D R-tree & B 3D R-tree
2 Grid(directional query) : 2.0M - Grid(directional query)
£ sk} Grid . o i Grid
g a S N S _
£ axp \ 1 8™ o 8 u
o N o N o N
£ Kt 1 g tomp NN
@ e N N N
S 2| . 1 & N N N
s N N 500.0k |- N N .
Tk N N 1 N N N
0 IHV NE. 0.0 ..‘”l l ‘>‘|
point range k-NVS point range k-NVS
different types of queries different types of queries
(a) Processing time. (b) Page accesses.

Fig. 11 Effect of direction condition. a Processing time. b Page accesses

refinement step costs less time. On the contrary, the grid-based approach directly accesses
the third-level (Cy3) cell to narrow down the search for a small amount of meta-data within
a short time. Figure 11b shows that the PA in the R-tree for processing queries with direc-
tion is over eight times larger than the typical ones while the grid-based approach shrinks to
about half. Because most of the PA is to memory pages, the difference in the PT which is not
that large as the PA. Comparing queries with and without direction condition between the
R-tree and the grid-based approach, our algorithm significantly improves the performance
for directional queries.

Effect of query rectangle size We next study the effect of the query rectangle size to range
query. The query rectangle size varies from 125 m to 500 m, which is from half to two times
of the grid size §. Larger area contains more number of videos and thus leads to longer
processing time and more number of accesses. As expected, the result in Fig. 12 shows that
the PT and the PA increases with the query rectangle size. From Fig. 12a, PT increases
slower using the grid-based approach, which means that our approach performs even faster
for large query area than the R-tree. However, Fig. 12b shows that as the query area grows,
the difference in number of the PA between these two methods gets larger when the query
rectangle size increases from 125 m to 250 m, and then becomes smaller after the query
rectangle size is larger than 250 m, which the maximum visible distance of the camera.

8k 400k
Tk 350k |-
£ 6k & 300k -
[0]
g 5k - @ 250k |-
=]
o 4k - S 200k
£ ®
@ 3k - S 150k | B
8 [
S 2k S 100k - :
o
1k - . 50k |- g
0 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1
100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500
size of query rectangle (m) size of query rectangle (m)
(a) Processing time. (b) Page accesses.

Fig. 12 Effect of rectangle size on range query performance. a Processing time. b Page accesses

@ Springer

Geoinformatica

1.2k T T T T T 250k T T T T
R-tree —+— R-tree —

—~ 1okk Grid ---x--- | Grid ---x---
s 1 200k} g
3] 1) bttt } ; ;
© 800.0 [1 2 xR K
E g 150k %w -
26000 e % g x
2 X Q 100K [—
@ 400.0 *x 7] g
o
S 2000 - S0k~ i

0 0 1 1 1 1 1 1 1 1 1 1

0 50 100 150 200 250 300 0 50 100 150 200 250 300
value of k value of k
(a) Processing time. (b) Page accesses.

Fig. 13 Effect of value of k on k-NVS query performance. a Processing time. b Page accesses

Therefore, when users are interested in what happened at special places or small regions,
e.g., an area with size 500 m x 500 m, our grid-based approach outperforms better than the
R-tree.

Effect of k value To test the performance of the grid-based approach with different values
of k for k-NVS query, we calculate the PT and the PA using the same query points. The
results in this experiment are discrete FOVs (not video segments). Figure 13a shows the
comparison in the PT and Fig. 13b shows the comparison in the PA. As k increases, the PT
increases for the grid-based index at the beginning and keeps nearly unchanged when £ is
larger than 200, which is closed to the maximum number of FOVs found in PQ. The PT
for R-tree is almost the same with different k values because all the results are found and
sorted once. When k is larger than 150, the PA for the grid-based approach is almost the
same since the searching radius is enlarged to the maximum according to the design of the
structure. From the gap in Fig. 13a and b between the R-tree and our approach, we can infer
that even if the dataset is large and k is big, the grid-based index structure performs better
than the R-tree.

6 Conclusions

In this study we proposed a novel three-level grid-based index structure and a number of
related query types that facilitate application access to such augmented, large-scale video
repositories. Experiments on a real-world dataset show the importance of the queries with
bounded radius and viewing direction restriction. The experimental results with a large-scale
synthetic dataset show that this structure can significantly speed up the query processing,
especially for directional queries, compared to the typical spatial data index structure R-
tree. The grid-based approach successfully supports new geospatial video query types such
as queries with bounded radius or queries with direction restriction. We also demonstrate
how to form the resulting video segments from the video frames retrieved.

@ Springer

Geoinformatica

References

15.

16.

18.

19.
20.

21.
22.

23.
24.

25.

. Arslan Ay S, Zimmermann R, Kim S (2008) Viewable scene modeling for Geospatial video search.

ACMMM, pp 309-318

. Arslan Ay S, Zimmermann R, Kim SH (2010) Generating Synthetic Meta-data for Georeferenced Video

Management. In: SIGSPATIAL GIS international conference on advances in geographic information
systems. ACM, pp 280-289

. Beckmann N, Kriegel H, Schneider R, Seeger B (1990) The R*-tree: an efficient and robust access

method for points and rectangles. In: ACM international conference on management of data. SIGMOD,
pp 322-331

. Chon H, Agrawal D, Abbadi A (2003) Range and KNN query processing for moving objects in grid

model. Mob Netw Appl 8(4):401-412

. Cisco (2013) Cisco visual networking index: global mobile data traffic forecast update, 2012-2017.

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white paper c11-.
520862.pdf

. Eppstein D, Goodrich M, Sun J (2005) The skip Quadtree: a simple dynamic data structure for

multidimensional data. In: Annual symposium on computational geometry

. Finkel R, Bentley J (1974) Quad Trees: a data structure for retrieval on composite keys. Acta Informatica

4(1):1-9

. Graham CH, Bartlett NR, Brown JL, Hsia Y, Mueller CC, Riggs LA (1965) Vision and visual perception
. Green M (2010) R-Tree, Templated C++ Implementation. http://superliminal.com/sources/

RTreeTemplate.zip

. Guttman A (1984) R-Trees: a dynamic index structure for spatial searching. In: ACM international

conference on management of data. SIGMOD, pp 47-57

. Hwang TH, Choi KH, Joo IH, Lee JH (2003) MPEG-7 Metadata for Video-based GIS Applications. In:

IEEE international geoscience and remote sensing symposium, vol 6, pp 3641-3643

. Kim KH, Kim SS, Lee SH, Park JH, Lee JH (2003) The interactive geographic video. In: IEEE

international geoscience and remote sensing symposium, vol 1. IGARSS, pp 59-61

. Kim S, Arslan Ay S, Yu B, Zimmermann R (2010) Vector model in support of versatile georeferenced

video search. In: SIGMM conference on multimedia systems. ACM

. Liu X, Corner M, Shenoy P (2005) SEVA: sensor-enhanced video annotation. In: ACM international

conference on multimedia. SIGMM, pp 618-627

Ma H, Arslan Ay S, Zimmermann R, Kim SH (2012) A grid-based index and queries for large-scale
geo-tagged video collections. In: 17th international conference, DASFAA workshops. SIM3, pp 16—
228

Navarrete T, Blat J (2002) VideoGIS: segmenting and indexing video based on geographic information.
In: Conference on geographic information science. AGILE, pp 1-9

. Nievergelt J, Hinterberger H, Sevcik K (1984) The grid file: an adaptable, symmetric multikey file

structure. ACM Trans Database Syst (TODS) 9(1):38-71

Nutanong S, Zhang R, Tanin E, Kulik L (2008) The V*-Diagram: a query-dependent approach to moving
KNN queries. Proc VLDB Endowment 1(1):1095-1106

Okabe A (2000) Spatial tessellations: concepts and applications of voronoi diagrams. Wiley

Priyantha NB, Chakraborty A, Balakrishnan H (2000) The cricket location-support system. In: ACM
international conference on mobile computing and networking. MobiCom, pp 32-43

Rigaux P, Scholl M, Voisard A (2001) Spatial databases with application to GIS, Morgan Kaufmann
Roussopoulos N, Faloutsos C, Timos S (1987) The Rt -tree: a dynamic index for multi-dimensional
objects. In: VLDB International Conference on Very Large Databases, pp 507-518

YouTube (2013) YouTube press statistics. http://www.youtube.com/t/press statistics

Yu FX, Ji R, Chang S-F (2011) Active query sensing for mobile location search. In: The 19th ACM
international conference on multimedia. ACM, pp 3-12

Zhu Z, Riseman E, Hanson A, Schultz H (2005) An efficient method for geo-referenced video
mosaicing for environmental monitoring. In: Machine vision and applications, vol 16. Springer, pp 203—
216

@ Springer

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705 /ns827/white_paper_c11-.520862.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705 /ns827/white_paper_c11-.520862.pdf
http://superliminal.com/sources/RTreeTemplate.zip
http://superliminal.com/sources/RTreeTemplate.zip
http://www.youtube.com/t/press_statistics

Geoinformatica

He Ma is a Ph.D. student with the Department of Computer Science at the National University of Singa-
pore (NUS). He received his B.S. degree in computer science and technology from Northeastern University,
P.R.China in 2008. His research interests are on geo-tagged videos management, uncertainty of sensor data.

Sakire Arslan Ay is a clinical assistant professor with the School of Electrical Engineering and Computer
Science at the Washington State University (WSU). Previous to her position at WSU, she had worked as a
Research Fellow at the National University of Singapore (NUS) under the supervision of Dr. Roger Zimmer-
mann. She received her M.S. and Ph.D. degrees from the University of Southern California (USC) in 2005
and 2010, and her B.S. degree from Bogazici University in 1999. Dr. Arslan Ay’s research interests are in the
areas of GIS, databases, geospatial video management, sensor-rich video, and mobile video management.

@ Springer

Geoinformatica

Roger Zimmermann is an associate professor with the Department of Computer Science at the National
University of Singapore (NUS) where he is also a deputy director with the Interactive and Digital Media
Institute (IDMI) and a co-director with the Centre of Social Media Innovations for Communities (COSMIC).
He received his Ph.D. degree from USC in 1998. Among his research interests are distributed and peer-
to-peer systems, collaborative environments, streaming media architectures, geospatial video management,
and mobile location-based services. He has co-authored a book, five patents and more than a hundred-
forty conference publications, journal articles and book chapters in the areas of multimedia and information
management. He is an Associate Editor of the ACM Computers in Entertainment magazine and the ACM
Transactions on Multimedia Computing, Communications and Applications journal.

Seon Ho Kim is a computer scientist currently working in the Integrated Media Systems Center (IMSC) at
the University of Southern California. Before joining IMSC, he had worked at the University of Denver and
the University of the District of Columbia as a faculty member for eleven years since he received his Ph.D.
in Computer Science from the University of Southern California in 1999. He also received his BS degree in
Electronic Engineering from the Yonsei University, Seoul, Korea in 1986, and M.S. in Electrical Engineering
from the University of Southern California in 1994. Dr. Kim’s primary research interests include multimedia
servers, storage systems, databases, GIS, and mobile media applications.

@ Springer

	Large-scale geo-tagged video indexing and queries
	Abstract
	Introduction
	Background and related work
	Modeling of camera viewable scene
	Related work

	Grid based indexing of camera viewable scenes
	Query processing
	Query definitions
	Algorithm design
	Query processing: retrieval of matching FOVs
	Point Query
	Range Query
	k-NVS Query

	Query processing: returning video segments

	Experimental evaluation
	Experiments with a real-world dataset
	Importance of bounded radius
	Importance of viewing direction

	Experiments on a synthetic dataset
	Synthetic data generation
	Experimental settings
	Comparison
	Effect of distance condition
	Effect of direction condition
	Effect of query rectangle size
	Effect of k value

	Conclusions
	References

