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ABSTRACT

GIS applications now increasingly make use of geo-located
multimedia data such as images and videos. Furthermore,
the wide-spread availablity of smartphones allows the ac-
quisition of user-generated videos that are annotated with
geo-properties. The sensor meta-data, e.g., GPS and digi-
tal compass values, are considerably smaller in size than the
visual content and are helpful in effectively and efficiently
manage and search through large repositories of videos. How-
ever, a major practical issue is the noisy nature of such
sensor data. For example, due to sensor data inaccura-
cies the visual coverage described by the meta-data may not
exactly match the actual video scene, which leads to im-
precise search results and positional disagreements on map
overlays. Obstructions between the camera and its cap-
tured objects make these situations worse. Therefore, ro-
bust error-tolerance is an essential feature of any geo-tagged
video search application.

To this end we introduce HUGVid, a modeling and index-
ing approach for uncertain geo-tagged videos. We construct
an uncertainty model for video frames and segments. Since
the frame-by-frame uncertainty model involves high compu-
tational complexity, we then propose an approximate model-
ing method based on a video segmentation algorithm which
eliminates costly overlap calculations between the query re-
gion and individual frames. Finally, we test the performance
of HUGVid with both two real-world and a large-scale syn-
thetic dataset. Experimental results show that our method
achieves high precision and good scalability and allows the
efficient querying of noisy sensor data. HUGVid also returns
confidence probabilities with the results which can then be
beneficially used in upstream GIS applications.

Categories and Subject Descriptors

G.3 [Probability and statistics]: Probabilistic algorithms;
H.2.4 [Systems]: Query processing; I.3.5 [Computational
Geometry and Object Modeling]: Curve, surface, solid,
and object representations
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1. INTRODUCTION
With the rapid improvement of video capture technology,

user-generated videos (UGV) can now easily be acquired,
and smartphones (and increasingly tablets) have emerged as
a major source of such UGVs. Moreover, a number of sen-
sors (e.g., GPS and compass units) have been cost-efficiently
embedded in such devices in recent years. Consequently,
some very useful meta-data, especially geographic proper-
ties of video scenes, can easily be collected automatically
during video recording. The association of video scenes with
their geographic meta-data on commodity hardware has al-
lowed their cost-effective use in consumer and professional
GIS applications. This trend has also raised some interesting
research issues. For instance, the recorded sensor meta-data
can be utilized to model, index and search geo-tagged videos
with semantics that are familiar to users.

Some prior research [1, 16] has modeled the coverage re-
gion of video frames as a pie-shaped geometric area de-
scribed by the sensor meta-data, such as the camera loca-
tion, viewing direction and visible distance. However, an
important practical aspect is often neglected in existing so-
lutions: the noisy nature of sensor data. It has long been
known (and many users have had first-hand experience) that
sensors, especially on consumer-grade electronics, produce
sometimes inaccurate and fluctuating values. The surround-
ing environment can exacerbate the problem. For example,
tall buildings and narrow passageways in urban areas can
lead to very difficult conditions for obtaining accurate GPS
positions [17]. Typically alignment errors, non-orthogonal
errors and magnetic deviations can affect the digital compass
heading accuracy. Moreover, obstructions (such as build-
ings, people or vehicles passing by) in front of a camera may
in parts of scene result in the recording of objects far away
(e.g., 1,500 m) while only close ones in other parts within
the same frame. The latter effects influence the captured
video scene, but not the measured sensor data.

The above described issues lead to a mismatch between
the viewable scenes of video contents and the area repre-
sented by the sensor data. Rather than trying to completely
avoid or correct such issues (which may be difficult or im-



possible), a well-known approach in the information man-
agement community is to design methods that can handle
uncertain data.

In this study we propose a novel approach which has the
objective of modeling the uncertainty of a camera’s viewable
scene in the presence of noisy, imprecise sensor data. An
approximate method is introduced for an efficient, but still
effective, estimation of the uncertain data model. Based
on the approximate model and geographical properties of
a video, a video segmentation method is introduced which
helps to describe the probability of a region being captured
by a video segment. Finally we introduce efficient methods
to perform probabilistic queries. The HUGVid architecture
and data flow are presented in Figure 1. The contribution
of our work can be summarized as follows:

• Uncertain data model for individual geo-tagged
video frames. We model the spatial coverage of an
individual video frame with multi-sensor meta-data
and an approximate method for effectively calculat-
ing the probability of any place being captured by this
model is introduced.

• Video segmentation and uncertain data model
for segments. We introduce a video segmentation al-
gorithm with the aim that all frames within the parsed
video segment capture a common region. This region
is recorded by all frames with a non-zero probability.
At the same time, we extend the uncertain data model
to video segments.

• Video indexing with extended R-tree. For ef-
fective and efficient search, an R-tree based method is
proposed to index the parsed video segments with geo-
properties. Additionally, the statistical information of
each video segment is attached to a standard R-tree as
a secondary index.

• Distance estimation. When videos are uploaded,
a centroid point is used to represent all the cameras’
locations. We then utilize this point to approximately
calculate the distance between the query and the video
segment.

The above novel components of HUGVid allow the effi-
cient processing of probabilistic queries over naturally noisy
sensor data. Upstream GIS applications can utilize the re-
sults and prioritize their processing by concentrating on the
most promising candidate video segments first.

We validate our design through extensive experiments with
both real and synthetic datasets. The results show that the
proposed approach produces high precision, and the approx-
imate distances computed match well with the actual values.
The result of a user study shows that our method also sat-
isfies the human perspective. Moreover, the performance on
the synthetic dataset indicates that our approach performs
efficiently and effectively on large-scale datasets.

The rest of the paper is organized as follows. Section 2
summarizes the related research. Section 3 introduces the
uncertain data model for a video viewable scene. Section 4
demonstrates the geo-tagged video indexing method. Sec-
tion 5 details the query processing. Section 6 reports the
results on the evaluations of the proposed method. Section 7
concludes the paper.

Figure 1: Architecture with uncertain data model
and the corresponding tasks for processing queries.

2. RELATED WORK
Associating geographic (e.g., location and orientation) in-

formation with a camera’s video data for retrieval purposes
has become an active research area [27, 20]. Hwang et al. [12]
and Kim et al. [14] proposed a mapping between the 3D
world and videos by linking objects to the video frames in
which they appear using GPS location and camera orienta-
tion. Other authors [1, 16] proposed a model to represent a
camera viewable scene with a shape of a pie-slice, based on
GPS and digital compass data as well as the visible distance.

When modeling geo-tagged video with meta-data, the un-
certainty of the sensor data affects the search results. There
exist two categories of techniques for indexing uncertain
data with arbitrary probability density functions (PDF).
The first type is based on probabilistically constrained re-
gions (PCRs) [5, 25, 7]. It uses a so-called “x-bound” to
restrict the probability of a region so that candidates can be
pruned when processing probabilistic constrained queries.
The second type is based on R-tree index structures [6, 13,
21, 15, 23, 26]. More specifically, the uncertain region of
multidimensional uncertain objects is grouped with an R-
tree, where each data unit is the minimum bounding rectan-
gle (MBR) of a PDF. Kim et al. [13] attached a secondary
index for fast access to the leaf nodes. However, none of
above methods is appropriate for a camera’s viewable scene
with a longer visible distance. Since our approach repre-
sents each video segment as a spatial object, we extend the
standard R-tree [11] by associating additional information
to index such videos.

People may capture different places of interest (POI) within
the same video but users may only be interested in the parts
of the video that show a specific place. Therefore, parsing
the video into segments to extract a specific place is essen-
tial for geo-relevant applications. The aim of video parsing
can be achieved by using content-based methods (e.g., shot



boundary detection [9], hidden Markov models [3], or graph
partitioning [4]). Alternatively, Navarrete and Blat [19] uti-
lized geographic information to parse and index video. To
the best of our knowledge, there has been little research fo-
cus on parsing videos according to geo-properties.

3. PRELIMINARIES
There is an increasing awareness of the naturally occur-

ring uncertainty of some spatial data, for example in the
GIS and other communities. The uncertainty falls into two
cases: sensor errors (Section 3.2.1 and 3.2.3) and obstacles
(Section 3.2.2). In our geo-tagged video search application,
the mismatch between video scenes and the associated geo-
graphical coverage significantly affects the final results. For
example, when users desire to search for videos that capture
the Marina Bay Sands (MBS) complex in Singapore, the
system may find the videos that can theoretically capture
the MBS according to geometric calculations. However, if
an object is located between the camera and MBS and hides
the building, or if the meta-data are inaccurate, the actual
video may not capture the hotel complex. Therefore, an un-
certain model for the camera’s viewable scene is essential to
measure the probability that a location actually appears in
video scenes. When taking videos using smartphones, the
GPS devices are collecting the location information as well
as the accuracy. We manually checked the GPS accuracies
and compass readings and found that most errors are within
a certain range. Section 3.1 first presents the basic viewable
scene model that is based on sensor data which is assumed
to be correct. Then the extended, uncertain viewable scene
model is introduced in Section 3.2, and finally Section 3.3
presents the simplified, approximate model.

3.1 Field-of-View (FOV) Model
The camera viewable scene is what a camera in geo-space

captures. This area is referred to as camera field-of-view

(FOV for short) with a shape of a pie-slice. As shown in
Figure 2, the FOV coverage in 2D space can be defined
with four parameters: the camera location P , the camera

viewing direction vector ~d, the viewable angle α, and the
maximum visible distance RV . The camera location P is
the 〈latitude, longitude〉 coordinate read from a position-
ing device (e.g., GPS and/or Cricket coordinates [22]). The

viewing direction vector ~d can be acquired from a digital
compass. We use θ to represent its value with respect to the
North. The camera’s viewable angle α is calculated based on
the lens properties for the current zoom level [10]. The vis-
ible distance RV is the maximum distance at which a large
object within the camera’s FOV can be recognized. Thus,
the camera viewable scene at time t is denoted by the tuple
FOV (P 〈lat, lng〉, θ, α,RV , t). The tuple values are acquired
from embedded sensors during video recording.

3.2 Uncertain Data Model for FOV
As illustrated in Figure 3, the solid pie-slice shape is formed

from the sensor meta-data while the dashed shape might
be the actual video scene. For a single FOV, it is com-
monly assumed that an object has a higher probability of
being captured by a camera if it appears close to the cam-
era’s location and in the center of the FOV. If not otherwise
specified, we refer to the probability as the probability of an
object being captured by an FOV or a video segment. Next,
we describe the uncertainty of meta-data that affects the

Figure 2: Illustration of
the field-of-view (FOV)
model in 2D space.

Figure 3: Illustration
of the uncertainty of a
field-of-view (FOV).

probability based on the FOV model in three independent
dimensions: camera viewing direction, visible distance and
camera location. Finally we will combine them together.

3.2.1 Uncertainty of Viewing Direction

Due to the inaccuracy of the digital compass, the mea-
sured viewing direction does sometimes not exactly align
which the camera direction. We manually checked the cap-
tured video and the associated compass data, and found
that the distribution of the compass error satisfies a Gaus-
sian function with a maximum error value. Based on this
observation, we assume that the maximum compass error is
θε (θε < α). Thus, the camera can definitely capture the
directions ranging from (θ − α

2
+ θε) to (θ + α

2
− θε), while

probably record other directions. As shown in Figure 3, the
probability that a given location Q (i.e., the query input) is
covered by an FOV is presented in Eqn. 1:
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where β denotes the angle offset between |PQ| and ~d, and
K0 is a constant ensuring that it is a small probability event
that Q is covered by the FOV when β is larger than α

2
+ θε.

3.2.2 Uncertainty of Obstacles

Most current smartphones lack an optical zoom and it is
difficult to extract the focal length information. This leads
to difficulties when measuring the distance between a camera
and the objects it records. Moreover, due to obstructions,
it is possible that some objects are hidden by others, or
objects at different distances appear in the same scene. This
situation has no effects on the sensor data but affects the
final search results. Taking the scenes extracted from a video
as an example (shown in Figure 4), in this case the camera
neither moves nor rotates much during video recording. Due
to the bus passing by, the Esplanade building appearing at
time 00:01:20 is hidden for a few seconds. Our conjecture is
that when an object is closer to the camera, the probability
of it being blocked by other objects is lower. Thus, the
probability of the object captured by the camera is higher.
A Gaussian function is therefore one of the possible ways to
represent the probability of objects not obstructed by others
(Eqn. 2):

Prob
d
Q = g(d) = e

(

K1·|d|2

|σ|2

)

(d ≤ RV ) (2)



Figure 4: Demonstration of the uncertainty of the
visible distance. The Esplanade building (high-
lighted) has been hidden by a bus for a few seconds.

where d is the distance between the camera and the object,
and K1 and σ are the parameters to satisfy that it is a small
probability event that any object outside of RV is captured
by the camera.

Hence, we obtain the uncertainty model for the FOVwhose
camera location is at a specific position (e.g., with geo-
coordinates P (x0, y0)) by combining the above two uncer-
tainty models. Eqn. 3 shows the probability that Q(x, y)
is captured by the FOV when the camera is located at
P (x0, y0). All the parameters used here can be obtained
from sensors or the configuration settings of the cameras.

Prob
P (x0,y0)
Q = Prob
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Here ProbdQ = e

(

K1·((x−x0)2+(y−y0)2)

σ2

)

, γ = arctan( y−y0
x−x0

),

and β = |γ − θ|.

3.2.3 Uncertainty of Camera Location

When measuring a location with a GPS device, the posi-
tion reading is accompanied by an error range dε. Therefore,
the actual position of the camera is located within a circle
around the GPS reading with a radius of dε (as shown in
Figure 3). Due to various reasons (i.e., a tunnel traversal),
the GPS locations are sometimes missing for a while. In this
case, we estimate the object location by applying positional
interpolation techniques [1]. Sistla et al. [24] proposed that
the object location follows a Gaussian distribution inside the
uncertainty region, as shown in Eqn. 4:

Prob
L
Q=h(x0, y0)=

e
− 1

2(1−ρ2)
·[
(x0−µx)2

σ2
x

−
2ρ(x0−µx)(y0−µy)

σxσy
+

(y0−µy)2

σ2
y

]

2πσxσy

√

1−ρ2

(4)
where (µx, µy) denotes the GPS reading, ProbLQ denotes the
probability that the camera is at location (x0, y0), and σx,
σy and ρ are parameters of the probability density function.
Finally, the probability of a location to be covered by an

Figure 5: The probabilistic distribution of an area
being captured by an FOV at a specific position.

FOV is the accumulation of different possible camera po-
sitions (see Eqn. 5). The distribution of the probability is
illustrated in Figure 5 with a series of parameters.

ProbQ =

dε
∑

d=0

Prob
L
Q · Prob

P (x0,y0)
Q (5)

3.3 Approximate Uncertain Data Model
As observed from Figure 5, the coverage region of the

probability in 2D space is an irregular shape (the solid shape
in Figure 6). Given such an irregular shape, it is compu-
tationally expensive to calculate exact probabilistic values,
especially for a large set of FOVs. Therefore, we have de-
veloped an approximate method to estimate the probability,
which can be carried out with a few calculations. As pre-
sented in Sections 3.2.1 and 3.2.2, the probability is indepen-
dent of the direction and the distance domains. For example,
if the distance d between the camera and an object is larger
than a certain value (e.g., 240 m), the probability affected
by distance is smaller than a value, e.g., 50%. Hence, ac-
cording to Eqn. 3, the probability must be smaller than 50%
no matter what value β is. The same situation occurs for the
direction domain. Consequently, we can find a border value
for each of the two domains, denoted βb and distb, respec-
tively, below which the probability is less than a threshold
τ . These two border values form a pie-slice shaped region,
ensuring that the probability is smaller than τ outside this
region. We then use this area to estimate the probability
instead of the irregular shape. In Figure 6, P is the camera
location according to the GPS reading while P ′ is a reference
point for calculating βb and distb. The geo-coordinates of
P ′ can be computed by using RV , dε, α and the location of
P . The irregular shapes within the solid lines are the actual
probabilistic regions while the pie-slice shapes within the
dashed lines are the approximate regions. The exact prob-
ability falls on the solid line, i.e., the probability is 50% on
the inner solid lines. The regions between the solid lines and
the dashed lines are so-called “false positive”regions. For ex-
ample, the probability of the region between the inner solid
shape and the inner dashed lines is actually less than 50%
while it is considered greater than or equal to 50% in the
approximate model.

4. OFFLINE UNCERTAIN DATA MODEL-

ING OF VIDEO SEGMENTS
The approximate model described in Section 3 applies to a

single FOV, indicating that it works for geo-tagged images.
Building on this, we represent the coverage of a video clip
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Figure 6: Illustration of the approximate uncertain
FOV model in 2D space.

as a spatial object through a series of FOVs. Therefore the
next step is to extend our probability model from a single
FOV to a sequence, representing a video segment. This is
performed by parsing the video into segments according to
the associated geo-properties of the FOVs. Additionally, to
support large-scale geo-tagged video search applications, we
index these spatial objects using an extended R-tree such
that they can be effectively and efficiently retrieved. In Sec-
tion 4.1, the uncertain data model of a video segment is in-
troduced and a video segmentation algorithm is presented.
Section 4.2 provides the details of constructing the index
structure.

4.1 Uncertain DataModel for Video Segments
Based on the introduced uncertain data model for a single

FOV, we now develop the uncertain model of a video seg-
ment. One of its benefits is that it can retrieve meaningful
results even though there exist sharp jitters among sequen-
tial sensor data, which is an essential feature for a robust
system. Treating an entire video segment as a spatial ob-
ject is semantically more meaningful compared to dealing
with individual frames. However, treating the whole video
as an object may not be a good choice since some long videos
or videos captured at high speed may cover a large region.
Moreover, processing the entire video results in redundant
calculations and increases processing time. Our goal is hence
to parse the video into segments and model the probabilistic
distribution of each such segment.

Broadly speaking a video segment is represented by its
coverage region. When recording videos, people generally
point the camera at interesting places even if they are mov-
ing along a trajectory. The common, overlapping region
among multiple FOVs can hence be considered a POI. For
this reason we aim to parse the video such that the FOVs
within each parsed segment overlap with each other. This
way the likelyhood is high that there exists at least one local
POI captured by each video segment. A search will return a
video segment without any further processing if users want
to search for videos showing a local POI. To parse the video
in this manner, the overlapping area between FOVs needs to
be calculated. Once a geo-tagged video is uploaded to the
server, the video parsing process is activated. It scans the
meta-data forward from the beginning and calculates the
overlap among the FOVs until a subsequent FOV is identi-
fied which does not intersect with the current overlap region.
Then the video is partitioned before this FOV and a new seg-
ment is started. Figure 7 shows a video clip captured by a
camera moving along a trajectory. The video is parsed into
three segments illustrated in different line styles. The lat-

Figure 7: Illustration of the video segmentation al-
gorithm. The video is divided into three segments
and the latticed regions illustrate the common over-
lap within each segment.

ticed regions depict the overlap areas, indicating local POIs
within the parsed video segment.

Next, we introduce the overlap calculation and design the
uncertain data model of a video segment based on the over-
lap calculation. We define the probability that an object is
captured by a video segment as follows:

Definition 1. The probability of a position being captured
by a video segment is the average probability of it being
captured by all frames within this segment (formalized in
Eqn. 6):

Prob(P (x, y), VS(0, n− 1)) = 1−
n−1
∏

i=0

(Probcap(i)(x, y)) (6)

Here VS denotes the video segment, and Probcap(i)(x, y) is
the probability that an object at location P (x, y) is captured
by the ith FOV of the segment. With this definition the
probability is high when the query region is close to P and

along the camera’s viewing direction ~d, and when most of the
FOVs within the segment point towards P . We subsequently
use this probability to help rank the results.

It is computationally complex to find the overlap regions
between FOVs with a pie-sliced shape. The Monte Carlo
method [18] is one approach for estimating the area of a
shape by generating random sampling points. In our geo-
tagged video search application, the maximum visible dis-
tance RV is usually hundreds or thousands of meters. Thus,
it is impractical to perform the overlap calculation with
dense random sampling points. Instead, we divide the MBR
of the segment into micro-blocks of size δ × δ (δ ≪ RV ).
The probability within each micro-block can be treated as
constant since δ is much smaller than RV . We select the
center point of each block as the sampling point during
the Monte Carlo procedure. All the other points inside a
micro-block are treated equivalently to its center point, i.e.,
the whole micro-block is considered as the overlapping area
among FOVs if the center point of this micro-block is cov-
ered by all the FOVs. Note that a smaller δ achieves higher
accuracy with this method. The current settings used in our
experiments work for most cases. The only possible difficulty
is an overlap at the border of an FOV, which usually has lit-
tle or no effect on the final results and may be unimportant
to users. The tradeoff is that retrieving more accurate re-
sults will cost more processing time and storage space. Since
the probability of each micro-block is only slightly different
from its adjacent micro-blocks, it is not necessary to main-
tain the exact value for each one. To simplify the calculation,
we quantize the probabilistic range into several levels, which
decrease as the probabilistic level falls. Any location out of



the approximate FOV model is assigned zero.
Next, we present the video segmentation algorithm based

on the overlap among micro-blocks. When parsing a video
clip, the first FOV is selected as a reference. Initially the
probabilities of all micro-blocks within this reference FOV
are calculated and all blocks are stored in the overlap set
overlapBlocks. When processing the next FOV, blocks that
fall within both FOVs are retained in overlapBlocks, while
others are moved to the set non−overlapBlocks. The proba-
bility of each block is updated using Eqn. 6. A video segment
is completed once overlapBlocks is empty. Note that if the
latest inserted FOV has no overlap with the ones ahead, an
undo procedure is carried out to guarantee that there ex-
ists overlap within a video segment. The detailed process is
shown in Algorithm 1. The overlap region is usually very
important to the user. Although this parsing algorithm is
based on a heuristic and may result in missed global POIs,
it still mines the local ones. To overcome this limitation, a
post-processing procedure is carried out when retrieving the
results during querying.

Algorithm 1: VideoSegmentation()

Input: a video clip Vi{FOVi0, FOVi1, ..., FOVim}
Output: video segments V S{Vi0, Vi1, ..., Vin} (m ≥ n)

1 overlapBlocks{} ← ∅, non−overlapBlocks{} ← ∅
/* FOVi0 stands for the 0th FOV in Video Vi */

2 for all blocks within FOVi0 do

/* Bj stands for the jth block in space */
3 overlapBlocks.append(Bj );
4 end

5 videoCount = 0;
6 for f=1 to m do
7 for all blocks Bt within FOVif do

8 if Bj==overlapBlocks.find(Bt) then

/* Bj is called a hit block */
9 Prob(Bj).update();

10 end
11 else

12 non−overlapBlocks.append(Bt);
13 end

14 move all non-hit blocks from overlapBlocks{} to
non−overlapBlocks{};

15 if overlapBlocks{} is not empty then

16 V S(videoCount).append(Fif );

17 end

18 else

19 calculate MBR of the segment;
20 videoCount+=1;
21 undo for the last inserted FOV;
22 V S(videoCount).append(Fif );

23 reset all sets;
24 for all blocks Bt within FOVif do

25 overlapBlocks.append(Bj);
26 end

27 end

28 end

29 end
30 return V S{Vi0, Vi1, ..., Vi(videoCount)};

4.2 Video Segment Index Structure
Since we represent the coverage of a video segment as a

spatial object we can utilize a popular spatial index struc-
ture such as the R-tree to help effectively and efficiently
search for requested videos. As described in Algorithm 1,
the MBR of a video segment is obtained once the segment
is partitioned from the original video. In our geo-tagged
video search application, we construct an extended R-tree

that regards each parsed video segment as an entry. The
difference from a standard R-tree is that the original video
ID, the anchor of the starting frame and the segment length
are attached to the leaf nodes. In order to quickly process
kNN queries, we also store the camera location information
in the leaf nodes. However, it is usually impractical and un-
necessary to store all the camera locations within a segment.
We instead use a centroid point to represent all the camera
positions. The geo-coordinates of this centroid represent the
average of all the camera locations in both latitude and lon-
gitude and we store the micro-block information in which
the centroid is located. This information is utilized to es-
timate the average distance between the query and camera
locations and is treated as the distance between the query
and a video segment. Additionally, the corresponding prob-
ability map of each segment is attached to the leaf nodes as
a secondary index.

An alternative way to store these maps is to compress
them utilizing a discrete cosine transform (DCT). We ex-
perimented with compressing the maps to a quarter of their
original size and found that the probability level error rose
to at least 10%. Furthermore, a DCT calculation needs to
be performed for each of the candidate maps, which is in-
appropriate for online queries due to the increased process-
ing time. Consequently, we decided to store the probability
maps directly on disk.

5. ONLINE QUERY PROCESSING
Given the offline pre-processing calculations described in

Section 4, the online query procedure is performed in two
major steps. First, the result video segments (referred to
as candidates) are retrieved by searching through the R-
tree. In the second step, the final segments are reconstructed
by combining candidates to preserve video continuity. Note
that our approach can retrieve videos without overlap cal-
culations between the query region and the individual video
frames. Also, the probability is updated after recombina-
tion. Importantly, when presenting the results the video
segments are sorted according to their probability.

5.1 Searching for Segment Candidates
Utilizing the R-tree index we process both typical spatial

queries (including point, range and kNN queries) and queries
with a probabilistic threshold to search for videos in large-
scale datasets. Since we use an MBR to represent the video
coverage, all the queries are processed with overlap calcu-
lations between query locations and MBRs. Generally, for
all query types, we need to search from the root to the leaf
nodes of the R-tree to find the video segments whose MBRs
overlap with the query. Once the candidates are obtained,
the corresponding probability maps are fetched.

The basic query procedure is described in the above para-
graph, while the differences among various types of queries
are as follows:

• Point Query: Once the leaf nodes containing candi-
dates are retrieved from the R-tree, the corresponding
probability maps attached to the leaf nodes are loaded
into memory. Then the micro-block is identified in
which the query point is located and the probability
of that micro-block is obtained.

• Range Query: The difference to the point query is
that the query rectangle may cover more than one



micro-block. Hence, the maximum probability among
all overlapping micro-blocks is selected as the result.

• kNN Query: The distance between the query and a
video segment is defined as the average distance be-
tween the query and all its frames. When processing
a kNN query, we approximately calculate the distance
between the query point and the centroid point of the
micro-block whose information is stored in the leaf
nodes of the R-tree. Thus, we treat this as the dis-
tance between the query and the video segment and
use it to rank the results.

• Query with Probabilistic Threshold: The basic
processing of a query with a probabilistic threshold is
the same as with the above typical queries. The differ-
ence lies in filtering out the candidates whose proba-
bilities are smaller than the threshold and then recon-
struct the candidates.

5.2 Candidate Recombination
As presented in Section 4.1, the video segmentation al-

gorithm may result in missed POIs. In that case, frames
that capture the same POI may be parsed in two consecu-
tive segments, which is not what users expect. Considering
the example in Figure 7, the last two FOVs of the first seg-
ment and the first three FOVs of the second segment cover
a common region. When the query is located in these re-
gions, the segments indexed by the R-tree may not be the
optimal representation of the results. Consequently, when
the results include segments that are contiguous in the orig-
inal video, a recombination operation needs to be carried
out as detailed in Algorithm 2. Consecutive segments in the
results are re-combined into new segments. The procedure
terminates when there are no more such segments. During
this process, the probability is also updated using Eqn. 7.
The videos are then ranked in descending order according
to their probabilities. Alternatively, for kNN queries, the
videos are ranked according to their distance from nearest
to farthest without recombination.

Prob(Vij) = 1− (1− Prob(Vi)) · (1− Prob(Vj)) (7)

Here Vi and Vj are two consecutive segments and Vij denotes
the combination of these two segments.

Algorithm 2: Recombination()

Input: Candidate set vSet{V0, V1, ..., Vn}
Output: Results rSet{Vr0, Vr1, ..., Vrm} (m ≤ n)

1 for all segments Vi in vSet{} do

2 if Vi.findAjacent() == Vj then
3 Vij = combine(Vi, Vj);
4 vSet.remove(Vi); vSet.remove(Vj);
5 vSet.append(Vij );
6 prob(Vij).update();
7 end
8 else

9 vSet.remove(Vi); rSet.append(Vi);
10 end

11 end
12 return rSet{Vr0, Vr1, ..., Vrm};

6. EXPERIMENTAL EVALUATION
We performed our experiments on three datasets: two

small sets of real-world videos and sensor meta-data, and
one large synthetic dataset. We used the real datasets to test

K0 α θε K1 σ dε δ RV

-23.237 60 ◦ 10 ◦ -0.137 300m 10m 20m 2km

Table 1: The parameters used in the construction of
the uncertain data model.

the functionality of HUGVid and the synthetic dataset to
demonstrate its scalability for large-scale applications. For
all the experiments we constructed a local MySQL database
in which we stored the FOV meta-data. We inserted the
MBRs of all the parsed video segments and the relevant sta-
tistical information into our extended R-tree and processed
all types of queries based on the R-tree [8] implemention by
Greg Douglas. We found this implementation to be very
mature and achieve excellent performance. Additionally, we
treated each FOV as an object and indexed it using the same
structure to form a baseline method (BM) for comparison.

In the following experiments, if not otherwise specified,
the micro-block size δ was set to 20 meters, which is small
compared to the camera’s maximum visible distance RV .
RV may vary due to different devices and resolutions. For
example, many smartphones now can record 1080p HD video.
According to existing methods [1], the maximum visible dis-
tance of, for example, an iPhone 4S can be estimated as
1470 meters since its CMOS sensor size is 1/3.2 inches and
its focal length is 35 mm. To make our approach robust with
videos captured from different devices, we set the value of
RV as 2 km. The angle α may be calculated with the image
sensor size and the camera focal length of the lens [10]. How-
ever, it is difficult to obtain the focal length of the camera on
a mobile device and hence to calculate the precise value of
α. Due to videos being captured with different smartphones,
α might vary among different devices. Therefore, we use a
large, practical value for α, which is set to 60 ◦. The values
of θε and dε are obtained from real-world data. We manu-
ally checked GPS accuracies in our data and found that over
86% of GPS errors fall within 10 m, and that over 90% of the
compass reading errors are less than 10 ◦. Other parameters
are set to satisfy a small probability event when construct-
ing the uncertain data model (presented in Section 3.2). The
detailed parameters are summarized in Table 1.

6.1 Experiments with Real-world Dataset
We collected 71 geo-tagged videos (representing about 190

minutes) around the Marina Bay Reservoir in Singapore,
and 247 videos (about 400 minutes) in Chicago, recording
the event of the NATO Summit 2012 using smartphones.
The lengths of videos vary from less than one minute to
14 minutes. Since the range and kNN queries are represen-
tative among the query types, we used the collected data
to process these queries and demonstrate the functionality
of HUGVid. We selected five landmark places in Singa-
pore (the Marina Bay Sands, the Merlion, the Esplanade,
the Singapore Flyer, and the One Marina Boulevard) and
two in Chicago (Chicago City Hall and Bulter Field) for
range queries, which we refer to as Q1 to Q7. Within
each query region, one representative point is selected for
the kNN queries. Figure 8 shows a sampling of frames for
Q1 in the Marina Bay Sands region. The query area is the
solid rectangle shown on Google Maps and the 3D image
extracted from Google Earth illustrates what the videos are
assumed to capture. The ten surrounding images are sam-
pling snapshots from the result video segments with their
respective probabilities, pinned to their camera locations.



Figure 8: Sample frames for query Q1 in the Marina Bay Sands region. Ten
snapshots are chosen from resulting videos with different probabilities.

Query Precision Recall
Q1 0.9976 0.7675
Q2 0.9948 0.4821
Q3 0.9971 0.6968
Q4 0.9967 0.6973
Q5 0.9959 0.5644
Q6 0.9742 0.6749
Q7 0.9655 0.6518

Table 2: The precision and
recall of HUGVid with dif-
ferent queries.

Q1 V1 V2 V3 V4 V5
Algorithm score 5 4 3 2 1
Average score 3.05 4.24 3.33 2.38 2.00

Standard deviation 1.717 1.091 0.966 0.973 1.140

Q2 V1 V2 V3 V4 V5
Algorithm score 5 4 3 2 1
Average score 4.86 4.00 3.00 1.90 1.24

Standard deviation 0.359 0.632 0.447 0.539 0.539

Table 3: Scores from ranking by the HUGVid algo-
rithm and by the users (1 – least, 5 – most relevant).

The figure nicely illustrates how frames with higher proba-
bilities capture the target landmark well and at close range
while the ones with lower probabilities only capture parts or
none of the target, or at a far distance.

Precision and recall. Next, we studied the accuracy and
redundancy of HUGVid. We manually watched all the videos
and recorded the IDs of video frames which showed the query
location. This was considered as the ground-truth (GT for
short). We then compared the video segments retrieved
using HUGVid with the GT. The precision and recall of
HUGVid is presented in Table 2. The high precision shows
that HUGVid retrieves almost all the video scenes in the GT.
Conversely, it also includes some FOVs not in the GT, which
leads to the low value for recall. The reason is two-fold: first,
the probabilistic method finds more possible FOVs using the
uncertain data model, and second, extra FOVs are included
during video segmentation. Although more FOVs are found
by HUGVid, it returns only half of the video segments after
segment recombination.

User study. It is difficult to find an objective method to
evaluate the query results of searching visual content and
perform ranking. Therefore, a user study is an appropriate
methodology to evaluate how well our approach satisfies the
user perspective. Our study involved 21 persons (11 females
and 10 males). The participants, which included students

and professionals working in different fields (e.g., computer
science, biological engineering, and public services), were fa-
miliar with the query region. We processed Q1 to Q5 and
then selected five different video segments (overall about 30
minutes) according to their probabilities from each query
result. We chose segments of different probabilistic levels,
e.g., one segment with a probability higher than 0.8, one
with a probability higher than 0.6 and lower than 0.8, and
so on. This made it easy for the users to differentiate. We
ranked these five segments according to their probabilities
and scored them in descending order. The participants were
then asked to watch these videos and rank the segments
according to the time duration, the position, and the inte-
grality of the queried place appearing in the scene, while
ignoring the video quality, the weather and the time. The
HUGVid ranking was then compared with the user ranking.

We present two representative query results: Q1 targets a
tall and wide landmark while Q2 targets at a small statue.
Table 3 presents the comparison between ranking by the al-
gorithm and ranking by the users for Q1 and Q2. The first
row shows the score assigned by HUGVid while the last two
rows are statistics from the user ranking. The ranking be-
tween HUGVid and the users for Q1 does not exactly match,
especially for the resulting Video 1, even though Video 1
captures Q1 from a close location. Even users disagreed on
Video 1: some chose it as their favourite while others dis-
liked it. The reason is that for a large building, some users
desire to watch a panoramic view while others wish to view
an up close shot with details instead. Conversely, for targets
that are not so large (e.g., Q2 ), HUGVid shows consistent
results. The scores given by the users are almost the same
as those by the algorithm. Moreover, the low standard de-
viation indicates that most users agree with the manner in
which HUGVid ranks videos.

Approximate distance. We also evaluated HUGVid on
its ability to estimate the distance between the query and
the video segments in a kNN query. BM shown in Fig-
ure 9 represents the average distance calculated using the
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Figure 9: Comparison between the distance from
BM and HUGVid with different micro-block sizes.

geo-coordinates of the query point and all the camera lo-
cations. The resulting 311 video segments are sorted by as-
cending distance from BM. Comparing the four approximate
distances estimated by HUGVid with different micro-block
sizes, the most accurate results are obtained from HUGVid
with the smallest micro-block size. Since we utilized the po-
sition of a local POI to help estimating the distance, the
errors are proportional to the block-size. In order to achieve
accurate results, we chose to use 20 m as the default micro-
block size (δ). There exist a few outliers where the distance
from HUGVid significantly differs from that of BM when δ
is no larger than 50 m. We manually checked those videos
and found that all the segments with outliers are from the
same unparsed video. In that video, the GPS raw data is
extremely inaccurate, jumping from one location to another
about 1 km away and then jumping back to its previous loca-
tion. This situation is very rare and outside of the common
GPS error range. Moreover, the reason that the outliers
with different micro-block sizes appear in different segments
is that different micro-block sizes lead to different video seg-
mentation in some situations.

6.2 Experiments with Synthetic Dataset
Due to the difficulties of collecting a very large set of real-

world videos, a synthetic dataset of moving cameras with
positions inside a 75 km × 75 km region was used to test
the performance of our algorithm with large-scale data. We
generated camera trajectories using the Georeferenced Syn-
thetic Meta-data Generator [2]. The produced synthetic
meta-data exhibits equivalent characteristics to real-world
data. We selected 100 randomly distributed center points
within the test area and generated 5,500 moving cameras
with trajectories near these center points. Each camera was
traced for 1,000 seconds, with a sampling rate of 1/s for the
GPS and compass. Thus, the resulting dataset contained
about 5.4 million FOVs. To simulate a real-world case, we
set the maximum speed of the moving cameras to 60 km/h,
with an average speed of 20 km/h. We also set the maxi-
mum camera rotation speed to 30 ◦ per second, ensuring that
the camera rotates smoothly and does not jump from one
direction to another, hence emulating real user behaviour.
The parameters used for generating the synthetic dataset
are summarized in Table 4. The experiments were then con-
ducted on a server with two quad core IntelR© XeonR© X5450
3.0 GHz CPUs and 32 GB memory running Linux 2.6.18.

Among all the query types that our approach supports,
the system workload for range queries is the heaviest. There-
fore, we use range queries to present the performance of
HUGVid on the large-scale dataset. In this experiment, the

Parameter Value
# of Center points 100

Speed limit 60 km/h
Average speed 20 km/h
Rotation limit 30 ◦/s
# of cameras 5, 500
# of snapshots 1, 000
# of FOVs 5,405,051

Viewable angle of FOV (α) 60 ◦

Visible distance of FOV (RV ) 2, 000 m

Table 4: The main parameters of the large-scale,
synthetic dataset.
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Figure 10: Comparison of the index sizes between
BM and HUGVid with different micro-block sizes.

page and cache sizes are set to 4 kB, and we store one R-tree
node per page. We generated 10,000 range queries of 500 m
× 500 m rectangles within the 75 km × 75 km test region
and counted the cumulative processing time and the overall
number of page accesses for answering 10,000 queries.

We conducted experiments with different video lengths.
Figure 10 shows the in-memory index size of different meth-
ods with different test sets. The index size of all the meth-
ods grows linearly, but the rate for HUGVid is much smaller
than for BM. Although the video segmentation is carried out
using the Monte-Carlo method with different micro-block
sizes, the segmentation is still mostly related to the spatial
properties of the video itself. Hence the in-memory index
sizes of HUGVid with different micro-block sizes are almost
the same. The main difference is in the storage of the sec-
ondary index: it occupies more disk space when the micro-
block size is smaller. However, as stated in Section 6.1,
one extra benefit is that it achieves more accurate results.
As shown in Figure 11, HUGVid with different micro-block
sizes performs faster and accesses fewer pages than BM.
Even when HUGVid involves video recombination and video
ranking, it still answers the queries quickly, with an execu-
tion time of only about 12% of BM. We conclude from these
experiments that HUGVid performs well on this large-scale
dataset. Moreover, it is beneficial to select a relatively small
micro-block size while the exact value may depend on dif-
ferent applications.

7. CONCLUSIONS AND FUTUREWORK
We explored the challenge introduced by naturally noisy

data from GPS and compass sensors which can result in
inaccurate geo-descriptions of video scenes. This, in turn,
may lead to undesirable query results for geo-tagged video
searches. To address this issue, we proposed an uncertain
data model to represent individual and sequences of field-
of-views and finally constructed a light-weight approximate
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Figure 11: Comparison of processing time and page
accesses between BM and HUGVid with different
micro-block sizes.

model for video segments based on sensor meta-data. With
this architecture, probabilistic queries can be executed and
upstream GIS tasks prioritized based on the most promising
results. Experiments show that HUGVid achieves high pre-
cision and can be deployed in large-scale applications. For
our future research, we plan to utilize other information in
the query process, such as landmark databases.
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