
Yu-Ling Hsueh, Roger Zimmermann, Wei-Shinn Ku Efficient Location Updates for Continuous Queries

over Moving Objects. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 24(X): 1–end

Mon. 2009

Efficient Location Updates for Continuous Queries over Mov-

ing Objects
Yu-Ling Hsueh†, Roger Zimmermann‡, and Wei-Shinn Ku§

†Dept. of Computer Science, University of Southern California, USA
‡Computer Science Department, National University of Singapore, Singapore
§ Dept. of Computer Science and Software Engineering, Auburn University, USA

E-mail: hsueh@usc.edu; rogerz@comp.nus.edu.sg; weishinn@auburn.edu

Abstract The significant overhead related to frequent location updates from moving objects often

results in poor performance. As the most of the location updates do not affect the query results, the

network bandwidth and the battery life of moving objects are wasted. Existing solutions propose lazy

updates, but such techniques generally avoid only a small fraction of all unnecessary location updates

because of their basic approach (e.g., safe regions, time or distance thresholds). Furthermore, most prior

work focuses on a simplified scenario where queries are either static or rarely change their positions. Two

novel efficient location update strategies are proposed in a trajectory movement model and an arbitrary

movement model, respectively. The first strategy for a trajectory movement environment is the Adaptive

Safe Region (ASR) technique that retrieves an adjustable safe region which is continuously reconciled

with the surrounding dynamic queries. The communication overhead is reduced in a highly dynamic

environment where both queries and data objects change their positions frequently. In addition, we design

a framework that supports multiple query types (e.g., range and c-kNN queries). In this framework, our

query re-evaluation algorithms take advantage of ASRs and issue location probes only to the affected

data objects, without flooding the system with many unnecessary location update requests. The second

proposed strategy for an arbitrary movement environment is the Partition-based Lazy Update (PLU, for

short) algorithm that elevates this idea further by adopting Location Information Tables (LIT) which

(a) allow each moving object to estimate possible query movements and issue a location update only

when it may affect any query results and (b) enable smart server probing that results in fewer messages.

We first define the data structure of a LIT which is essentially packed with a set of surrounding query

locations across the terrain and discuss the mobile-side and server-side processes in correspondence to the

Regular Paper

This work is supported by NSF grant IIS- 0534761 and NUS AcRF grant WBS R-252-050-280-101/133

2 J. Comput. Sci. & Technol., Mon 2009, Vol.24, No.X

utilization of LITs. Simulation results confirm that both the ASR and PLU concepts improve scalability

and efficiency over existing methods.

Keywords Location Updates, Continuous Queries, Location-based Services

1 Introduction

The impressive advancement of mobile commu-

nication technologies, such as IEEE 802.11 and cel-

lular networks, together with ever more capable

handheld devices with GPS sensors has sparked

intense interest in location-aware services. The ef-

ficient evaluation of continuous spatial queries is a

fundamental capability needed in many practical

applications. An example range query launched

from a fire engine while battling flames might be to

“continuously locate other fire engines within two

miles of my current location.” Since all units (i.e.,

users) are constantly moving, frequent location up-

dates often result in high server re-indexing costs

and immense communication overhead. With the

mobility introduced by portable and handheld de-

vices, the performance bottleneck for continuous

spatial query processing is often concentrated in

the handling of the frequent location updates at

the server and the utilization of the communication

channel between the moving client objects (also

called mobiles) and the server. Wireless band-

width is generally still much more scarce than

wired bandwidth and – adding to the challenge

– the movement dynamics of such an environment

require frequent mobile–server message exchanges

that contain location information for the database

engine to maintain an up-to-date view of the world.

Many existing techniques [5, 7, 8, 14, 15] have

proposed continuous monitoring approaches with-

out considering the cost of the communication

overhead involved. Some prior work [4, 9, 10] has

provided significant insight into these issues by as-

suming a set of computationally capable moving

objects that cache query-aware information (e.g.,

thresholds or safe regions) and locally determine a

mobile-initiated location update. In the simplest

case, whenever an object moves it sends its new

location to the server. Obviously this can be very

wasteful, for example if the moving object is lo-

cated in an area where it does not affect any query

results. Making informed decisions when to com-

municate update messages becomes a key design is-

sue to improve scalability. The message count can

be reduced through the following optimizations.

The mobile client may be equipped with compu-

tation capabilities to maintain a safe region [11]

with the purpose that movements within the safe

region will not affect any query results (hence no

location updates must be sent to the server). Safe

regions are bounded by the nearest query rectan-

gles around a mobile client and must be recom-

puted when certain events take place such as a

new query is inserted or a moving object moves

beyond its safe region boundary. In some cases

(e.g., query insertion) a moving object is initially

unaware of the event and the server must probe its

current location. However, the focus of these so-

lutions is mainly on static queries or simple types

of queries (e.g., range queries). Furthermore, be-

cause of the usually simple shape of safe regions

(e.g., rectangles or spheres) they can only help to

Yu-Ling Hsueh et al.: Efficient Location Updates for Continuous Queries over Moving Objects 3

avoid a fraction of unnecessary location updates.

If query movements are frequent, such systems suf-

fer from repeated location detections to resolve

location ambiguity (incurred on the objects that

might become result points) and numerous down-

link messages sent to refresh the query-aware in-

formation on those mobile objects.

In this paper, two novel efficient location update

strategies are proposed for a trajectory movement

model and an arbitrary movement model, respec-

tively. Based on the nature of the object move-

ment, we first present the ASR approach which uti-

lizes adaptive safe regions to reduce the downlink

messages of location probes due to query move-

ments for a trajectory movement model. To fur-

ther reduce the downlink messages, the ASR ap-

proach only probes a set of objects that might be-

come part of the query results. Additionally, ASR

allows for decoupled, query-aware information lo-

cally maintained by each moving object until the

movement might affect the query results. In an ar-

bitrary movement environment, since moving ob-

jects can freely move to any positions, the ASR

can no longer efficiently handle query requests. We

propose another strategy termed PLU algorithm.

Its main contribution lies in the development of

“smarter” safe regions represented via location in-

formation tables that enable enhanced (i.e., more

independent) mobile-side decision making for lo-

cation updates. We provide comprehensive study

and present the details of the algorithms in the

following sections. The remainder of this paper is

organized as follows. Section 2 describes the back-

ground and related work. Section 3 provides the

system overview and assumptions. Section 4 and

Section 5 provide the details of the ASR and PLU

algorithms, respectively. Finally, we conclude in

Section 6.

2 Related Work

Cai et al. [1] proposed the Monitoring Query

Management (MQM) approach to leverage the

computational capabilities of moving objects for

efficient processing of continuous range queries.

SINA [7] has been introduced as centralized so-

lution to process continuous range and k nearest

neighbor (kNN) queries over moving objects. Yu

et al. [16] proposed an algorithm that computes

the query results by defining a search region based

on the maximum distance between the query point

and the current locations of previous kNNs. How-

ever, the algorithm results in high re-computation

costs when the query point is highly dynamic. Sim-

ilarly, Xiong et al. [15] suggested the SEA-CNN

framework which uses the concept of shared execu-

tion. SEA-CNN continuously maintains the search

radius of the query point to avoid rebuilding the

query result once the query point changes its lo-

cation. As an enhancement, Mouratidis et al. [8]

presented a technique called CPM that defines a

conceptual partitioning of the space by organizing

grid cells into rectangles. Location updates are

handled only when objects fall into the vicinity of

queries, hence improving system throughput.

In the moving object environments, the chal-

lenge of frequent updates issuing from moving ob-

jects has been addressed when the first continuous

spatial queries are studied. The existing work has

been proposed different strategies to reduce loca-

tions updates and these approaches can be classi-

fied into the following categories.

4 J. Comput. Sci. & Technol., Mon 2009, Vol.24, No.X

2.1 Object Movement Prediction

Predicting the movement of objects (i.e., their

motion functions or trajectory) has been used with

R-tree-based structures (e.g., the TPR-tree [12]

and its variants [14]) and B-tree-based structures

(e.g., the Bx tree [5]). The most common motion

function is a linear function and it describes an ob-

ject’s movement by f(Y) = Xref + (tcur − tref)V ,

where Xref is the reference position or the last

updated position to the server and V is a veloc-

ity vector. However, the linear motion function

severely limits the applicability, since in practice

an object may have drastic motion patterns. Tao

et al. [13] introduced a general framework for mon-

itoring and indexing moving objects. A recursive

motion function is proposed to support non-linear

motion patterns. However, this method incurs ex-

tensive location updates due to the arbitrary move-

ments of the moving objects. These techniques re-

quire location updates from the objects when the

parameters (e.g., moving direction, or speed) of the

motion function change.

2.2 Periodic (Time-based) Updates

In order to handle arbitrary object movements,

periodic (time-based) position updates are widely

used [6, 7, 8, 16]. However, with such a paradigm

tree-based indices suffer from excessive node recon-

structions when tracking object locations. Cheng

et al. [2] proposed a time-based location update

mechanism with low communication costs to im-

prove the temporal data inconsistency for the rel-

evant objects to queries. Data objects with signif-

icance to the correctness of query results are re-

quired to send location updates more frequently.

The main drawback of these methods is that an

object will repeatedly send location updates to

the server when it is enclosed by a query, which

consumes a large amount of bandwidth when the

query density is high.

2.3 Safe-region Updates

A number of pioneering techniques have been

designed for processing of continuous queries over

moving objects. Prabhakar et al. [11] first pro-

posed two elementary techniques called Query In-

dexing and Velocity Constrained Indexing (VCI)

and also introduced the important concept of safe

regions. Subsequently, Hu et al. [4] proposed a

generic framework to handle continuous queries

by leveraging the concept of safe regions through

which the location updates from mobile clients

can be further reduced. However, these methods

only address part of the mobility challenge since

they are based on the assumption that queries are

static. Nowadays, an extensive number of spatial

applications require the capability to process mov-

ing objects in conjunction with dynamic continu-

ous queries.

2.4 Threshold-based Updates

A threshold-based algorithm is presented in [9]

which assumes that moving objects have some

computational capabilities and aims to minimize

the network cost when handling c-kNN queries. To

each moving object a threshold is transmitted and

when its moving distance exceeds the threshold,

the moving object issues an update. However, the

system suffers from many downlink message trans-

missions for refreshing the thresholds of the entire

Yu-Ling Hsueh et al.: Efficient Location Updates for Continuous Queries over Moving Objects 5

moving object population due to frequent query

movements. Cheng et al. [3] proposed a time-based

location update mechanism to improve the tempo-

ral data inconsistency for the objects relevant to

queries. Data objects with significance to the cor-

rectness of query results are required to send loca-

tion updates more frequently. The main drawback

of this method is that an object will repeatedly

send location updates to the server when it is en-

closed by a query region.

In contrast, our proposed techniques for efficient

location updates aim to reduce the communication

cost of dynamic queries over moving objects. The

first strategy for a trajectory movement environ-

ment is the Adaptive Safe Region (ASR) technique

that leverages the trajectory information and re-

trieves an adjustable safe region for each data ob-

ject. The second mythology for a arbitrary move-

ment model is the partition-based lazy update ap-

proach that significantly reduces unnecessary lo-

cation updates by maintaining a Location Infor-

mation Table (LIT) on each moving object. Be-

cause of the different movement models, the query-

aware information (e.g., ASR v.s. LIT) are for-

matted differently. These two techniques do not

deteriorate when faced with high mobility rates as

demonstrated by our simulation results and sur-

pass the aforementioned solutions with higher scal-

ability and lower communication cost.

3 System Overview and Assumptions

To enable a focused discussion we make some ex-

plicit assumptions. The communication between

the centralized server and the mobile units are

through cellular phone or WiMAX networks. A

centralized server is assumed in the environment

to process continuous queries. We assume an ideal

network environment, that is, no communication

delay between the server and moving objects. The

mobile units such as vehicles or hand-held devices

(e.g., cell phones) consist of a set of dynamic query

objects Q and a set of moving objects P . Both

queries and moving objects are identified by a

unique identifier to distinguish their types. The

mobile units are able to provide the server with

their positions from a GPS chip built into the de-

vices and we assume that each mobile unit has

enough computational capabilities and memory to

carry out the required tasks. We assume no power

constraints and virtually unlimited life time of de-

vices. A main-memory grid G is used as the under-

lying structure to index moving objects because of

its simplicity and ease-of-maintenance in a highly

dynamic environment. For high performance an

event-driven approach is adopted to evaluate con-

tinuous queries. To maintain the correctness of

the query results, the server monitors registered

query objects. Thus, the server can evaluate the

queries based on their new locations. The details

of the ASR and PLU approaches are described in

the Section and Section , respectively.

4 Trajectory Movement Model for

Moving Objects

We propose a framework to support multiple

types of dynamic, continuous queries in the ASR

approach. Our goal is to minimize the communi-

cation overhead in a highly dynamic environment

where both queries and objects change their lo-

cations frequently. When a new query enters the

system we leverage the trajectory information that

6 J. Comput. Sci. & Technol., Mon 2009, Vol.24, No.X

a mobile-initiated

update

a server-initiated
update

ASR

2
p

1
p

1
q

3
p

Range

MR

8
p

8
p

ASR

actual query

region

2
q

6
p

5
p

7
p

c-3NN

9
p

4
p

10
p

2
q

(a) An example of ASRs

5
p

2
q

6
p

10
p

7
p

9
p

4
p

traditional expanded query

region

2
q

(b) A query expansion

Fig.1. The overview of the ASR approach.

it can provide by registering its starting and des-

tination points as a movement segment for contin-

uous monitoring. For example, a policeman might

request the following query “send me the top 5 po-

lice cars on the road as I am moving from point A

to point B.” For simplicity, we assume a straight

movement segment between two points. This as-

sumption can be easily extended to a more realis-

tic scenario which may approximate a curved road

segment with several straight-line sub-segments.

We propose an adaptive safe region that reconciles

the surrounding queries based on their movement

trajectories such that the system can avoid unnec-

essary location probes to the objects in the vicinity

(i.e., the ones which overlap with the current query

region). Furthermore, our incremental result up-

date mechanisms allow a query to issue location

probes only to a minimum area where the query

answers are guaranteed to be fulfilled. In particu-

lar, to lower the amortized communication cost for

c-kNN queries, we obtain extra nearest neighbors

(n more NNs) which are buffered and reused later

to update the query results. Thus, the number of

location updates incurred from the query region

expansion due to query movement is reduced. An

example is shown in Figure 1 (a). The ASR of p3

is determined based on the closest query q1, since

p3 has a high probability of being covered by the

query region of q1 when q1 moves in the future.

The safe region of p3 is adjusted to a reasonable

size according to the segment information of q1.

The safe region for p8 is simply set to the maxi-

mum non-overlapping area with the query region

of q2, because q2 (due to its opposing moving di-

rection) will never cover p8. We buffer one extra

NN for q2 (a c-3NN query). When q2 moves to

q′2, and since the number of NNs is equal to 3,

the query region remains unchanged. In the tra-

ditional approach (as shown in Figure 1 (b)), the

query region is expanded to cover p5 (the first clos-

est object outside the query region) such that the

additional location probes to p7, p9, and p10 are

issued. Therefore, our approach reduces the num-

ber of query expansions to find sufficient NNs and

the number of location probes.

In this approach, each query object registers its

movement trajectory with the server by upload-

ing its starting and ending points (denoted by −→qj

= [qs
j , q

e
j]). Furthermore, all the data objects can

move in a non-restricted fashion that allows them

Yu-Ling Hsueh et al.: Efficient Location Updates for Continuous Queries over Moving Objects 7

to move arbitrarily. The location updates of a

query result point (result point for short) and a

non-result point (data point for short) are han-

dled with two different mechanisms. An adaptive

safe region (ASR) is computed for each data point.

A mobile-initiated voluntary location update is is-

sued when any data point moves out of its safe

region. An example (p8) is shown in Figure 1 (a).

To capture the possible movement of a result point,

we use a moving region (MR) whose boundary in-

creases by the maximum moving distance per time

unit. For the result points, the location updates

are requested only when the server sends server-

initiated location probes triggered when the mov-

ing regions of the result points overlap with some

query regions.

Data
Set

Data
Points

Query

Points

 Request
NNs Order

Checks

Boundary
Expansion

 I/O Access

 Request

Location Probes

L
o

c
a
ti
o
n
 P

ro
b
e

s

 Query Results

Query Processor

Result
Monitoring

B

A

F

G

H

ASR
Computation

ASR Assignments

I Range Query

Evaluation

 C-kNN Query
Evaluation

Result

Set

C

D

E

Fig.2. The ASR approach overview.

Figure 2 shows the system framework. When

a request arrives from a data point (A) or from

a query point (B) (e.g., a location update, inser-

tion or deletion), the ASR query processor checks

whether the point is part of a query result in mod-

ules (C) and (D). To incrementally update a query

result, prior query results (E) are considered. For a

c-kNN query, an NN order check (F) is performed

during the query evaluation process. While there

are less than k NNs in the result set, a query region

expansion (G) is executed. Some server-initiated

location probes might be needed to resolve loca-

tion ambiguities. The points in the result set are

monitored (H) through a passive mechanism – this

result set is different from the non-result points

that voluntarily issue location updates locally de-

termined by the objects. Finally, an updated data

point is assigned a new ASR based on the current

query information in module (I). Detailed descrip-

tions of the functionality of each component will

be given in the following sections. Table 1 summa-

rizes the symbols and functions we use throughout

the following sections.

Table 1. Symbols and functions for the ASR approach.

Symbol Description

Q A set of query objects

P A set of moving objects

G A w×w object grid where objects are hashed to

the grid cells based on their locations

δ Maximum speed for any object

pi.ASR Adpative safe region of object pi

pi.MR Moving region of object pi

qj .QR Query region of query qj (the radius is denoted

by qj .QR.radius)

−→qj Movement trajectory of qj

qs
j Staring point of the movement trajectory for qj

qe
j Ending point of the movement trajectory for qj

4.1 Adaptive Safe Region Computation

The existing work adopts safe regions to reduce

unnecessary location updates such that the com-

munication cost between the server and moving

objects is reduced. A safe region in a traditional

system is simply an area of maximal size around

an object such that no query regions overlap. Fig-

ure 3 (a) shows an example of two such safe region

8 J. Comput. Sci. & Technol., Mon 2009, Vol.24, No.X

x
1

p

2
q

yc-kNN

range

3
q

range

1
q

zsafe sphere

safe rectangle

(a) A traditional safe region.

x

2
q

y

range

3
q

range

z

2
r

2
r y

z

3
r

3
r adaptive safe region

c-kNN

1
q

1
r

1
r

x

1
p

(b) An adaptive safe region.

Fig.3. Traditional safe region v.s. ASR.

types (a safe sphere and a safe rectangle) for object

p1. However, this approach suffers from many lo-

cation updates as a result of frequent query move-

ments. When a query moves, the server initiates

location probes to the data objects whose safe re-

gions overlap with the query region to ensure the

correctness of the query answers. In this paper, we

propose a novel approach to retrieve an adaptive

safe region (ASR), which is often smaller than a

maximum non-overlapping region and yet is very

effective in reducing the amortized communication

cost in a highly dynamic mobile environment. The

key observation lies in the consideration of some

important factors (e.g., the velocity or orientation

of the query objects) to reconcile the size of the

safe regions. Figure 3 (b) illustrates the concept

of an ASR. The on-demand location probes are not

issued as soon as any surrounding queries (q1, q2,

or q3) move. In this example, the distance z is the

ASR radius of p1, because in the worst case, after

both q3 and p1 move by distance z and p1 moves

directly toward q3, p1 may become a result point

of q3. The following lemma establishes the ASR

radius based on this observation.

Lemma 1 pi.ASR.radius = min(CDist(pi, qj) −

qj .QR.radius),∀qj ∈ Q, where

CDist(pi, qj) =

pif ′ if θj ≤ π
2 and ∃f ′, or

piqs
j if θj > π

2 or @f ′

As an illustration of Lemma 1 (and to explain

the symbol notation), consider Figure 4, where

the set of queries Q = {qj , qk} are visited for re-

trieving the adaptive safe region (the dashed cir-

cle) of the data point pi. We measure the Eu-

clidian distance between a query and a data point

(CDist in Lemma 1) and then deduct the query

range. Lemma 1 captures two cases of CDist.

The first case (CDist(pi, qj)) computes a distance

pif ′ = qs
jf in the worst-case scenario where both

pi and qj move toward each other (under the con-

straint of the maximum speed). f ′ represents

the border point (on the border of qj .QR while

qj arrives at f on its movement segment), after

which pi would possibly enter the query region of

qj . f is the closest point to qs
j on the trajectory

of qj , which satisfies the condition that the dis-

tance from pi to f is equal to pif ′ + f ′f , where

f ′f = qj .QR.radius = rj . Let pif ′ = x for short.

We can obtain the f and f ′ points by comput-

ing x first, which is considered the safe distance

Yu-Ling Hsueh et al.: Efficient Location Updates for Continuous Queries over Moving Objects 9

for pi with respect to qj . x can be easily computed

with the trajectory information of qj by solving the

quadratic equation: (x + rj)2 = h2 + (qs
jm − x)2

(h is the height of triangle 4piq
s
jm). f on −→qj ex-

ists only when θj (∠piq
s
jq

e
j) is less or equal to π

2

and (piqe
j−qj .QR.radius) < qs

jq
e
j (triangle inequal-

ity). If the first case is not satisfied, we consider

the second case (CDist(pi, qk)), which finds the

maximum non-overlapping area with qj .QR. Since

θ > π
2 in the second case, the query range of qj can

never cover pi due to the opposing movement of qj .

In this example, the safe distance x (with respect

to qj) is smaller than y (with respect to qk), so

x is chosen as the radius of the adaptive safe re-

gion of pi. In our system, since a c-kNN query

can be considered an order-sensitive range query,

we use the same principle to compute safe regions

for each data object with respect to range queries

and c-kNN queries. In case of a query insertion

or query region expansion of a c-kNN query, the

adaptive safe regions of the affected data objects

must be reassigned according to current queries to

avoid any missing location updates.

s

jq
e

jq

x

ip

s

kq

e

kq

y

j

kx

f

c-kNN

range

f

jr h

m

jr

Fig.4. An adaptive safe region.

4.2 Query Evaluation with Location

Probes

The initial query results of the range and c-kNN

queries are obtained using CPM [4], and later the

query results are updated in an event-driven fash-

ion. Such events include the insertion or update

of a query. In the following sections, we propose

our incremental query re-evaluation algorithms for

both range and c-kNN queries. While updating

the query answers, on-demand server-initiated lo-

cation probes are issued whenever any location

ambiguity exists. Specifically, the cost of updat-

ing c-kNN queries is usually higher than updating

range queries. The reason is that a c-kNN search

is an order-sensitive query. The system executes

more location updates to ensure the order of the

result points. Furthermore, to make sure that at

least k result points are found for a c-kNN query,

the query region often needs to be enlarged in a

situation where both query and data objects are

moving, which leads to more location probes. In

our approach, the strategy to handle such increas-

ing unnecessary location updates incurred from a

c-kNN query is that the query processor computes

(k + n) NNs for a c-kNN query instead of evaluat-

ing exactly k NNs. This approach helps to reduce

the number of future query region expansions to

retrieve sufficient NNs for the queries. Since a c-

kNN query is treated as an order-sensitive range

query, we adopt the same principle that is used for

a range query to find the new answer set in the

current query regions first. A query region is ex-

panded only when there are less than k NNs in the

result set. Finally, an order-checking procedure is

performed to examine the order of the result points

and determine necessary location probes.

10 J. Comput. Sci. & Technol., Mon 2009, Vol.24, No.X

4.2.1 Query Result Updates for Range

Queries

The query processor re-evaluates the range queries

based on their current positions by the same prin-

ciples as evaluating the initial query results. The

traditional approach adopts the query region itself

as the safe region for all the result points in the

region to reduce the number of location updates.

However, the approach incurs more network mes-

sages when a range query changes its position fre-

quently, because the system needs to inform the

result points of the new position of the query re-

gion to avoid missing location updates. An alter-

native approach basically monitors the entire set

of result points to obtain the new correct results.

However, such an approach is not scalable when

there are large numbers of range queries. We use

a moving region (MR) for each result point to es-

timate the possible movement at the server side.

The query processor sends the on-demand loca-

tion probes to those result points that might move

out of the current query regions. A MR is indexed

on the grid and the boundary increases at each

time step by the maximum moving distance until

the result point is probed by the server. Since the

number of result points are relatively small, index-

ing MRs does not significantly increase the overall

server workload. In Figure 5 (a), when q1 moves

to q′1, the query processor checks p1 and p5, since

their MRs intersect with q′1.QR.

For a data point, in addition to its adaptive safe

region, we also consider the current possible mov-

ing boundary to serve as an additional indicator for

the server to determine a necessary location probe.

Continuing the example in Figure 5 (a), the gray

circle surrounding p4 is its ASR, and the dashed

Algorithm 1. RangeQuery-Update(q′j).

1: for (each d ∈ qj .RangeNN) do

2: if (dist(d, q′j) − d.MR.radius) > q′j .QR.radius)

then

3: remove d

4: else if (dist(d, q′j)+d.MR.radius) > q′j .QR.radius)

then

5: probe d and remove d if its current position is

outside of q′j .QR

6: end if

7: end for

8: for (each c ∈ G, which overlaps with the q′j .QR) do

9: for (each object pi which resides in c or whose (1)

ASR, or (2) MR overlaps with it) do

10: let r = pi.MR.radius, if pi is a result point; else

let r = min(pi.ASR.radius, δ∆t)

11: if (dist(pi, q
′
j)− r < q′j .QR.radius) then

12: if(dist(pi, q
′
j) + r < q′j .QR.radius), insert pi

into q′j .RangeNN

13: else probe the position of pi and insert pi into

q′j .RangeNN , if pi is within q′j .QR.

14: end if

15: end for

16: end for

circles represent the possible moving bound-

aries (the radius is equal to the maximum mov-

ing distance since the last update of p4) for dif-

ferent time steps. p4 is checked because its

p4.ASR overlaps with q′1.QR. However, the

server does not need to issue a location probe

since the current moving boundary does not

overlap with q′1.QR. p′6 is a newly updated (p6

moves out of its ASR) data point. The system

also needs to check whether its current position

is in the query region of q′1. Algorithm 1 shows

the pseudo code of the range query evaluation,

where q′j is the updated query of qj. Lines 1-

7 remove previous result points that are not in

the the current query region q′j.QR. Lines 2 and

4 compute the mindist and maxdist between a

query point and a result point, respectively. If a

Yu-Ling Hsueh et al.: Efficient Location Updates for Continuous Queries over Moving Objects 11

2
p

1
q

r r

1
p

3
p

4
p

4
p

ASR

MR

2
q

5
p

6
p

6
p

1
q

ASR

(a) Result updates of a range query.

2
p

1
q

r r

1
p

3
p

4
p

1
q

5
p

expanded query region

ASR

(b) Result updates of a c-kNN query.

Fig.5. Query result updates in the ASR approach.

result point with a MR is completely contained

in the query range, a location probe is ignored.

In Line 10, if pi is a data point, the server uses

the radius of ASR or the maximum moving dis-

tance since the last update, which ever is less

to estimate its possible moving distance.

4.2.2 Query Result Updates for c-kNN

Queries

A c-kNN query is more complicated since it is

order-sensitive. An intuitive solution enlarges

a query region that covers at least all the pre-

vious result points (first k NNs) to retrieve new

result points. This approach greatly increases

the number of location updates since such an

expansion (the query region is expanded by

the moving distance of the query and result

points) often results in more location probes,

even though in reality only a small fraction of

queries and data objects move. Therefore, in

our design for the c-kNN queries, we propose a

server-initiated update strategy with an event-

triggered update mechanism. Furthermore, the

query processor retrieves (n + k) NNs to avoid

immediate and successive query region expan-

sions. We relax the definition of the query re-

gion, that is, a query region does not necessary

include exact k NNs only. The query region re-

mains unchanged until a c-kNN query does not

contain enough NNs in the region. We sum-

marize the following steps to update a c-kNN

query result incrementally:

Step 1: Assume that q′j is a c-kNN query af-

ter it moves from qj position. Initially,

set q′j.QR.radius = qj.QR.radius. Per-

form a range query update (as described

in the previous section) to update result

points in q′j.QR. If the number of NNs in

q′j.QR is equal or larger than k, proceed

to Step 3. Otherwise, continue to Step 2.

Step 2: Expand q′j.QR until there are (k + n)

NNs. Update q′j.QR.radius to the dis-

tance between q′j to the (k + n)th NN.

Step 3: Sort the order of the result points and

issue the necessary location probes.

Step 1 ensures that q′j.QR covers at least k

result points. Note that during the process,

12 J. Comput. Sci. & Technol., Mon 2009, Vol.24, No.X

some discarded objects that are not in q′j.QR

might be useful in Step 2, because these objects

are often very close to q′j.QR and might be al-

ready probed by the server. Finding new NNs

from these points first in Step 2 helps the query

processor to avoid expanding the safe region to

a farther level of cells. In Step 2, while ex-

panding the query region to cover (k+n) result

points, a location update is required from any

data object pi whose safe region overlaps with

the query region of q′j. A new ASR is computed

for the updated pi, if pi is still a data object.

We use the same approach (query region ex-

pansion) to handle a query insertion. In Step

3, sorting the order of the result points does

not require the current positions of the entire

result points. The processor performs an Or-

derCheck procedure that examines the possible

actual moving distance of two consecutive NNs

to determine the order of the NNs, and issues

a location probe only if there is a location am-

biguity.

Figure 5 (b) shows a query region expan-

sion where k = 3 and n = 1. In Step 1, since

p1 and p5 (probed during the process) are not

in q′1.QR, they are removed from the answer

set and inserted into a buffer for “recycling”

later. Step 2 is performed since there are only

two result points in q′1.QR. The query proces-

sor checks the data points in the buffer first,

so the first two objects (sorted by the mindist

to q′1) are considered. The new q′1.QR.radius

(the blue area) is set to the distance between

q′1 and p1 to include at least 4 (k + n) objects.

p4 is checked later since the safe region over-

laps with q′1.QR. Algorithm 2 shows the de-

tailed process of a c-kNN query update. In

Line 2, the RangeQuery-Update procedure in-

serts the discarded objects into buffer B sorted

by mindist in the ascending order. Line 4 com-

putes the number (v) of NNs missing in the

current query region. Line 12 executes CPM

to further expand the query region by check-

ing the surrounding cells only when the buffer

is empty. The OrderCheck procedure in Line

16 is performed after all the sufficient NNs are

found. In the OrderCheck procedure, to deter-

mine a necessary location probe for kNN re-

sult points, we observe the following lemma. A

proof of correctness is presented subsequently.

Algorithm 2. c-kNN-Update(q′j).

1: let B = φ be a buffer

2: perform RangeQuery-Update(q′j), which finds new NNs

in the current query region and inserts discarded objects

into B, if any

3: if (q′j .KNN.size < k) then

4: v = k + n− q′j .KNN.size

5: while (v > 0) do

6: if (B.size > 0) then

7: set q′j .QR.radius = dist(q′j , V), where V is the

vth NN in B, if B.size >= v. Otherwise, set

dist(q′j , L), where L is the last object in B.

8: empty B

9: perform RangeQuery-Update(q′j) that inserts

un-visited, discarded objects into B, if any

10: v = k + n− q′j .KNN.size

11: else

12: perform CPM(q′j) that checks the objects in

the surrounding cells of q′j .QR, until (k + n)

objects are fulfilled, and terminate the loop.

13: end if

14: end while

15: end if

16: sort q′j .KNN by performing OrderCheck(q′j .KNN)

that issues necessary location probes.

Yu-Ling Hsueh et al.: Efficient Location Updates for Continuous Queries over Moving Objects 13

Lemma 2 Let q′j be the last reported position

of the query object qj, and let ` = δ∆t be the

maximum moving distance since the last update

of qj, where δ is the maximum speed and ∆t is

the time period from the last update time to the

current time. ∀i = 1 to k, a result point pi

(the ith result point sorted by the mindist to q′j)

needs to issue a location update when the fol-

lowing condition is satisfied:

` ≥ (mindist(q′j, pi+1) - mindist(q′j, pi)) ×1
2

Proof: The proof is straightforward, since

when the order of pi and pi+1 changes,

mindist(pi, q
′
j) ≥ mindist(pi+1, q

′
j). When con-

sidering the worst case that pi moves in an op-

posing direction from q′j and pi+1 moves toward

q′j directly, the following inequality holds true:

mindist(pi, q
′
j) + ` ≥ mindist(pi+1, q

′
j)− `

Therefore, we conclude that the order of pi and

pi+1 must change, when ` ≥ (mindist(q′j, pi+1)

− mindist(q′j, pi)) ×1
2
. It is necessary for the

server to probe both locations of pi and pi+1.

1
p

2
p

3
p

1
q

xy1
r

2
r

3
r

2
p

1
p

1
q

Fig.6. The order checks of a c-kNN query.

In Figure 6, the result set of q′1 is {p2, p1, p3}
sorted by the distance between q′1 and their po-

sitions at the server since the last updates. The

OrderCheck procedure first checks p2 and p1.

Since dist(q′1, p2) + r2 > dist(q′1, p1) − r1, the

order of p2 and p1 might need to be switched.

The system needs to probe p2 and p1. After

the location probes, the order of the NNs be-

comes {p′1, p′2, p3}. Thus, the procedure checks

the next pair of p′2 and p3. Since dist(q′1, p
′
2) <

dist(q′1, p3)− r3, the location probe of p3 is not

necessary.

4.3 Experimental Evaluation

We evaluated the performance of the proposed

framework that utilizes ASRs and compared it

with the traditional safe region approach [4, 10]

and a periodic update approach (PER). The

periodic technique functions as a baseline algo-

rithm where each object issues a location up-

date (only uplink messages are issued in this

approach) every time it moves to a new posi-

tion. We extended the safe region approach

(SR*) to handle dynamic range and c-kNN

queries where the result points are monitored

the same way as in ASR. We preserve the tradi-

tional safe region calculations (maximum non-

overlapping area) for the SR* approach. The

simulation steps and the detailed simulation re-

sults are described in the following sections.

4.3.1 Simulation Steps

We use a main memory grid as the underlying

index structure for all the three approaches.

Our data sets are generated on a terrain ser-

vice space of [0, 1024]2. We assume a maximum

speed for any moving object in the range of

14 J. Comput. Sci. & Technol., Mon 2009, Vol.24, No.X

[0.48, 1.25]. The mobility (the percentage of ob-

jects that move from time step to time step) for

the objects is set in a range from 10% to 50%.

The length qlen of a range query is set in the

range of [1,10] and k for the a kNN query is set

from 5 up to 20. In the simulations, the main

measurement is the cost of the communication

overhead which includes uplink messages (e.g.,

a mobile-initiated location update) and down-

link messages (e.g., a server-initiated location

probe). The communication cost is measured

by assuming that the cost of an uplink mes-

sage (cup = 2) is twice as costly as a downlink

message (cdown = 1). Table 2 summarizes the

default parameter settings in the following sim-

ulations.

Table 2. Simulation parameters for the ASR approach.

Parameter Default Range

Number of objects

(P)

100K 50K, 100K, 150K,

200K

Number of queries

(Q)

100 50, 100, 150, 200

Mobility rate 50% 10%, 20%,30%, 40%,

50%

Number of NNs (K) 10 5, 10, 15, 20

Query length for

range queries (qlen)

5 1, 5, 10

4.3.2 Number of Extra NNs

First, we test the efficiency of using extra NNs

(n) for c-kNN queries by varying the number

of n, since this factor greatly affects the num-

ber of downlink messages. The choice of the

number of extra NNs is a trade-off. If n is too

large, the query processor evaluates more NNs

for a query and the system is more likely to is-

sue more location probes since a larger query

region might overlap with more data objects

for location probes. If n is too small, there are

more query expansions which might also cause

location probes. Figure 7 shows the number of

overall communication cost (measured in thou-

sands of messages) as a function of the number

of extra NNs ranging from 0 to 20. When n is

set to more than 10, the performance of ASR is

degraded in terms of the communication cost.

Therefore, we chose n = 10 for the rest of our

experiments as this setting results in reduced

communication cost.

 7

 7.5

 8

 8.5

 9

0 5 10 15 20

C
om

m
un

ic
at

io
n

C
os

t (
K

)

Number of extra NNs (n)

ASR

Fig.7. Extra NNs v.s. communication cost.

4.3.3 Cardinality

We examined the effect of the query and ob-

ject cardinality assuming that all query and

object sets move with a mobility rate of 50%.

Figure 8 (a) shows the communication over-

head of ASR, SR* and PER with respect to

the object cardinality. ASR outperforms SR*

and PER. The difference increases as the num-

ber of objects grows. Since an ASR reconciles

the surrounding moving queries, a query move-

Yu-Ling Hsueh et al.: Efficient Location Updates for Continuous Queries over Moving Objects 15

 20

 40

 60

 80

 100

 120

50k 100k 150k 200k

C
om

m
un

ic
at

io
n

co
st

 (
K

)

Number of objects

ASR
SR*
PER

(a) P v.s. communication cost.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

50 100 150 200

C
om

m
un

ic
at

io
n

co
st

 (
K

)

Number of queries

ASR
SR*

PER

(b) Q v.s. communication cost.

Fig.8. Object and query cardinality.

ment does not incur many unnecessary location

probes from the surrounding objects. SR* on

the other hand, triggers many location probes

from the objects whose safe regions overlap

with a query region once the query changes its

position. As the density of objects increases,

there are more objects in the vicinity area of a

query region. Hence SR* incurs an increasing

number of location updates as the cardinality

increases. Figure 8 (b) shows the impact of

the number of queries. Our algorithm achieves

about 50% reduction compared with SR* and

90% reduction compared with PER.

4.3.4 Query Coverage

The query coverage varies with the number

of queries, number of NNs (for kNN queries)

and the query length (for range queries). Fig-

ure 9 (a) shows the communication cost as a

function of the number of NNs and Figure 9 (b)

illustrates the effect of the query length. Over-

all, the communication cost increases as a func-

tion of k and qlen. However, since ASR and

PER utilize the OrderCheck procedure to re-

duce the number of location probes from the

objects which do not violate the order of re-

sult sets, the communication overhead remains

stable when k increases. This confirms the fea-

sibility of the OrderCheck procedure as well as

the c-kNN update mechanisms of our approach.

The PER approach basically monitors all the

moving objects. Therefore, the number of k is

irrelevant to the communication cost; however,

PER is not scalable when there is high query

coverage.

4.3.5 Mobility

Finally, we evaluated the impact of the mo-

bility rate. Figures 10 (a) and (b) show the

communication cost as a function of the ob-

ject and query mobility, respectively. The ASR

approach achieves a reduced location update

rate compared to the other two approaches for

all mobility rates. PER and SR* have worse

performance in terms of communication cost

when the mobility rate is high. The degrada-

tion is caused by the location probes due to

query movements.

16 J. Comput. Sci. & Technol., Mon 2009, Vol.24, No.X

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

5 10 15 20

C
om

m
un

ic
at

io
n

co
st

 (
K

)

k of c-kNN queries

ASR
SR*
PER

(a) k v.s. communication cost

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 5 10

C
om

m
un

ic
at

io
n

co
st

 (
K

)

Lenth of range queries

ASR
SR*

PER

(b) qlen v.s. communication cost

Fig.9. Effect of query coverage with k and qlen.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

10 20 30 40 50

C
om

m
un

ic
at

io
n

co
st

 (
K

)

Mobility of objects

ASR
SR*
PER

(a) Object mobility v.s. communication

cost

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

10 20 30 40 50

C
om

m
un

ic
at

io
n

co
st

 (
K

)

Mobility of queries

ASR
SR*

PER

(b) Query mobility v.s. communication

cost

Fig.10. Object and query mobility.

5 Arbitrary Movement Model for Mov-

ing Objects

As the ASR can no longer work efficiently in

an unconstraint, arbitrary movement environ-

ment, we propose the PLU approach to cover

more scenarios in reality. To describe what mo-

tivates this approach, let us first illustrate how

the traditional techniques operate with Fig-

ure 11 serving as an example. The gray areas

represent the safe regions of two moving objects

p1 and p2. A traditional safe region is either a

rectangle or a sphere which is determined by

the set of surrounding queries [11]. When an

object moves outside of its safe region, it in-

curs a location update. From the example we

can observe that, as p1 or p2 moves out of its

safe region (in the direction of the arrow), it is-

sues an unnecessary update because of the lim-

ited safe region information. Furthermore, the

safe region of a moving object is determined

based on its current location. When a query

moves to a new location or a new query is in-

serted, the server triggers a location probe to

the affected moving objects and re-calculates

new safe regions for them. When receiving the

location probes (downstream) from the server,

the moving objects need to send their loca-

Yu-Ling Hsueh et al.: Efficient Location Updates for Continuous Queries over Moving Objects 17

tions (upstream) back to the server. Once the

server completes the safe region computations,

it sends the safe regions (downstream) to those

moving objects. Hence a total of three network

messages are sent back and forth between the

server and each mobile client. As illustrated,

the safe region approach incurs significant net-

work traffic in this scenario.

Mobile Client

1
q

2
q

3
q

4
q5

q

6
q

7
q

8
q

9
q

10
q

1
p

2
p

LIT view

Mobile-side LITTraditional safe regions

Fig.11. Illustration of concepts for the PLU approach.

In contrast, we propose a partition-based

technique by defining a grid-like LIT (also

shown in Figure 11) which provides a moving

object with a detailed view of the surrounding

query locations across the terrain. As an addi-

tional advantage, a LIT is determined with-

out referring to the locations of moving ob-

jects. If a query is inserted, the server can send

the new LIT with the added query informa-

tion (downstream) to the affected moving ob-

jects directly, and only a fraction of the mobile

clients that receive the updated LIT must is-

sue location updates (upstream) back to the

server (– namely if they are part of the new

query result). Therefore, the number of net-

work messages is reduced to at most two. The

overall PLU process is discussed in detail in the

subsequent sections.

5.1 LIT Details

A LITserv is generated initially at the server

and updated when one of the following two

events happen: (1) an existing query changes

its location or (2) a new query is registered with

the system. The general attributes described in

this section for the sever-side LIT are also ap-

plicable to the mobile-side LITs extracted from

it. A mobile-side LIT (LITmob) assigned to a

moving object is a subset table of the server-

side LIT due to memory limitations of mov-

ing objects and to reduce communication costs

and it simply inherits all the attributes and

query boundary information from the server-

side LIT. However, each moving object main-

tains (i.e., updates) the mobile-side LIT locally

after receiving it from the server based on a

specific event. A LIT.value for LITserv(i, j)

stores an integer number that represents a safe

distance. The safe distance for LITserv(i, j) is

defined as the minimal linear distance in cells

from the LITserv(i, j) cell to the nearest query

boundary. We distinguish two cases when as-

signing a value to LITserv(i, j): LIT.value ≥ 0,

if LITserv(i, j) does not overlap a query bound-

ary; and LIT.value = −1, if LITserv(i, j) is

covered by a query boundary. Figure 12 (a)

shows an object grid with a set of registered

queries and moving objects on the terrain at

time t0. The corresponding server-side LIT

created at t0 is illustrated in Figure 12 (b).

In this example we assume that the server-

side LIT size is the same as the object grid.

18 J. Comput. Sci. & Technol., Mon 2009, Vol.24, No.X

3210 4

0

1

2

5 6

3

4

5

6

1
q 3

p

2
q

1
p 2

p

4
p

6
p

7
p

5
p

(a) P v.s. communication

cost.

0

0

0

-1

-1

0 0

-1

-1

0

0

0

000

1111

2 1

12

22

33

0

0-1-1-1

-1 -1

0 0 1 1

0

0 1 2

1

2

2

1

-1-1 -1

(b) Q v.s. communication

cost.

Fig.12. The object grid and a server-side LIT example.

The LIT values of the cells that overlap the

boundaries of query q1 and q2 are set to -1. We

define two types of cell zones: a border zone

(LIT value = -1) and a zero zone (LIT value

= 0). A border zone consists of cells that over-

lap with the boundaries of some queries. A

zero zone is essentially a prediction zone which

might be covered by nearby moving queries as

time proceeds. Since a zero zone has a safe

distance equal to zero, it is more likely to be

covered by a moving query, say q1, soon. Both

border and zero zones are important indicators

for a moving object to decide on a location up-

date. In order to predict the moving query

locations, each moving object updates its lo-

cal LIT and marks the new prediction cells as

zero zones. The detailed update mechanism for

mobile-side LITs will be described later.

5.2 Mobile-Side Processing

Each moving object independently performs

the following two major tasks to achieve the

desired location update traffic reduction: pro-

gressive revision of the mobile-side LIT and

determination of when to send location up-

dates. Each time a moving object transmits its

location to the server, an up-to-date mobile-

side LIT will be sent to the moving object.

However, since we consider dynamic queries,

the LITs are subject to change whenever the

queries change their locations during the course

of the execution. Instead of sending a new

mobile-side LIT with the latest query locations

to each moving object repeatedly, we propose a

periodic LIT update method to independently

adjust the mobile-side LIT to reflect all the

possible query movements while ensuring the

correctness of the query results. We first dis-

cuss how a moving object updates its local LIT

and then describe the mechanisms for trigger-

ing a location update based on the mobile-side

LIT.

Mobile-side LIT Updates:

Under the maximum speed λ constraint, we

can estimate the possible query locations in

the mobile-side LIT. Continuing the example

Yu-Ling Hsueh et al.: Efficient Location Updates for Continuous Queries over Moving Objects 19

3210 4

0

1

2

5 6

3

4

5

6

1
q 3

p

2
q

1
p 2

p

4
p

6
p

1
q

7
p

5
p

(a) Moving objects at t1.
3210 4

0

1

2

5 6

3

4

5

6

0

0

0

1111

2 1

12

22

33

-1-1

-1 -1

-1

1

1

1 2

2

2

0 0

11

0

0000

0

0

0

0

0

0

0

-1 -1-1

-1

-1

-1

-1

(b) Mobile-side LIT at t1.
3210 4

0

1

2

5 6

3

4

5

6

3
p

(c) One-level LITmob.

Fig.13. The object grid and mobile-side LITs.

shown in Figure 12, each moving object p is

given a mobile-side LIT by the server at t0 as

shown in Figure 12 (b). Figure 13 (a) illus-

trates the current locations of mobile units at

time t1 and Figure 13 (b) shows the mobile-

side LIT updated by p at t1. One can observe

that in the worst case, by considering that a

query may move to its surrounding cells in any

direction, the area between two dashed rect-

angles shows all the possible coverage of the

query boundary with such movements. Since a

border zone may overlap more than one query

boundary anywhere within the zone, the two

solid rectangles represent the outermost query

boundaries of the zone. For simplicity, we draw

two dashed rectangles inwardly (shrunk) and

outwardly (expanded) by extending the solid

rectangle by the length of the maximum mov-

ing distance χ (= λ × ∆t) for every time in-

stance. The cells that are newly covered by

the area between the dashed rectangles become

zero zones. As a final step, the LIT values

of the remaining cells need to be updated by

decrementing the LIT values by one when the

surrounding cells become new zero zones.

Location Update Check: The event-

driven procedure for deciding on a location up-

date is performed by the moving object only

when it moves to a new location. We continue

with the example of Figure 13 (a) that shows

the new locations of queries and moving objects

at time t1. Referring to the mobile-side LIT in

Figure 13 (b), p2 in LITmob(3, 3) steps into a

zero zone in LITmob(4, 2), so p2 might overlap

with a query at this moment. p4 was in a bor-

der zone and it changed its location since the

latest update to the server, so it may exit or en-

ter a query boundary. Therefore, both p2 and

p4 have to issue a location update at t1. Fig-

ure 13 (c) shows a one-level 3×3 LITmob for p3

and after some time instances at t3, p3 moves

out of the LIT boundary to LITmob(4, 3), and

therefore it must issue a location update at t3.

5.3 Server-Side Processing

When a new query q is inserted, instead of in-

forming the entire registered moving objects

20 J. Comput. Sci. & Technol., Mon 2009, Vol.24, No.X

population (that lack this new query bound-

ary information) of the changes, the server per-

forms the QurInsert procedure to determine a

set of moving objects O that may enter the

new query boundary. Then it sends the latest

mobile-side LIT to these objects only. First,

QurInsert checks each moving object p in the

set of LIT cells C, where the objects have the

mobile-side LIT overlapping with R (the set of

LIT cells covered by the new query boundary).

Let cr ∈ R be the nearest LIT cell of p. The

procedure computes the minimum distance x

between p and cr and the distance y between

cr and the nearest border zone to R (denoted

by ci). If x > y, the server does not have to in-

form p of the query insertion. This is because

through the mobile-side LIT updates on p, the

area covered by R will become zero zones before

p moves into that area. Therefore, the query in-

sertion will not cause any missed location up-

dates. To estimate the distance y for object

p on the server side, the procedure checks the

LIT value of cr (which is p.LIT.value), because

it represents the nearest distance (in cells) to

the border zone. Since we consider the worst

case to ensure the correctness of query results,

the distance y is set to p.LIT.value + k, where

k is the maximum distance in cells between cp

and cr.

Consider the following example. A new

query q registers with the system at t1. As-

sume that each moving object is assigned a 3×3

(level ` = 1) mobile-side LIT. Figure 14 shows

an object p in C with its LITmob. The new

query q covers the gray area R. Since a one-

level mobile-side LIT is assigned to each mov-

ing object, the area C is one-level larger than

R. Assume that p.LIT.value = 1, so the esti-

mated LIT value of the closest cell cr at (2, 3)

is 2, which is the value of y. Since x < y, p may

reach cr before cr becomes a zero zone through

p’s mobile-side LIT updates. Therefore, the

server needs to inform p of the new insertion.

0

6

6

1

2

3

4

3210 4 5

5

q
R

y

x

C

p

mobLIT

rc

ic

pc

Fig.14. A query insertion example.

5.4 Spatial Data Compression for

Mobile-side LITs

While a mobile-side LIT provides more detailed

query boundary information than a safe region,

the data transmission of a potentially large LIT

needs to be broken into more packets which

may adversely affect performance. We use the

Internet standard for the largest data packet

payload size (MTU) equal to 1500 bytes. We

apply three consecutive lossless data compres-

sion methods: delta encoding, run-length en-

coding (RLE) and Huffman encoding. First,

we de-correlate the LIT values by subtracting

pairs of adjacent LIT numbers. Second, RLE is

utilized to take advantage of the large amount

Yu-Ling Hsueh et al.: Efficient Location Updates for Continuous Queries over Moving Objects 21

of spatial redundancy in a LIT and we use a

Hilbert curve as the data scanning path along

which we count repeated numbers. Finally, we

performed Huffman encoding which is based on

the frequency of occurrence of a data item and

uses a lower number of bits to encode the data

that occur more frequently. Overall, our exper-

imental result shows the combination of these

methods can reduce the size of a LIT by up to

79% from its original size.

5.5 Experimental Evaluation

We implement the extended safe region ap-

proach [4, 10] with safe rectangles (SR*-Rec)

and safe spheres (SR*-SP) in addition to a pe-

riodic update approach (PER) as our compared

work.

5.5.1 Simulation Steps

We use similar simulation settings used in the

ASR approach. We select an optimal size n

for the sever-side LIT from [64, 512] per side

and choose the level ` from [1,10] for a mobile-

side LIT. The main measurement in the follow-

ing simulations is the number of network mes-

sages sent between the server and moving ob-

jects. We count the number of messages (down-

stream) from probing an object’s location and

sending an LIT to a mobile unit and the num-

ber of messages (upstream) from issuing a loca-

tion update to the server. Table 3 summarizes

the default parameter settings in the following

simulations.

Table 3. Simulation parameters for the PLU approach.

Parameter Default Range

P 100k -

Q 1000 300, 500, 700, 1000

fmove 50% 10%, 30%,50%, 70%, 100%

λ 1.25 0.48(35mph)-1.25(90mph)

qlen 5 1, 5, 10

n 256 64, 128, 256, 512

` 5 1, 5, 10

5.5.2 LIT Size

First, we measure the overall number of net-

work messages including upstream and down-

stream directions of the PLU algorithm by

varying the server-side LIT size. The choice

of the server-side LIT size is a trade-off be-

tween the number of network messages and the

server performance. Figures 15 (a) and (b)

show the number of overall network messages

and CPU overheads v.s. the LIT sizes ranging

from 64× 64 to 512× 512, respectively. When

the LIT size is set to more than 512 per side,

the performance of PLU is degraded in terms of

the number of network messages and CPU time

because it incurs more LIT value calculations

for all the LIT cells. The LIT size 256 × 256

constitutes a good tradeoff between the number

of network messages and CPU time. Therefore,

256× 256 is chosen as the server-side LIT size

for the rest of our experiments.

Next we examine the size for a mobile-side

LIT. Figure 15 (c) measures the effect of vary-

ing the size of the mobile-side LIT from level 1

(3×3) to level 10 (21×21) in terms of network

22 J. Comput. Sci. & Technol., Mon 2009, Vol.24, No.X

 16

 18

 20

 22

 24

 26

 28

51225612864

N
et

w
or

k
M

es
sa

ge
s

(k
)

Number of Cells (Per axis)

PLU

(a) Server-side LIT size (n).

 4

 6

 8

 10

 12

 14

51225612864

C
PU

 T
im

e
(S

ec
)

Number of Cells (Per axis)

PLU

(b) Server-side LIT size (n).

 15

 16

 17

 18

 19

 20

1051

N
et

w
or

k
M

es
sa

ge
s

(k
)

LIT level

PLU

(c) Mobile-side LIT size (`).

Fig.15. Performance v.s. LIT size.

messages. The size of a mobile-side LIT signifi-

cantly affects the number of network messages.

When a mobile-side LIT is small, a moving ob-

ject issues more network messages because it

has more chance to move out of the LIT bound-

ary; when a mobile-side LIT is large, it also

incurs more network messages from the query

insertion process since the procedure needs to

check more objects from a larger area where

the moving objects have the mobile-side LITs

overlapping with the new query boundary. We

choose ` = 5 as the mobile-side LIT size for the

remaining experiments, because it achieves bet-

ter performance in terms of the network mes-

sages.

5.5.3 Query Coverage

The query coverage on the terrain is a cru-

cial factor in the performance of continuous

query algorithms. The query coverage varies

with the number and side length of the queries.

Figure 16 (a) shows the network messages as

a function of the number of queries and Fig-

ure 16 (b) illustrates the corresponding commu-

nication cost. Overall, the number of network

messages and communication cost increase as a

function of the number of queries, because the

chance of moving into the query boundaries for

a moving object is high. PLU achieves a signif-

icant reduction in the number of updates com-

pared to the other techniques. For the PER

approach, since the server does not perform

any computations regarding the location up-

date reduction, we only count the number of

network messages sent from the mobile clients.

PER approach is independent of the query cov-

erage, because the number of updates depends

on the mobility only in PER approach. There-

fore, the network messages remain the same

in this simulation. In Figure 16 (c), we eval-

uate the side length of queries with the val-

ues [1, 5, 10]. Obviously, when the length

of queries increases, SR*-Rec and SR*-SP in-

cur more updates, because SR*-Rec and SR*-

SP perform server-side probes to those objects

which have the safe regions overlapping with

the queries. When the length of the queries in-

creases, the server needs to probe more moving

Yu-Ling Hsueh et al.: Efficient Location Updates for Continuous Queries over Moving Objects 23

 10

 20

 30

 40

 50

 60

 70

 80

1000700500300

N
et

w
or

k
M

es
sa

ge
s

(k
)

Number of Queries

PLU
SR*-SP

SR*-Rec
PER

(a) Q v.s. network messages.

 2

 4

 6

 8

 10

 12

 14

1000700500300

C
om

m
un

ic
at

io
n

C
os

t

Number of Queries

PLU
SR*-SP

SR*-Rec
PER

(b) Q v.s. communication cost.

 20

 40

 60

 80

 100

 120

1051

N
et

w
or

k
M

es
sa

ge
s

(k
)

Side Length of Queries

PLU
SR*-SP

SR*-Rec
PER

(c) qlen with Q = 1000.

Fig.16. Effect of query coverage with Q and qlen.

 20

 40

 60

 80

 100

 120

 140

 160

10070503010

N
et

w
or

k
M

es
sa

ge
s

(k
)

Object Mobility

PLU
SR*-SP

SR*-Rec
PER

(a) fmov v.s. network messages.

 0

 5

 10

 15

 20

 25

 30

10070503010

C
om

m
in

ic
at

io
n

C
os

t

Object Mobility

PLU
SR*-SP

SR*-Rec
PER

(b) fmov v.s. communication cost.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

10070503010

C
PU

 T
im

e
(S

ec
)

Object Mobility

PLU
SR*-SP

SR*-Rec
PER

(c) fmov v.s. CPU time.

Fig.17. Performance v.s. object mobility.

objects when queries change to new locations

or when new queries are inserted. The simula-

tion results confirm the importance of adopt-

ing PLU approach which significantly reduces

the network messages and hence decreases the

communication cost.

5.5.4 Mobility

Finally, we evaluate the impact of the mobility

rate. Figure 17 (a) shows the number of net-

work messages as a function of the object mo-

bility and the communication cost is also shown

in Figure 17 (b). The PLU approach achieves

a higher location update reduction than the

other three approaches for all mobility rates.

Figure 17 (c) illustrates the CPU time v.s. the

object mobility. Although PLU applies more

server-side procedures (e.g.QurIns) to reduce

the network messages. PLU still has a compet-

itive CPU performance with SR*-SP. However,

SR*-Rec has the worst performance in terms

of network messages/communication cost and

CPU overheads. The degradation is caused

by the expensive calculations of safe rectan-

gles. SR*-Rec in general computes larger safe

regions for moving objects than SR*-SP, so

SR*-Rec incurs many server-side probes to the

moving objects when queries change their loca-

tions.

24 J. Comput. Sci. & Technol., Mon 2009, Vol.24, No.X

6 Conclusions

We address two challenging issues in efficient

query evaluation and low communication cost

related to frequent location updates. We pro-

pose ASR and PLU algorithms to reduce the

number of location updates for different move-

ment models. We have designed an ASR-

based framework for trajectory movement en-

vironments. The novel concept of an adap-

tive safe region is introduced to provide a mo-

bile object with a reasonable-sized safe region

that adapts to the surrounding queries. Hence,

the communication overhead resulting from the

query movements is greatly reduced. To fur-

ther decrease network traffic caused by c-kNN

query region expansions to cover sufficient NNs

for the result sets, our approach caches extra

NNs. The PLU approach is designed for ar-

bitrary movement environment where mobile

units may freely change their locations to any

positions. The novel concept of a LIT table

is introduced to provide a mobile object with

information about queries, hence enabling it to

estimate query movements and transmit a lo-

cation update to the server only when it affects

the query results. To further reduce network

traffic the server uses smart on-demand loca-

tion probes. Finally, the proposed mechanism

efficiently determines the set of objects that are

affected by a query insertion, improving scala-

bility. Experimental results demonstrate that

both two approaches scale better than existing

techniques in terms of the communication cost

and the outcome confirms the feasibility.

7 Acknowledgments

This work is supported by NSF grants IIS-

0534761, CNS-0831502, CNS-0855251, and NUS

AcRF grant WBS R-252-050-280-101/133

References

[1] Y. Cai, K. Hua, and G. Cao. Processing Range-

Monitoring Queries on Heterogeneous Mobile Ob-

jects. In MDM, 2004.

[2] R. Cheng, K.-Y. Lam, S. Prabhakar, and B. Liang.

An efficient location update mechanism for con-

tinuous queries over moving objects. Inf. Syst.,

32(4):593–620, 2007.

[3] R. Cheng, K. yiu Lam, S. Prabhakar, and

B. Liang. An Efficient Location Update Mech-

anism for Continuous Queries Over Moving Ob-

jects. Inf. Syst., 32(4):593–620, 2007.

[4] H. Hu, J. Xu, and D. L. Lee. A generic frame-

work for monitoring continuous spatial queries

over moving objects. In SIGMOD Conference,

pages 479–490, 2005.

[5] C. S. Jensen, D. Lin, and B. C. Ooi. Query and

Update Efficient B+-Tree Based Indexing of Mov-

ing Objects. In VLDB, 2004.

[6] M. F. Mokbel and W. G. Aref. Gpac: generic and

progressive processing of mobile queries over mo-

bile data. In MDM, pages 155–163, New York, NY,

USA, 2005. ACM Press.

[7] M. F. Mokbel, X. Xiong, and W. G. Aref.

Sina: Scalable incremental processing of continu-

ous queries in spatio-temporal databases. In SIG-

MOD Conference, pages 623–634, 2004.

[8] K. Mouratidis, M. Hadjieleftheriou, and D. Pa-

padias. Conceptual Partitioning: An Efficient

Method for Continuous Nearest Neighbor Moni-

toring. In SIGMOD Conference, 2005.

Yu-Ling Hsueh et al.: Efficient Location Updates for Continuous Queries over Moving Objects 25

[9] K. Mouratidis, D. Papadias, S. Bakiras, and

Y. Tao. A Threshold-Based Algorithm for Con-

tinuous Monitoring of k Nearest Neighbors. IEEE

Trans. Knowl. Data Eng., 17(11):1451–1464, 2005.

[10] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G.

Aref, and S. E. Hambrusch. Query Indexing

and Velocity Constrained Indexing: Scalable Tech-

niques for Continuous Queries on Moving Objects.

IEEE Trans. Computers, 51(10):1124–1140, 2002.

[11] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G.

Aref, and S. E. Hambrusch. Query Indexing

and Velocity Constrained Indexing: Scalable Tech-

niques for Continuous Queries on Moving Objects.

IEEE Trans. Computers, 51(10):1124–1140, 2002.

[12] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and

M. A. Lopez. Indexing the Positions of Continu-

ously Moving Objects. In SIGMOD Conference,

2000.

[13] Y. Tao, C. Faloutsos, D. Papadias, and B. Liu.

Prediction and indexing of moving objects with

unknown motion patterns. In SIGMOD Confer-

ence, pages 611–622, New York, NY, USA, 2004.

ACM Press.

[14] Y. Tao, D. Papadias, and J. Sun. The TPR*-Tree:

An Optimized Spatio-Temporal Access Method

for Predictive Queries. In VLDB, pages 790–801,

2003.

[15] X. Xiong, M. F. Mokbel, and W. G. Aref. SEA-

CNN: Scalable processing of continuous k-nearest

neighbor queries in spatio-temporal databases. In

ICDE, pages 643–654, 2005.

[16] X. Yuu, K. Q. Pu, and N. Koudas. Monitoring k-

nearest neighbor queries over moving objects. In

ICDE, pages 631–642, 2005.

Yuling Hsueh received her

Ph.D and M.S. degrees in com-

puter science from University

of Southern California (USC)

in 2009 and 2003, respec-

tively. Her research interests are temporal/spatial

databases, moving object processing, scalable con-

tinuous query processing and spatial data index-

ing. She is currently working for Teradata Corpo-

ration.

Roger Zimmermann is an

Associate Professor with the

Department of Computer Sci-

ence at the National University

of Singapore (NUS) where he

is also an investigator with the Interactive and

Digital Media Institute (IDMI). Prior to joining

NUS he held the position of Research Area Di-

rector with the Integrated Media Systems Center

(IMSC) at the University of Southern California

(USC). He received his Ph.D. degree from USC

in 1998. His research interests are in the areas

of distributed and peer-to-peer systems, collabora-

tive environments, streaming media architectures,

georeferenced video search, and mobile location-

based services. He has co-authored a book, four

patents and more than a hundred conference pub-

lications, journal articles and book chapters in the

areas of multimedia and information management.

He is an Associate Editor of the ACM Computers

in Entertainment magazine and the ACM Transac-

tions on Multimedia Computing, Communications

and Applications journal. He is a Senior Member

of the IEEE and a member of ACM. Contact him

26 J. Comput. Sci. & Technol., Mon 2009, Vol.24, No.X

at rogerz@comp.nus.edu.sg.

Wei-Shinn Ku received his

Ph.D. degree in computer sci-

ence from the University of

Southern California (USC) in

2007. He also obtained both

the M.S. degree in computer science and the M.S.

degree in Electrical Engineering from USC in 2003

and 2006 respectively. He is an Assistant Pro-

fessor with the Department of Computer Science

and Software Engineering at Auburn University.

His research interests include spatial and tempo-

ral data management, mobile data management,

geographic information systems, and security and

privacy. He has published more than 40 research

papers in refereed international journals and con-

ference proceedings. He is a member of the ACM

and the IEEE.

