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a b s t r a c t

User generated video content is experiencing significant growth which is expected to continue and fur-
ther accelerate. As an example, users are currently uploading 20 h of video per minute to YouTube. Mak-
ing such video archives effectively searchable is one of the most critical challenges of multimedia
management. Current search techniques that utilize signal-level content extraction from video struggle
to scale.

Here we present a framework based on the complementary idea of acquiring sensor streams automat-
ically in conjunction with video content. Of special interest are geographic properties of mobile videos.
The meta-data from sensors can be used to model the coverage area of scenes as spatial objects such that
videos can effectively, and on a large scale, be organized, indexed and searched based on their field-of-
views. We present an overall framework that is augmented with our design and implementation ideas
to illustrate the feasibility of this concept of managing geo-tagged video.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Camera sensors have become a ubiquitous feature in our envi-
ronment and more and more video clips are being collected and
stored for many purposes such as surveillance, monitoring, report-
ing, or entertainment. Because of the affordability of video cameras
the general public is now generating and sharing their own videos,
which are attracting significant interest from users and have re-
sulted in an extensive user generated online video market catered
to by such sites as YouTube. As of 2010, more than half (55%) of
all the video content consumed online in the US is expected to
be user generated, representing 44 billion video streams [1]. Cisco
predicts that, by 2014, global online video will approach 57% of all
consumer Internet traffic [12]. Companies are developing various
business models in this emerging market, with one of the more
obvious ones being advertising. In 2008, Forrester Research and
eMarketer reported that the global online video advertising market
will reach more than US$7.2 billion by 2012 [35].

Many of the end-user cameras are mobile, such as the ones
embedded in smartphones. The collected video clips contain a tre-
mendous amount of visual and contextual information that makes
them unlike any other media type. However, currently it is still
very challenging to index and search video data at the high seman-
tic level preferred by humans. Effective video search is becoming a
critical problem in the user generated video market. The scope of

this issue is illustrated by the fact that video searches on YouTube
accounted for 28% of all Google search queries in the US in Decem-
ber of 2009 and that 23% of YouTube’s total visits for December
originated from Google search [4]. Better video search has the po-
tential to significantly improve the quality and usability of many
services and applications that rely on large repositories of video
clips.

A significant body of research exists – going back as early as the
1970s – on techniques that extract features based on the visual sig-
nals of a video. While progress has been very significant in this area
of content-based video retrieval, achieving high accuracy with
these approaches is often limited to specific domains (e.g., sports,
news), and applying them to large scale video repositories creates
significant scalability problems [36,26]. As an alternative, text
annotations of video can be used for search, but high-level con-
cepts must often be added manually and hence their use is cum-
bersome for large video collections. Furthermore, text tags can be
ambiguous and subjective.

Recent technological trends have opened another avenue to
associate more contextual information with videos: the automatic
collection of sensor meta-data. A variety of sensors are now cost-
effectively available and their data can be recorded together with
a video stream. For example, current smartphones embed GPS,
compass, and accelerometer sensors into a small, portable and en-
ergy-efficient package. The meta-data generated by such sensors
represents a rich source of information that can be mined for rele-
vant search results. A significant benefit is that sensor meta-data
can be added automatically and represents objective information
(e.g., the position).

1047-3203/$ - see front matter � 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jvcir.2010.07.004

⇑ Corresponding author.
E-mail addresses: seonkim@usc.edu (S.H. Kim), arslan@usc.edu (S. Arslan Ay),

rogerz@comp.nus.edu.sg (R. Zimmermann).

J. Vis. Commun. Image R. 21 (2010) 773–786

Contents lists available at ScienceDirect

J. Vis. Commun. Image R.

journal homepage: www.elsevier .com/ locate/ jvc i



Author's personal copy

Some types of video data are naturally tied to geographical loca-
tions. For example, video data from traffic monitoring may not
have much meaning without its associated location information.
Thus, in such applications, one needs a specific location to retrieve
the traffic video at that point or in that region. Hence, combining
video data with its location information can provide an effective
way to index and search videos, especially when a database han-
dles an extensive amount of video data.

Researchers have only recently started to investigate and
understand the implications of the trends brought about by tech-
nological advances in sensor-rich cameras. We believe that there
is tremendous potential that has yet to be explored and conse-
quently that there is a need for an overall framework to facilitate
the design and implementation of relevant applications. Here we
propose such a framework, based in part on our experiences with
preliminary work in geo-tagged video management. Note that this
manuscript provides only example solutions for some of the differ-
ent framework components and is intended to stimulate further
work and discussions in these areas.

Our framework is organized around the following key issues
that we identified for geo-tagged video management: (1) data
acquisition – sensor inputs will be collected while videos are being
recorded at mobile devices. The collected data consists of the
meta-data for future storage and retrieval of videos; (2) data man-
agement (search engine) – the recorded videos are represented as
spatial objects using the collected sensor data and videos are in-
dexed and searched mainly based on their geographical properties;
and (3) search result presentation – videos are ranked and
presented based on their relevance with the query for a fast and
effective browsing of results by humans.

In this study, we describe a framework for the handling of geo-
tagged video that focuses on the above outlined issues and chal-
lenges. The goal is to enhance video search, especially with very
large collections of videos, in order to significantly improve the
quality of video service applications. The rest of this paper is orga-
nized as follows. Related work is surveyed in Section 2. Section 3
presents the design of our framework. Geo-tagged video data col-
lection and search is explained in Sections 4 and 5, respectively,
as our own instantiation of an implementation of the framework.
Section 6 shows the experimental results of our implementation.
Finally, we conclude with Section 7.

2. Related work

There has been significant research on organizing and browsing
personal photos according to location and time. Toyama et al. [33]
introduced a meta-data powered image search and built a data-
base, also known as World Wide Media eXchange (WWMX), which
indexes photographs using location coordinates (latitude/longi-
tude) and time. A number of additional techniques in this direction
have been proposed [24,27]. There are also several commercial
web sites [2,3,5] that allow the upload and navigation of georefer-
enced photos. All these techniques use only the camera geo-coor-
dinates as the reference location in describing images. We
instead rely on the field-of-view of the camera to describe the
scene. More related to our work, Ephstein et al. [13] proposed to
relate images with their view frustum (viewable scene) and used
a scene-centric ranking to generate a hierarchical organization of
images. Several additional methods are proposed for organizing
[28] and browsing [32] images based on camera location, direction
and additional meta-data. Although these research approaches are
similar to ours in using the camera field-of-view to describe the
viewable scene, their main contribution is on image browsing
and grouping of similar images together. There exist only a few
systems that associate videos with their corresponding geo-loca-

tion. Liu et al. [21] presented a sensor-enhanced video annotation
system (referred to as SEVA) which enables searching videos for
the appearance of particular objects. SEVA serves as a good exam-
ple to show how a sensor rich, controlled environment can support
interesting applications. However, it does not propose a broadly
applicable approach to geo-spatially annotate videos for effective
video search. These techniques propose to collect information
about the location of the monitored objects only, therefore they
do not attempt to describe and record the scene that the video
camera captures. In our prior work [8] we have proposed the use
of videos’ geographical properties (such as camera location and
camera heading) to enable effective search of large video collec-
tions. We introduced a viewable scene model to describe the video
content.

Liu et al. [21] propose to record only the identities and locations
of the objects within the viewable scene along with visual images.
Hwang et al. [15] and Kim et al. [18] provide a mapping between
the objects that appear in video and their geographic locations
on a map. However, their work neglects to provide any details on
how to use the camera location and direction to build links be-
tween video frames and real-world objects. Neither of these tech-
niques address the search issues for effective search of large video
collections nor do they provide any solutions for analyzing the rel-
evance of search results. Ueda et al. [34] identify the importance of
the geographic objects based on closeness and orientation of the
object with respect to camera. Their main objective is to identify
the important objects that appear in the videos. However, we pro-
pose to find the most relevant video segments that show a given
query object or region. Their work is lacking the details on how
they search the video meta-data for the objects that appear in a vi-
deo. To the best of our knowledge, our framework is the first to
provide an effective model to describe the geographic coverage
of the video content and to propose an overall structure for manag-
ing the geospatial video meta-data for effective and efficient search
of large video collections. We further propose video ranking tech-
niques by based on the viewable scene cues. Our ranking techniques
do not target any specific application domain and therefore can be
applied to a variety of applications.

There already exist GPS-enabled digital cameras which can at-
tach the location information while still images and/or videos are
being captured (e.g., Ricoh SE-3 camera, Sony HDR-XR520V cam-
corder). Recently, mobile phones equipped with video camera,
GPS and digital compass have been introduced (e.g., Apple iPhone
3GS). As the sensor-equipped video capture devices become popu-
lar, more location and direction tagged videos will be produced.

Beyond geographic meta-data, there exist several other auto-
matic video meta-data creation methods using aural, visual and
textual processing techniques. Christel [11] provide a survey of
automated meta-data creation systems for multimedia systems.
There has been considerable work in searching and ranking videos
using content-based features. A review of state-of-the-art solutions
can be found in the literature [20,31]. The TREC Video Retrieval
Evaluation (TRECVID) [29] benchmarking activity has been pro-
moting progress in content-based retrieval of digital video since
2001. Each year, various feature detection methods from dozens
of research groups are tested on hundreds of hours of video [30].
Our technique and content-based retrieval methods are orthogonal
to each other and could be combined to create powerful solutions,
depending on application needs. For example, Zheng et al. [37] pro-
pose an earth-scale landmark recognition engine that leverages the
multimedia data on the web (i.e., geo-tagged pictures, travel guide
articles) and object recognition and clustering techniques. Luo
et al. [23] propose an event recognition technique utilizing the ex-
tracted visual features from both ground and satellite images. Sim-
ilarly, the search capabilities of our framework can be advanced by
leveraging visual features in addition to geographic properties.
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3. Framework

This section proposes a general framework for geo-tagged video
search applications as shown in Fig. 1. We emphasize the mobility
of cameras in the framework because of the ubiquity of mobile de-
vices and the prominent importance of geographic properties of
moving cameras. We envision that more and more user generated
videos are produced from mobile devices such as cellular phones.
To address the issues of geo-tagged video search outlined in Sec-
tion 1, our framework consists of three main parts: the data collec-
tion with mobile devices, the search engine to store, index, search
and retrieve both the meta-data and video contents, and the user
interface to provide web-based video search services. These main
parts are communicating through the Internet and/or cellular
network.

3.1. Data collecting device

At the mobile device level, the main objective is to capture the
sensor inputs and to fuse them with the video for future storage
and retrieval of videos. In the framework, a mobile device can be
any camera equipped with various sensors and a communication
unit. A good example is a smartphone such as Apple’s iPhone
3GS that includes GPS, digital compass, accelerometer, 5 mega pix-
el camera, WiFi/Broadband data connection, and programming
capability. The following issues need to be considered at the device
level.

First, the Data Collection Module in Fig. 1 captures videos with
sensor inputs through various sensors including camera, GPS recei-
ver, compass, accelerometer, etc. Sensor signals can be affected by
noises so they might be checked and refined in the Sensor Signal
Processing Module. For example, accelerometer input can be filtered
for a clearer signal. Sensor measurement errors can be detected
and missing sample values can be estimated here. Then, the sam-
pled sensor data should be synchronized and tagged in accordance

with the recorded video frames (Format Module). This automatic
synchronized annotation forms the basis of the proposed frame-
work. Assuming multiple sensors with different sampling rates
and precisions (e.g., for each second 30 frames of video, 1 GPS loca-
tion coordinate, and 40 direction vectors), values might be manip-
ulated using numerical methods such as interpolating, averaging,
etc. The sensor meta-data can be sampled either periodically, or
aperiodically by applying adaptive methods. An adaptive method
can be more efficient and desirable in a large scale application
since it can minimize the amount of the captured data and can sup-
port a more scalable system. The synchronization among sensor in-
puts and video frames should be designed to maximize processing
accuracy and to minimize the amount of meta-data.

Another challenge is how the automatic annotation can handle
a variety of video technologies (and cameras) and sensors. Without
any standard tagging method, the compatibility among various
meta-data would be a critical problem for general acceptance in di-
verse applications. This issue can be more pronounced when video
search is extended to user generated videos on public web sites.
Therefore, it is desirable to represent the collected meta-data using
a standard format, regardless of the number, type, and precision of
sensors. The next question is whether the meta-data are either (1)
embedded into the video files or (2) handled separately. The
embedding granularity can be at the frame, segment, scene or clip
level of the video. Embedding requires a standard embedding
method based on a specific video technology. The problem is that
there are so many different video coding techniques. Separating vi-
deo and meta-data works independently from the video coding
techniques, however it presents a verification problem between a
video file and its meta-data.

The next issue is an efficient interaction between the mobile de-
vices and the server. Multimedia data is generally large and may
require intense processing (such as compression) and significant
bandwidth for its transmission. Therefore, an effective interaction
and efficient data transmission among the mobile clients and the

Fig. 1. Framework structure and modules.
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server is of much importance. Currently, user generated data is
typically sent immediately to a server in their entireties. This ap-
proach works well for small size image collections. However, when
we consider a large data video transfer from a mobile device which
has expensive communication cost or limited communication
capability, this approach is not cost-efficient. Furthermore, not all
collected videos are considered relevant or with high priority,
and thus, are not requested immediately. In general, the collection
and consumption of data exist on independent schedules, deter-
mined primarily by the convenience for each user, which results
in a time gap between the data collection time and the data request
time. Considering the bandwidth and power consumption costs of
transmitting large amounts of data such as video content, the
immediate transmission of potentially irrelevant data is an ineffi-
cient use of resources.

There are ways to overcome the drawbacks of the immediate
data transmission scheme. For example, we can separate the small
amount of text-based geospatial meta-data from the large binary-
based video content. This small amount of meta-data would be
transmitted to a server in real-time, while the video content would
remain on the recording device, creating an extensive, resource
efficient catalog of video content searchable by geographical prop-
erties established by meta-data associated with each video. Should
a particular video be requested, only then it will be transmitted
from the camera to the server in an on-demand manner. Other-
wise, the delivery to a server can be delayed until a more cost-effi-
cient way is available (e.g., through wired network). Note that this
separation of the meta-data from video contents can incur extra
processing for the synchronization and verification of the meta-
data. The Communication Module defines and controls the data
transmission between the mobile device and the server based on
a predefined protocol. This module needs to provide versatile ways
to accommodate diverse applications and service models.

3.2. Search engine

The goal of the search engine is to retrieve more meaningful re-
sults for end-users in a highly efficient way that scales to large vi-
deo archives. In our framework, we define the search engine as the
collection of all components that store, index, search, and retrieve
both the meta-data and video contents. The search engine consists
of three components as shown in Fig. 1: (1) the database server
(DB) which manages the spatio-temporal meta-data and performs
video search based on them, (2) the media server (MS) which
stores and retrieves videos, and (3) the application data processor
(AP) which manages the details of application-dependent features
such as a spatial model of field-of-view (FOV), query types, etc. The

framework does not assume any specific database management
system or media server. However, AP can be customized for indi-
vidual online video applications. Note that, in the most general
and largest scale applications, multiple database servers and media
servers may be distributed across a wide area and they may collab-
orate with each other.

3.2.1. Application data processor
To utilize the captured geographic properties of videos for

searching, the framework represents the coverage area of video
scenes (FOV) as spatial objects in a database, i.e., it models the cov-
erage area using the collected meta-data (Modeling Module). This
modeling effectively converts the problem of video search into
the problem of spatial object selection in a database. The effective-
ness of such a model depends on the availability of sensor data. For
example, in an application with only camera location data from
GPS, the potential coverage area of video frames can be repre-
sented as a circle centered at the camera location (CircleScene in
Fig. 2). In another application with extra camera direction data,
the coverage area can be more accurately refined like a pie slice
shown in Fig. 2 (more details in Fig. 3). Thus, videos represented
by the pie model can be searched more effectively. Modeling is
essential for indexing and searching of video contents in a database
because the query functionality and performance are greatly im-
pacted by the spatial modeling of videos.

The Query Processing Module can implement a set of user-de-
fined query types for an application. Note that, for the implemen-
tation of the new query types, new indexing techniques or
database query functionalities might need to be introduced. More-
over, the evaluation of new query types should be fast enough to
be practical, especially for large scale video search. There has been
little research on these issues. In Section 5.1, our implementation
of new query types will be described in detail.

Fig. 2. Comparison of two coverage models.
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Fig. 3. Illustration of camera field-of-view (FOV) (a) in 2D (b) in 3D.
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In a large collection of videos, a search usually results in multi-
ple video matches. The challenge is that human visual verification
of the video results may take a significant amount of time due to
the overall length of videos. To enhance the effectiveness of the re-
sult presentation, an approach is to quantify the relevance of
resulting videos with respect to the given query and to present
the results based on their relevance ranking. The difficulty lies in
the fact that the human appreciation process of relevance is very
subjective and so it is challenging to be quantified. In our frame-
work, the Ranking Module harnesses objective measurements to
quantify the relevance between a query and videos in two different
ways: (1) spatial relevance: overlapping coverage area between
query range and a video, and (2) temporal relevance: overlapping
covered time.

The main objective of the framework is to search videos using
their spatio-temporal meta-data. However, it is also well known
that video search can further be improved by leveraging the fea-
tures extracted from the visual video content. As a complementary
approach to enhance the searchability, the framework can be com-
bined with optional video processing modules. For example, the Vi-
sual Analysis Module can synergistically enhance the accuracy of
the ranking process by accommodating visual features extracted
by the Feature Extraction Module. To calculate the relevance based
on the visual content, existing video ranking techniques can be
adopted [22]. However, considering that most techniques are pro-
ven to work effectively on specific domains, it remains uncertain
how well these techniques can perform with unconstrained video
datasets in a general video search framework such as the one pre-
sented. Some recent work [17] proposed to analyze the visual sim-
ilarities among resulting images to choose the representative
images that answer the search keywords well. The well-connected
images that are found to be similar to a majority of the resulting
images are returned as the most relevant. Such an approach can
be applied in our framework for content-based ranking of videos.

Since our framework targets general video search while most
content-based search techniques are domain-specific, any discus-
sion of combining our approach and a content-based technique
may not be meaningful without a specific application. Conse-
quently, we do not provide further details here.

3.2.2. Database server
The database server stores the coverage areas of video scenes as

spatial objects in a conventional database management system
such as MySQL. When a user query is received from AP and trans-
lated into a spatio-temporal selective query according to the video
scene model, the database is searched using conventional query
processing techniques.

The database server unit can consist of the following modules:

Database Insertion Module: Inserts the spatio-temporal video
scene descriptions into the database.
Database Search Module: Searches the database based on the
query specifications received from the application data proces-
sor unit.
Storage Module: The video scene meta-data (based on the
model) are stored using appropriate data structures and
indexes.

3.2.3. Media server
The role of media server is to store actual video contents and to

provide streaming service to users. In general, the media server ob-
tains a list of video segments as query results and transmits them
to the user interface in a predefined way. Different user interfaces
can present the search results in different ways so the media server
corresponds to the requests of the user interface.

In a large collection of videos with heterogenous coding tech-
niques, a video might need to be transcoded by the Transcoding
Module when it arrives at the server. For example, a user can collect
videos in any format but the application might require certain
predefined formats for service. Similarly, when users request the
display of the query results, videos can be transcoded to accommo-
date the different supported video formats between the server and
user devices. The Storage Module stores videos based on the under-
lying storage system and the media server technology. The query
results from the application data processor are analyzed by the
Retrieval Scheduler Module to provide the most efficient way to re-
trieve the requested data. One critical functionality of the media
server in our framework is the ability to randomly access any por-
tion of stored videos in a fast way. Since the amount of data in an
entire video clip can be very large and the user might be interested
in watching only a portion of the video where the query overlaps,
random access is very important for humans to verify the results.

3.3. User Interface

The role of the User Interface unit is to provide users with meth-
ods to communicate with the search engine from both wired com-
puters and mobile devices. Then, depending on the type of devices,
the user interface can be designed in different ways. Our frame-
work assumes a web-based user interface to communicate with
the search engine. Depending on the computing power of the user’s
machine and the availability of other supporting software (e.g.,
Google Maps, media player, web browser), the features of the video
search applications can be significantly affected.

Users can search videos in multiple ways (User Interface Mod-
ule). One intuitive method is submitting a map-based query when
users are familiar with the interested area. Drawing a query region
directly on any kind of map (see our implementation examples in
Figs. 11 and 12) might provide the most human-friendly and effec-
tive interface paradigm. Alternatively, a text-based query can also
be effective when users are searching for a known place or object.
For example, the user interface can maintain a local database of the
mapping between places and their geo-coordinates. Then, the tex-
tual query can be converted into a spatial query with exact longi-
tude and latitude input. External geo-coding services can also
provide this translation.

The user interface module receives the ranked query results
from the search engine. In addition to the ranking method, the pre-
sentation style or format of the results also greatly affects the
effectiveness of the presentation. Thus, human-friendly presenta-
tion methods should be considered such as using key frames,
thumbnail images, any textual descriptions, etc. The optional Visual
Scene Organizer Module can organize video search results based on
the spatial and visual scene similarity. Then, the user interface
module may implement more effective video browsing tools based
on the scene similarity. A map-based user interface for both query
input and video output can also be an effective tool by coordinating
the vector map and actual video display. Note that relevance rank-
ing and presentation style are not just technical issues, but may re-
quire an intensive user study.

The Media Player software plays out the query results. One impor-
tant aspect of video presentation is the capability to display only rel-
evant segments of videos at the user side avoiding unnecessary
transmission of video data. Thus, the media player at the user side
and the streaming media server are expected to closely collaborate.

4. Data collection with viewable scene model

Our implementation focuses on the very essential geographic
properties of the video contents captured from a video camera, a
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3D digital compass, and a GPS receiver. We assume that the optical
properties of the camera are known. The digital compass mounted
on the camera heads straight forward as the camera lens. The com-
pass periodically reports the direction in which the camera is
pointing with the current heading angle (with respect to North)
and the current pitch and roll values. The GPS receiver, also
mounted on the camera, reports the current latitude, longitude,
and altitude of the camera. Video can be captured with various
camera models. Our custom-written recording software receives
direction and location updates from the GPS and compass devices
as soon as new values are available and records the updates along
with the current computer time and coordinated universal (UTC)
time.

A camera positioned at a given point p in geo-space captures a
scene whose covered area is referred to as camera field-of-view
(FOV, also called a viewable scene), see Fig. 3. The meta-data re-
lated to the geographic properties of a camera and its captured
scenes are as follows: (1) the camera position p is the latitude, lon-
gitude coordinates read from GPS, (2) the camera direction a is ob-
tained based on the orientation angle (0� 6 a < 360�) provided by a
digital compass, (3) the maximum visible distance from p is R at
which objects in the image can be recognized by observers [8] –
since no camera can capture meaningful images at an indefinite
distance, R is bounded by M which is the maximum distance set
by an application, and (4) the camera view angle h describes the
angular extent of the scene imaged by the camera. The angle h is
calculated based on the camera and lens properties for the current
zoom level [14]. The above geo-properties are captured from a sen-
sor-equipped camera while video is recorded. Note that some com-
mercial cameras are already equipped with those sensors or
expected to be equipped in the very near future.

Based on the collected meta-data, we model the viewable area
in 2D space, which is represented as a circular sector as shown in
Fig. 3(a). For a 3D representation shown in Fig. 3(b), we would need
the altitude of the camera location point and the pitch and roll val-
ues to describe the camera heading on the zx and zy planes (i.e.,
whether the camera is directed upwards or downwards). We be-
lieve that the extension to 3D is straightforward, especially since
we already acquire the altitude level from the GPS and the pitch
and roll values from the compass. Thus, for a focused discussion,
we will represent the FOV in 2D space in this paper.

One important point in data collection is the difference in the
data sampling frequencies. The GPS location updates are available
every 1 s whereas compass can produce 40 direction updates per
second. And for a 30 fps video stream there will be 30 frame time-
codes for every 1 s video. An intuitive way is to create the com-
bined dataset as the sensor data is received from the devices and
use a common timestamp for the combined tuple. Such a tuple will
include the last received updates for the location and direction val-
ues. Because of the heterogeneity in data frequencies, it is possible
to match data items which are not temporally closest. A better way
is to create separate datasets for GPS updates, compass readings
and frame timecodes, and later combine the data items from each
data set that has the closest time match. Since all sensor values will
be refreshed at most every second, intuitively, the data frequency
for the combined dataset will be a second.

We used a periodic data collection in our implementation, i.e., an
update per one second. Thus, in the implementation, a n second
long video is represented with n FOVs each representing the geo-
graphic properties of one second long video frames. Table 1 shows
examples of the collected geo-tagged meta-data for a 5 s long video,
where each row (i.e., tuple) corresponds to an FOV. In Table 1, Time-
stamp is the computer time when the meta-data is recorded and
Timecode is the corresponding frame timecode in the actual video.

5. Geo-tagged video search

5.1. Considerations

Video searching should be able to fully take advantage of the
collected meta-data for various requests by applications. Beyond
the importance of the geographic information where a video is ta-
ken, there are other obvious advantages in exploiting the spatial
properties of video because the operation of a camera is fundamen-
tally related to geometry. When a user wants to find images of an
object captured from a certain viewpoint and from a certain dis-
tance, these semantics can be interpreted as geometric relations
between the camera and the object, such as the Euclidean distance
between them and the directional vector from the camera to the
object. Thus, more meaningful and recognizable results can be
achieved by using spatial queries on geo-tagged videos.

Search types exploiting the geographic properties of the video
contents may include not only conventional point and range que-
ries (i.e., overlap between the covered area of video and the query
range), but also new types of video specific queries. For example,
one might want to retrieve only frames where a certain small ob-
ject at a specific location appears within a video scene, but with a
given minimum size for better visual perception. Usually, when the
camera is closer to the query object, the object appears larger in
the frame. Thus, we can devise a new search type with a range
restriction for the distance of the camera location from the query
point; we term this a distance query. Similarly, the camera view
direction can be an important factor for the image perception of
an observer. Consider the case where a video search application
would like to exploit the collected camera directions for querying,
representing a directional query.

The collected meta-data are stored in a database so that videos
can be searched based on the alpha-numeric meta-data. Specifi-
cally, FOVs are stored as pie-shaped spatial objects and searched
only by their spatial and temporal properties. Videos are separately
stored in a media server. Our implementation utilizes an existing
database management system and conventional query techniques
because (1) the development of new indexing or query optimiza-
tion is beyond the scope of this paper and (2) we wanted to dem-
onstrate that the framework could be implemented without extra
effort of developing new database features. We focused on how the
proposed FOV model can be effectively and efficiently used in a
large scale video search on a conventional database such as MySQL
which supports spatial constructs (i.e., data types, indices).

When a large collection of videos is stored in a database, the
cost of processing spatial queries may be significant because of

Table 1
Example georeferenced meta-data tuples (h = 60�).

FOV Vid p hlat. � lon.i a(�) R(m) Timestamp Timecode

522 22 46.741548–116.998496 257.4 259 2008/03/30 19:22:13.37 0:53:46:24
523 22 46.741548–116.998498 6.2 259 2008/03/30 19:22:14.84 0:53:47:24
524 22 46.741547–116.998490 4.3 259 2008/03/30 19:22:15.37 0:53:48:24
525 22 46.741547–116.998488 359.5 259 2008/03/30 19:22:16.37 0:53:49:24
526 22 46.741547–116.998485 3.2 259 2008/03/30 19:22:17.37 0:53:50:24
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the computational complexity of the operations involved, for
example, determining the overlap between a circular sector shaped
FOV and a polygon-shaped query region. Therefore, such queries
are typically executed in two steps: a filter step followed by a
refinement step [25,10]. The idea behind the filter step is to approx-
imate the complex spatial shapes with simpler outlines (e.g., a
minimum bounding rectangle, MBR [9]) so that a large number
of unrelated objects can be dismissed very quickly based on their
simplified shapes at the earlier stage of searching. The resulting
candidate set from the filter step is then further processed during
the refinement step to determine the exact results based on the ex-
act geometric shapes. The rationale of the two step process is that
the filter step is computationally far cheaper than the refinement
step due to the simple approximations. Overall, the cost of spatial
queries is determined by the efficiency of the filter step (many ob-
jects, but simple shapes) and the complexity of the refinement step
(few objects with complex shapes).

Additionally, in video search applications, the refinement step
can be very expensive due to the nature of the processing. Depend-
ing on the application, various computer vision and content-based
ranking techniques can be applied before presenting the search re-
sults. For example, some specific shapes or colors of objects might
be analyzed for more accurate results. Such extra processing is in
general performed frame by frame, and it may significantly in-
crease the time and execution cost of the refinement step. It is thus
critical to minimize the amount of refinement processing for large
scale video searches. This, in turn, motivates the use of effective
and efficient filtering algorithms which minimize the number of
frames that need to be considered in the refinement step.

5.2. Implementation of filter step

In conventional spatial data processing, MBR approximations
are very effective for the filter step. However, with a bounding rect-
angle, some key properties that are useful in video search applica-
tions may be lost. For example, MBRs retain no notion of
directionality which is a critical factor in searching relevant
images. Thus, we need to introduce a new approximation that
can provide similar efficiency and low processing cost as MBR-
based methods, but can additionally provide a better support for
the type of searches that a video database may encounter. We de-
vised a novel vector-based approximation of FOVs for the filter
step. The contents of a video are represented by a series of FOVs.
In the vector model, the spatial property of an FOV is represented
by the camera position p and the center vector V (Fig. 4). The mag-
nitude of V is the viewable distance from p, i.e., R and the direction
of V is a. When we project the FOV onto the x- and y-axes of the 2D
coordinate system, a point p is divided into px and py, and V is di-
vided into VX and VY along the x- and y-axes, respectively. Then, an
FOV denoted by a point and vector can be represented by a quadru-
ple hpx, py, VX, VYi which can be interpreted as a point in four-
dimensional space.

In conjunction with the vector estimation, we introduced a
space transformation of the spatial meta-data to provide new

query functionalities. In mathematics, space transformation is an
approach to simplify the study of multidimensional problems by
reducing them to lower dimensions or by converting them into
some other multidimensional space. Using a space transformation,
an FOV hpx, py, VX, VYi can be divided and represented in two 2D
subspaces, i.e., px � VX and py � VY. Then, an FOV can be repre-
sented as two points, each in its own 2D space. For example,
Fig. 4 shows the mapping between an FOV represented by p1
and V1 in geo-space and two points in two transformed spaces
without loss of information. To define the vector direction, let
any vector heading towards the right (East in the northern hemi-
sphere) on the x-axis have a positive VX value, and a negative VX va-
lue for the other direction (West). Similarly, any vector heading up
(North) on y-axis has a positive VY value, and a negative VY value
for the other direction (South). Using the proposed model, any sin-
gle FOV can be represented as a point in a p � V space. As a result,
the problem of searching for FOV areas in the original space can be
converted to the problem of finding FOV points in the transformed
subspace. Thus, FOVs can be indexed and searched in a simpler
way while keeping the directionality data.

5.3. Implementation of query

The following subsections briefly describe how the filter step
can be effectively performed by using the vector model for four
spatial query types. More query types and the technical details of
the filtering can be found in [19].

5.3.1. Point query (PQ)
The assumed query is, ‘‘for a given query point q hx, yi in 2D geo-

space, find all video frames that overlap with q”. The filter step can
be performed in p � V space by identifying all possible points of
FOVs that have a potential to overlap with the query point.

Recall that the maximum magnitude of any vector is limited to
M, and hence any vector outside of a circle centered at the query
point q with a radius M cannot reach q in geo-space. This means
that any FOV whose camera location is farther than its maximum
viewable distance M from the query point cannot contain the im-
age of the query point; see Fig. 5 for an illustration. Because a query
point is not a vector, it is mapped only to the p-axis. First, let us
consider only the x components of all vectors. In px � VX space,
the possible vectors that can cross (or touch) qx should be in the
range [qx �M, qx + M]. That is, any vector at px is first filtered out
if jpx � qxj > M. Next, even though a vector is within the circle, it
cannot reach qx if its magnitude is too small. Thus, jpx � qxj 6 jVXj
must be satisfied for VX to reach qx. At the same time the vector
direction should be towards qx. For example, when px > qx, any vec-
tor with a positive VX value cannot meet qx. Hence, in p � V spaces
as shown in Fig. 5, all points (i.e., all vectors) outside of the shaded
isosceles right triangle areas will be excluded in the filter step. For
example, vector V1 in geo-space is represented as a point v1 in
p � V space. Now consider all vectors starting from a point on
the circumference of the circle towards the center with the maxi-
mum magnitude M. All such vectors moving from V1 to V4 in a

Fig. 4. FOV representation in different spaces.
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clockwise direction map to the diagonal line starting from v1 to v4

in p � V space. The same can be observed for the y components of
vectors, i.e., the same shape appears in py � VY space. The resulting
vectors from the filter step should be included in the shaded areas
of both px � VX and py � VY space. Formally, a vector at p that satis-
fies the conditions in column A of Table 2 can be selected in the fil-
ter step.

5.3.2. Point query with bounded distance r
Unlike a general spatial query, video search may enforce appli-

cation specific search parameters. For example, one might want to
retrieve only frames where a certain small object at a specific loca-
tion appears within a video scene, but with a given minimum size
for better visual perception. Usually, when the camera is closer to
the query object, the object appears larger in the frame. Thus, we
can devise a search with a range restriction for the distance of
the camera locations from the query point such as ‘‘for a given
query point q hx, yi in 2D geo-space, find all video frames that over-
lap with q and that were taken within the distance r from q”. Be-
cause of the distance requirement r, the position of the camera in
an FOV cannot be located outside of the circle centered at q with
radius r, where r < M. Thus, the search space can be reduced so that
the resulting vectors should satisfy the conditions in column B of
Table 2.

5.3.3. Directional point query
The camera view direction can be an important factor for the

image perception by an observer. Consider the case where a video
search application would like to exploit the collected camera direc-
tions for querying. An example search is, ‘‘for a given query point q
hx, yi in geo-space, find all video frames taken with the camera
pointing in the Northwest direction and overlapping with q”. The
view direction b can be defined as a line of sight from the camera
to the query point (i.e., an object or place pictured in the frame).
The line of sight can be defined using an angle at the camera loca-
tion similar to the camera direction a. Note that the camera orien-
tation is always pointing to the center of an FOV scene while the
view direction can point to any locations or objects within the
scene. An important observation is that all FOVs that cover
the query point have their starting points along the same line of

sight in order to point towards the requested direction. Thus, the
filter step needs to narrow the search to the vectors that satisfy
the following conditions: (1) their starting points are on the line
of sight, (2) their vector directions are heading towards q, and (3)
their vector magnitudes are long enough to reach q.

For a given view direction angle b, we can calculate the maxi-
mum possible displacement of a vector starting point from the
query point. Because the largest magnitude of any vector is M,
the maximum displacement between the query point and the
starting point of any possible overlapping vector is �Msinb on
the x-axis and �Mcosb on the y-axis (note that the sign is naturally
decided by b, e.g., sin315� = �0.71 and cos315� = 0.71 where the
Northwest direction is equivalent to 315�, so b = 315). As shown
in Fig. 6, any vector starting at a point greater than qx + (�Msinb)
on the x-axis or less than qy + (�Mcosb) on the y-axis cannot touch
or cross the query point with the given angle b. Thus, the search
area for such vectors can be reduced as illustrated in Fig. 6. To meet
the view direction request (say, 315� line of sight), no vector with a
positive VX value can reach q. Therefore, in the filter step the entire
search space (i.e., the triangle shape) on the positive VX side is ex-
cluded in the px � VX space. Similarly, no vector with a negative VY

value can reach q, so the entire search space (the triangle shape) on
the negative VY side is excluded in the px � VY space. Again, the
resulting vectors should satisfy the conditions in column C of
Table 2.

5.3.4. Rectangular range query
The assumed query is, ‘‘for a given rectangular query range in

geo-space, find all the video frames that overlap with this region”.
Suppose that the rectangular query region q is a collection of
points. When we apply the same space transformation, all points
in the query region can be represented as a line interval on the
px and py-axes. Then, when any vector’s starting point falls inside
the query region, the vector clearly overlaps with q so it should
be included in the result of the filter step. Next, when we assume
that any location along the perimeter of q is an independent query
point as in Section 5.3.1, the starting points of vectors that can
reach the query point is bounded by a circle with radius M. Draw-
ing circles along all the points on the perimeter forms the bound-
ary of the search space for the range query.

Fig. 5. Illustration of filter step in point query processing.

Table 2
Summary of search space (PQ: point query).

A. PQ B. PQ with r C. Directional PQ

Boundary condition jp � qj 6M jp � qj 6 r jpx � qxj 6 jMsinbj
where r < M jpy � qyj 6 jMcosbj

Overlap condition if px > qx px � qx 6 �VX px � qx 6 �VX qx + (�Msinb) 6 �VX

if py > qy py � qy 6 �VY py � qy 6 �VY qy + (�Mcosb) 6 �VY

if qx > px qx � px 6 VX qx � px 6 VX qx � (�Msinb) 6 VX

if qy > py qy � py 6 VY qy � py 6 VY qy � (�Mcosb) 6 VY

if px = qx any VX any VX any VX

if py = qy any VY any VY any VY

780 S.H. Kim et al. / J. Vis. Commun. Image R. 21 (2010) 773–786



Author's personal copy

5.4. Ranking search results

In video search, when results are returned to a user, it is critical
to present the most related videos first since manual verification
(watching videos) can be very time-consuming. This can be accom-
plished by creating an order which will rank the videos from the
most relevant to the least relevant. Otherwise, although a video
clip completely captures the query region, it may be listed last
within query results. It is essential to question the relevance of
each video with respect to the user query and to provide an order-
ing based on estimated relevance. Our framework implements
three ranking methods in the following subsections based on two
relevant dimensions to calculate video relevance with respect to
a query, i.e., its spatial and temporal overlap.

Analyzing how the FOV descriptions of a video overlap with a
query region gives clues on calculating its relevance with respect
to the given query. A natural and intuitive metric to measure spa-
tial relevance is the extent of region overlap. The greater the over-
lap between FOVs and the query region, the higher the video
relevance. To measure the temporal relevance, the time duration
overlapping with the query region can be used. A video which cap-
tures the query region for a longer period will probably include
more information about the region of interest and therefore can
be more interesting to the user. Note that during the overlap period
the amount of overlap at each time instant changes dynamically
for each video. For example, among two videos whose total overlap
amounts are comparable, one may cover a small portion of the
query region for a long time and the rest of the overlap area only
for a short time, whereas another video may cover a large portion
of the query region for a longer time period. Fig. 7(a) and (b) illus-
trate the overlap between the rectangular query region and the
videos V1 and V2, respectively. Although the actual overlapped area
of the query is similar for both videos, the coverage by V2 is much
denser. Consequently, among the two videos V2’s relevance is
higher.

Let Q be an arbitrary polygon-shaped query region. Suppose
that a video clip Vk consists of n FOVs and ts and te are the start time

and end time for video Vk, respectively. The sampling time of the
ith FOV is denoted as ti. Note that FOVs can be collected at any time
and timestamped. The starting time of a video ts is defined as t1.
The ith FOV represents the video segment between ti and ti+1 and
the nth FOV, which is the last FOV, represents the segment be-
tween tn and te (for convenience, say te = tn+1). The set of all FOV

descriptions for Vk is given by VF
k ¼ FOVVk ðtiÞj1 6 i 6 n

n o
. Simi-

larly, the FOV at time ti is denoted as VF
kðtiÞ.

If Q is viewable by Vk, then the set of FOVs that capture Q is gi-
ven by

OverlapSetðVF
k;QÞ¼ VF

kðtiÞj for all i where VF
kðtiÞ overlaps with Q

n o

ð1Þ

The overlap between VF
k and Q at time ti, forms a region as illus-

trated in Fig. 8. Let OðVF
kðtiÞ;QÞ denote the overlapping area be-

tween video VF
k and query Q at time ti. More detailed

descriptions and the exact calculations can be found in [7].

5.4.1. Ranking based on total overlap area
The total overlap area of OðVF

k;QÞ covers all overlap regions
formed between VF

k and Q, i.e., the area of Q covered at least once
by FOVs. Subsequently, the relevance using total overlap area (RTA)
is given by the area of OðVF

k ;QÞ. A higher RTA value implies that a
video captures a larger portion of the query region Q and therefore

Fig. 6. Illustration of filter step in directional point query with angle b.

Fig. 7. Visualization of the overlap regions between query and videos (a) V1 and (b) V2.

Fig. 8. Example of spatial overlap among query region Q and two FOVs.
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its relevance with respect to Q can be higher. For example, two
FOVs F1 and F2 overlap with Q in Fig. 8. The area A denotes the
overlapped area between Q and F1 and C is the overlapped area be-
tween Q and F2. The area B is the intersection between A and C.
Then, RTA = A + C � B.

5.4.2. Ranking based on total overlap duration
The relevance using overlap duration (RD) is given by the total

time in seconds that VF
k overlaps with query Q. Eq. (2) formulates

the computation of RD. RD is obtained by summing the overlap time
for each FOV in VF

k with Q. We estimate the overlap time for each
FOV as the difference between timestamps of two sequential FOVs.

RD ¼
Xn

i¼1

ðtiþ1 � tiÞfor i when O VF
kðtiÞ;Q

� �
–£ ð2Þ

When the duration of overlap is long, the video will capture more of
the query region and therefore its relevance will be higher.

5.4.3. Ranking based on summed area of overlap regions
RTA and RD capture the spatial and temporal extent of the over-

lap, respectively. However both relevance metrics express only the
properties of overall overlap and do not describe how each individ-
ual FOV overlaps with the query region. For example, in Fig. 7, for
videos V1 and V2, although RTAðVF

1;QÞ ffi RTAðVF
2;QÞ and

RDðVF
1;QÞ ffi RDðVF

2;QÞ, VF
2 overlaps with around 80% of the query re-

gion Q during the whole overlap interval, whereas VF
1 overlaps with

only 25% of Q for most of its overlap interval and overlaps with 80%
of Q only for the last few FOVs. In order to differentiate between
such videos, we propose the relevance using summed overlap area
(RSA) as the summation of areas of all overlap regions during the
overlap interval. Eq. (3) formalizes the computation of RSA for video
VF

k and query Q.

RSA VF
k;Q

� �
¼
Xn

i¼1

O VF
kðtiÞ;Q

� �
� tiþ1 � tið Þ

� �
ð3Þ

Using the example in Fig. 8, RSA = A + C. Note that the area B was
included twice in the calculation of RSA but only once in RTA.

6. Experiments

6.1. Prototype implementation and experimental methodology

To collect geo-tagged video data, we have constructed a proto-
type system which includes: (1) Canon VIXIA HV30 and JVC JY-
HD10U cameras, with 1920 � 1080 and 1280 � 720 pixels at 30
frames per second, which produce MPEG-2 HD video streams
around 20 Mb/s; (2) OS5000-US Solid State Tilt Compensated 3
Axis Digital Compass, which provides precise tilt compensated
headings with roll and pitch data; and (3) Pharos iGPS-500 GPS re-
ceiver. A program was developed to acquire, process, and record
the georeferences along with the MPEG-2 HD video streams. The
system can process MPEG-2 video in real-time (without decoding
the stream) and each video frame is associated with its meta-data.
In all of our experiments, an FOV was constructed every second,
i.e., one FOV per 30 frames of video.

Each video data packet received from the camera is processed in
real time to extract frame timecodes. Extracted timecodes are re-
corded along with the local computer time when the frame was re-
ceived. Since video data is received from the camera as data packet
blocks, all frames within a video packet will initially have the same
local timestamp. Creating a frame level time index for the video
stream will minimize the synchronization errors that might occur
due to clock skew between the camera clock and the computer
clock. In addition, such a temporal video index, whose timing is
compatible with other datasets, enables easy and accurate integra-

tion with the GPS and compass data. We also keep track of the size
of the video data captured since the beginning of the capture and
record the byte offset for each video frame.

In any actual video capturing, the behavior of a camera (i.e., its
movements and rotations) depends on the occasion and purpose of
the video recording. Such camera behaviors can be described by
the pattern of camera movements and rotations. For example, a
camera can be mounted on a vehicle and move along road net-
works such as equipped on city buses, police cars or ambulances.
The camera direction is usually fixed or rotates within a predefined
angle. Another example is a pedestrian camera. A walking tourist
holds a hand-held camera to capture tourist attractions, land-
marks, and special events and follows a random trajectory, analo-
gous to a walking path. Then, the tourist can freely change the
camera angle.

In collecting the real data for the experiments, we simulated the
camera behavior as if videos were captured on a tourist bus, where
the camera moves along a road network and it casually captures
the street scenes. We mounted the recording system setup on a
vehicle and captured video driving along streets at different speeds
(max. 25 MPH). During video capture, we frequently changed the
camera view direction. The recorded videos covered a 5.5 km by
4.6 km region (our entire search region, i.e., ‘‘the universe”) quite
uniformly. However, for a few popular locations we shot several
videos, each viewing the same location from different directions.
The total captured data includes 134 video clips, ranging from 60
to 240 s in duration. Each second, an FOV was collected, resulting
in 10,652 FOVs in total.

As the user interface in our implementation, we developed a
web-based search system [6]. The implemented query interface1

allows users to visually draw the query region and view direction
on the map. The result of a query contains a list of the overlapping
video segments that show the query region from the query view-
point. For each returned video segment, we display the correspond-
ing FOVs on the map, and during video playback we highlight the
FOV region whose timecode is closest to the current video frame.
We constructed a MySQL database that stored all the FOV meta-data
and created MySQL user-defined functions (UDFs) using the pro-
posed vector model to search through the FOVs in the database.
For media management and streaming we adopted the Wowza Med-
ia Server (http://www.wowzamedia.com/), and for video playback
we used the Flowplayer (http://flowplayer.org/), an open source
flash media player. In Section 6.2.2, we will demonstrate some
example queries which we ran on our web-based search interface
based on our real-world dataset. Figs. 11 and 12 are screenshots of
our search interface.

To evaluate the implementation of our framework, we per-
formed some experiments on the collected video meta-data. We
generated 250 random query regions, of size 300 m by 300 m,
within the 6 km by 5 km area of total video coverage. We then
searched for the videos that captured at least one of the query re-
gions and extracted the video segments that show these regions,
i.e., where FOVs and the query region intersect. A detailed descrip-
tion of the FOV-based search algorithm can be found in our prior
work [8].

The first group of experiments includes a user study where we
compare the results obtained from our search system to user pro-
vided feedbacks. Our main intention in performing the user study
is to check whether the results of the proposed search technique
are plausible to humans. Our methodology therefore does not live
up to the rigorous process usually attributed to scientific user stud-
ies. We next evaluated the accuracy of the FOV-based search and
compared the search results to those obtained from other

1 http://eiger.ddns.comp.nus.edu.sg/geo/Query_idaho.html.
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approaches. We also performed analysis on the performance of the
proposed ranking algorithms.

The second group of experiments includes examples for the
new directional and bounded distance query types described in
Section 5.1. We demonstrate that our implementation successfully
retrieves the relevant video results, based on the specifications of
the proposed new query types. We provide some screenshots for
the example queries executed on our web-based search interface.

6.2. Results

6.2.1. Feasibility analysis
We evaluated the feasibility and adequacy of our FOV-based vi-

deo search with a specific focus on the completeness and accuracy
of search results.

The completeness of results is hard to verify, since there is no
easy way to get the ground truth for the query result set. One pos-
sible way is to have a human subject watch through all videos and
confirm whether a query region is visible within a video. Such
manual verification is prone to errors, however, human feedback
is still the most reliable source to determine whether an object is
visible within a video. For the user study, we randomly chose 40
videos and manually verified the overlap among FOVs and query
regions (details can be found in [8]).

To evaluate the accuracy of the query result set, we compared
our approach to two other video scene description models: (1)
the CircleScene model – the camera viewable scene is described
as a circular region around the camera location with the assump-
tion that the view direction is not known. A query is visible if its
region intersects with the circular viewable scene (see Fig. 2), (2)
the PointScene model – the camera viewable scene is the camera
location point. A query is visible if the camera point resides within
the query’s region.

6.2.1.1. Completeness of search results. In this set of experiments we
compared algorithmic results with user provided feedback (Manu-
alCheck). Given 250 queries, through manual scan, we created the
list of query regions that are visible within each video in the data-
set of 40 videos. We then executed the same set of queries using
the proposed FOV model, the CircleScene model and the Point-
Scene model on the same 40 videos. Fig. 9 shows the number of
queries marked as visible for each video file by manual verification
and the three search algorithms mentioned above. Note that we
used the same far visible distance (R) value for both the CircleScene
and the FOV models.

Results show that FOV-based search completely returns all vid-
eos marked visible through ManualCheck. However, the query re-
sult also includes a small number of false positives (i.e., returned
as an intersecting query but the scene does not actually show
the query region), which might occur due to the following reasons:
when the camera view is occluded with big structures or when the

camera viewable scene intersects only a small percentage of the
query region, the human subject might not include the query in
the manual results. As expected, the CircleScene model returns
an excessive percentage of extra irrelevant videos and overesti-
mates the manual search results while the PointScene model
underestimates the manual search results by returning only a sub-
set of the visible queries.

6.2.1.2. Accuracy of search results. We next compared the effective-
ness of the three search algorithms in identifying the relevant vid-
eos. Fig. 10(a) shows the total length of all video segments
identified by each search algorithm while varying the number of
input video files. We have used the cumulative sums to show the
overall difference as the input data size grows. The graph clearly
shows the superiority of the FOV model over the CircleScene and
PointScene models. It is important to note that, although a query
region is marked as visible by both the FOV and CircleScene mod-
els, the video segments they report for the appearance of the query
region in a single video can be different. For example, as shown in
Fig. 2, when the camera is rotated, although the query region is not
visible anymore in the video, CircleScene will still report that the
query intersects with its viewable scene for the following frames.
Therefore the FOV model eliminates the frames that do not show
the query region and returns more precise results with less false
positives. Considering the huge size of video data and time-con-
suming human verification process for the final result, this signif-
icant reduction of false positives can greatly enhance the
performance of video search.

To analyze the effect of the query size over the total length of
the returned video segments, we repeated the same experiments
shown in Fig. 10(a) while varying the size of the query regions.
Fig. 10(b) reports the total length of the returned video segments
by all three approaches for query region sizes ranging from
20 m � 20 m to 550 m � 550 m. For smaller query regions we ob-
served bigger differences between the three approaches, i.e., the
superiority of FOV model is maximized for small query regions.
The performance gap among the three approaches reduced as the
query size increased. For sizes bigger than 550 m � 550 m, we have
not observed dramatic changes in the results.

6.2.1.3. Accuracy of ranking. We rank the search results obtained
from the 250 queries based on the three metrics proposed in Sec-
tion 5.4. The rank lists RLTA, RLSA and RLD are constructed from the
relevance metrics RTA, RSA and RD, respectively.

Similar to the previous completeness issue, it is not easy to de-
fine a single best rank. Thus, we introduced another user study to
obtain the rank lists of search results based on human judgement.
We used an evaluation metric termed Discounted Cumulated Gain
(DCG) [16], which systematically combines the video rank order
and degree of relevance. The Normalized-DCG (NDCG) is the final
DCG sum normalized by the DCG of the ideal ordering (i.e., rank
from human judgement). The higher the NDCG of a given ranking
the more accurate it is. Next, the NDCG scores with respect to
the user results were calculated. The NDCG scores of RLTA, RLSA

and RLD were 0.975, 0.951 and 0.921, respectively. All scores are
close to 1, which implies that all three are highly successful in
ranking the most relevant videos at the top, similar to human
judgement. The high NDCG scores further lend credibility to the
claim that the proposed ranking methods successfully identify
the most relevant videos.

The three ranking techniques RTA, RSA and RD interpret the rele-
vance in geo-tagged video search by somewhat different means.
Therefore they are not expected to produce an identical ranking or-
der across all schemes. However, we conjecture that they all
should contain similar sets of video clips within the top N of their
rank lists (for some N). A similar result from all three ranking algo-Fig. 9. Number of visible queries per video file.
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rithms would indicate that the resulting videos are most interest-
ing to the user. To compare the accuracy of the results, we adopt
the Precision at N (P(N)) metric, which is a popular method that de-
scribes the fraction of relevant videos ranked in the top N results.
We redefine P(N) as the fraction of common videos ranked within
the top N results of more than one rank list. P(N) only shows the
precision of a single query therefore, to measure the average preci-
sion over multiple queries, we use the Mean Average Precision
(MAP), which is the mean of several P(N) from multiple queries.

We compare the ranking accuracy of RLTA, RLSA and RLD using
MAP scores. In Table 3, the first row calculates the MAP values as
the average ratio of the videos that are common to all three rank
lists within the top 1, 2, 5, 10 and 20 ranked results for all 250 que-
ries, respectively. The second, third and fourth rows display the
MAP scores pair-wise for two methods each: RTA and RSA, RTA and
RD, and RD and RSA. The results show that the precision increases
as N grows and achieves a close to perfect score beyond N = 10. Note
that the precision is very high even at N = 5. This implies that all
three proposed schemes similarly identify the most relevant videos.

Even though the results among the ranking methods vary some-
what, at this point we do not favor any specific approach. We be-
lieve that each ranking scheme emphasizes a different aspect of
relevance, therefore query results should be customized based on
user preferences and application requirements.

6.2.2. Functionality illustration
In Section 5.1 we introduced some of the spatial query types

that can be applied in geo-tagged video search to enforce applica-
tion specific search information. For example, one might specify
the query position, the view direction from the camera, and the
distance between the location of the query and the camera. In this
section, we provide examples of such queries and demonstrate the
new functionality of our geo-tagged video search system. All re-
sults were facilitated by the implementation of the vector model

in Section 5.1 and examples are illustrated through the screen
shots from our web-based video search interface. Details of the
implementation and experiments can be found in [19].

6.2.2.1. Query with bounded distance. Fig. 11 illustrates the results
of a bounded distance query on our real-world video data. We
searched for the video segments that show the Pizza Hut building
in the scenes. The query returns 12 video segments (total 120 s
of video). Two of the resulting video segments are shown in
Fig. 11(a) and (b). The Pizza Hut building appears very small (and
is difficult to be recognized by humans) in the second figure since
it was located far from the camera. Note that the same building is
easily recognizable in the first figure when the camera was closer
to the object. We can effectively exclude the video segment shown
in Fig. 11(b) using an appropriate bounded distance value (e.g.,
100 m) in the query. The camera FOVs for the video segments are
illustrated on the map. The FOVs that corresponds to the current
video frames are highlighted in both images.

6.2.2.2. Directional query. In Fig. 12, we illustrate an example of a
directional query. We would like to retrieve the video segments
that overlap with the given query region (the University of Idaho
Kibbie Dome in the scenes) while the camera was pointing in the
North direction. Fig. 12(a) shows the video segments returned from
the range query without the notion of directionality. And Fig. 12(b)
shows the results of the directional range query with input direc-
tion 0� (i.e., North). Without the direction condition the Kibbie
Dome query returns a total of 250 s of video whereas the direc-
tional query returns only 65 s of video. As shown in Fig. 12(b),
the directional query precisely returns the related video segments
and eliminates the unwanted videos and video sections.

For a specific application, the bounded distance query, or the
directional query, or a combination of the two can be used to
effectively retrieve the related video segments. Based on the

Fig. 10. Comparison of the results of the three search algorithms (using FOV, CircleScene and PointScene models).

Table 3
Comparison of proposed ranking methods: RLTA, RLSA and RLD.

Top N results MAP at N = 1 MAP at N = 2 MAP at N = 5 MAP at N = 10 MAP at N = 20

Compare all NðRLTAÞ
T

NðRLDÞ
T

NðRLSAÞ
N

0.60 0.789 0.918 0.993 1.0

Compare RLTA and RLSA NðRLTAÞ
T

NðRLSAÞ
N

0.727 0.839 0.961 0.993 1.0

Compare RLTA and RLD NðRLTAÞ
T

NðRLDÞ
N

0.677 0.842 0.933 0.987 1.0

Compare RLSA and RLD NðRLSAÞ
T

NðRLDÞ
N

0.745 0.885 0.947 0.987 1.0
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application’s requirements the query location can be specified as a
point or a range. In these scenarios, our search mechanism effec-
tively and efficiently reduces the amount of data returned to user,
therefore minimizing the user browsing time.

7. Conclusion

In this study, we advocated geo-tagged video acquisition as a
means to manage large scale video content. We proposed a frame-
work in support of various applications such as spatio-temporal
search. We further described a design and various implementation
details of the framework to demonstrate its real-world feasibility
and adequacy. Our results show that many of the fundamental as-
pects of our proposed framework can be effectively instantiated.

Interesting challenges remain. While our framework is designed
from the ground up for scalability, its performance on a large scale
will need to be further investigated and validated. The extensibility
of the framework also presents an interesting aspect as additional
sensors, such as accelerometers, are added.

Acknowledgment

We would like to acknowledge the support of the Centre of So-
cial Media Innovations for Communities (CoSMIC), sponsored by
the Media Development Authority (MDA) of Singapore.

References

[1] Centernetwork. <http://www.centernetworks.com/user-generated-video-
market-size-2008>.

[2] Flickr. <http://www.flickr.com>.
[3] Geobloggers. <http://www.geobloggers.com>.
[4] Reelseo. <http://www.reelseo.com/youtube-search-december-2009/>.
[5] Woophy. <http://www.woophy.com>.

[6] Sakire Arslan Ay, Lingyan Zhang, Seon Ho Kim, Ma He, Roger Zimmermann,
GRVS: a georeferenced video search engine, in: ACM International Conference
on Multimedia, 2009, pp. 977–978.

[7] Sakire Arslan Ay, Seon Ho Kim, Roger Zimmermann, Relevance ranking in
georeferenced video search, Multimedia Syst. 16 (2) (2010) 105–125.

[8] Sakire Arslan Ay, Roger Zimmermann, Seon Ho Kim, Viewable scene modeling
for geospatial video search, in: ACM International Conference on Multimedia,
2008, pp. 309–318.

[9] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger, The r*-tree: an efficient and
robust access method for points and rectangles, in: ACM SIGMOD International
Conference on Management of Data, 1990.

[10] T. Brinkhoff, H.-P. Kriegel, R. Schneider, B. Seeger, Multi-step processing of
spatial joins, in: ACM SIGMOD International Conference on Management of
Data, 1994.

[11] Michael Christel, Automated Metadata in Multimedia Information Systems:
Creation, Refinement, Use in Surrogates, and Evaluation, Morgan and Claypool
Publishers, 2009.

[12] Cisco Systems, Inc., Cisco Visual Networking Index: Forecast and Methodology,
2009–2014, White Paper, 2010.

[13] Boris Epshtein, Eyal Ofek, Yonatan Wexler, Pusheng Zhang, Hierarchical photo
organization using geo-relevance, in: 15th ACM International Symposium on
Advances in Geographic Information Systems (GIS), 2007, pp. 1–7.

[14] Clarence H. Graham, Neil R. Bartlett, John Lott Brown, Yun Hsia, Conrad C.
Mueller, Lorrin A. Riggs, Vision and Visual Perception, John Wiley & Sons, Inc.,
1965.

[15] Tae-Hyun Hwang, Kyoung-Ho Choi, In-Hak Joo, Jong-Hun Lee, MPEG-7
metadata for video-based GIS applications, in: Geoscience and Remote
Sensing Symposium, vol. 6, 2003, pp. 3641–3643.

[16] Kalervo Järvelin, Jaana Kekäläinen, Cumulated gain-based evaluation of IR
techniques, ACM Trans. Inform. Syst. 20 (4) (2002) 422–446.

[17] Yushi Jing, Shumeet Baluja, Visualrank: applying pagerank to large-scale
image search, IEEE Trans. Pattern Anal. Mach. Intell. 30 (2008) 1877–1890.

[18] Kyong-Ho Kim, Sung-Soo Kim, Sung-Ho Lee, Jong-Hyun Park, Jong-Hyun Lee,
The interactive geographic video, in: Geoscience and Remote Sensing
Symposium, vol.1, 2003, pp. 59–61.

[19] Seon Ho Kim, Sakire Arslan Ay, Byunggu Yu, Roger Zimmermann, Vector model
in support of versatile georeferenced video search, in: ACM Multimedia
Systems Conference, 2010, pp. 235–246.

[20] Michael S. Lew, Nicu Sebe, Chabane Djeraba, Ramesh Jain, Content-based
multimedia information retrieval: state of the art and challenges, ACM Trans.
Multimedia Comput. Commun. Appl. 2 (1) (2006) 1–19.

[21] Xiaotao Liu, Mark Corner, Prashant Shenoy, SEVA: sensor-enhanced video
annotation, in: ACM International Conference on Multimedia, 2005, pp. 618–
627.

Fig. 11. Impacts of bounding distance in video search. The FOVs for the current video frames are highlighted on the map.

Fig. 12. Illustration of directional range query results. The FOVs for the current video frames are highlighted on the map.

S.H. Kim et al. / J. Vis. Commun. Image R. 21 (2010) 773–786 785



Author's personal copy

[22] Ying Liu, Dengsheng Zhang, Guojun Lu, Wei-Ying Ma, A survey of content-
based image retrieval with high-level semantics, Pattern Recogn. 40 (1) (2007)
262–282.

[23] Jiebo Luo, Jie Yu, Dhiraj Joshi, Wei Hao, Event recognition: viewing the world
with a third eye, in: ACM International Conference on Multimedia, 2008, pp.
1071–1080.

[24] Mor Naaman, Yee Jiun Song, Andreas Paepcke, Hector Garcia-Molina,
Automatic organization for digital photographs with geographic coordinates,
in: 4th ACM/IEEE-CS Joint Conference on Digital Libraries, 2004, pp. 53–62.

[25] A. Orenstein, Spatial query processing in an object-oriented database system,
in: ACM SIGMOD International Conference on Management of Data, 1986.

[26] Theo Pavlidis, Why meaningful automatic tagging of images is very hard, in:
IEEE ICME 2009, 2009, pp. 1432–1435.

[27] A. Pigeau, M. Gelgon, Building and tracking hierarchical geographical &
temporal partitions for image collection management on mobile devices, in:
ACM International Conference on Multimedia, 2005.

[28] Ian Simon, Steven M. Seitz, Scene Segmentation Using the Wisdom of Crowds,
in: Proc. ECCV, 2008.

[29] Alan F. Smeaton, Paul Over, Wessel Kraaij, Evaluation campaigns and TRECVid,
in: MIR ’06: Proceedings of the 8th ACM International Workshop on
Multimedia Information Retrieval, 2006, pp. 321–330.

[30] Alan F. Smeaton, Paul Over, Wessel Kraaij, High-level feature detection from
video in TRECVid: a 5-year retrospective of achievements, in: Ajay Divakaran

(Ed.), Multimedia Content Analysis, Theory and Applications, Springer-Verlag,
2009, pp. 151–174.

[31] Cees G.M. Snoek, Marcel Worring, Concept-based video retrieval, Found.
Trends Inf. Retr. 2 (4) (2009) 215–322.

[32] Carlo Torniai, Steve Battle, Steve Cayzer, Sharing, Discovering and Browsing
Geotagged Pictures on the Web, Springer, 2006.

[33] Kentaro Toyama, Ron Logan, Asta Roseway, Geographic location tags on digital
images, in: ACM International Conference on Multimedia, 2003, pp. 156–166.

[34] Takamasa Ueda, Toshiyuki Amagasa, Masatoshi Yoshikawa, Shunsuke Uemura,
A system for retrieval and digest creation of video data based on geographic
objects, in: DEXA ’02: Proceedings of the 13th International Conference on
Database and Expert Systems Applications, Springer-Verlag, 2002, pp. 768–
778.

[35] Richard Wray, Online video ads put message into the medium, in: The
Guardian, 2008. <http://www.guardian.co.uk/media/2008/dec/29/blinkx-
internet-video-advertisin>.

[36] HongJiang Zhang, Multimedia content analysis and search: new perspectives
and approaches, in: ACM International Conference on Multimedia, ACM, 2009,
pp. 1–2.

[37] Yan-Tao Zheng, Ming Zhao Yang, Song H. Adam, U. Buddemeier, A. Bissacco, F.
Brucher, Tat-Seng Chua, H. Neven, Tour the world: building a web-scale
landmark recognition engine, in: IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2009, pp. 1085–1092.

786 S.H. Kim et al. / J. Vis. Commun. Image R. 21 (2010) 773–786


