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Abstract

Mitra is a scalable storage manager that supports the display of continuous media data types, e.g.,
audio and video clips. It is a software based system that employs off-the-shelf hardware components. Its
present hardware platform is a cluster of multi-disk workstations, connected using an ATM switch. Mitra
supports the display of a mix of media types. To reduce the cost of storage, it supports a hierarchical
organization of storage devices and stages the frequently accessed objects on the magnetic disks. For
the number of displays to scale as a function of additional disks, Mitra employs staggered striping. It
implements three strategies to maximize the number of simultaneous displays supported by each disk.
First, the EVEREST file system allows different files (corresponding to objects of different media types)
to be retrieved at different block size granularities. Second, the FIXB algorithm recognizes the different
zones of a disk and guarantees a continuous display while harnessing the average disk transfer rate.
Third, Mitra implements the Grouped Sweeping Scheme (GSS) to minimize the impact of disk seeks on
the available disk bandwidth.

In addition to reporting on implementation details of Mitra, we present performance results that
demonstrate the scalability characteristics of the system. We compare the obtained results with theo-
retical expectations based on the bandwidth of participating disks. Mitra attains between 65% to 100%
of the theoretical expectations.

˜This research was supported in part by a Hewlett-Packard unrestricted cash/equipment gift, and the National Science
Foundation under grants IRI-9203389 and IRI-9258362 (NYI award).



1 Introduction

The past few years have witnessed many design studies describing different components of a server that

supports continuous media data types, such as audio and video. The novelty of these studies is attributed

to two requirements of continuous media that are different from traditional textual and record-based data.

First, the retrieval and display of continuous media are subject to real-time constraints that impact both

(a) the storage, scheduling and delivery of data, and (b) the manner in which multiple users may share

resources. If the resources are not shared and scheduled properly then a display might starve for data,

resulting in disruptions and delays that translate into jitter with video and random noises with audio.

These disruptions and delays are termed hiccups. Second, objects of this media type are typically large

in size. For example, a two hour MPEG-2 encoded video requiring 4 Megabits per second (Mbps) for

its display is 3.6 Gigabyte in size. Three minutes of uncompressed CD quality audio with a 1.4 Mbps

bandwidth requirement is 31.5 Megabyte (MByte) in size. The same audio clip in MPEG-encoded format

might require 0.38 Mbps for its display and is 8.44 Mbyte.

Mitra is a realization of several promising design concepts described in the literature. Its primary

contributions are two-fold: (1) to demonstrate the feasibility of these designs, and (2) to achieve the non-

trivial task of gluing these together into a system that is both high performance and scalable. Mitra is a

software based system that can be ported to alternative hardware platforms. It guarantees simultaneous

display of a collection of different media types as long as the bandwidth required by the display of each

media type is constant (isochronous). For example, Mitra can display both CD-quality audio clips with

a 1.34 Mbps bandwidth requirement and MPEG-2 encoded streams with 4 Mbps bandwidth requirement

(two different media types) at the same time as long as the bandwidth required by each display is constant.

Moreover, Mitra can display those media types whose bandwidth requirements might exceed that of a single

disk drive (e.g., uncompressed NTSC CCIR 601 video clips requiring 270 Mbps for their display) in support

of high-end applications that cannot tolerate the use of compression techniques.

Due to their large size, continuous media objects are almost always disk resident. Hence, the limiting

resource in Mitra is the available disk bandwidth, i.e., traditional I/O bottleneck phenomena. Mitra is

scalable because it can service a higher number of simultaneous displays as a function of additional disk

bandwidth. The key technical idea that supports this functionality is to distribute the workload imposed

by each display evenly across the available disks using staggered striping [BGMJ94] to avoid the formation

of hot spots and bottleneck disks.

Mitra is high performance because it implements techniques that maximize the number of displays

supported by each disk. This is accomplished in two ways. First, Mitra minimizes both the number of

seeks incurred when reading a block (using EVEREST [GIZ96]) and the amount of time attributed to each
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Parameter Definition

η Number of media types
RC(Mi) Bandwidth required to display objects of media type i

RD Bandwidth of a disk
B(Mi) Block size for media type i

D Total number of disks
d Number of disks that constitute a cluster
C Number of clusters recognized by the system
g Number of groups with GSS
k Stride with staggered striping
N Number of simultaneous displays supported by the system
S Maximum height of sections with EVEREST
ω Number of contiguous buddies of section height i that form a section of height i + 1

Table 1: Parameters and their definition

seek (using GSS [YCK93]). Second, it maximizes the transfer rate of multi-zone disks by utilizing the

bandwidth of different zones in an intelligent manner (FIXB [GKSZ96]). Mitra’s file system is EVEREST.

As compared with other file systems, EVEREST provides two functionalities. First, it enables Mitra to

retrieve different files at different block size granularities. This minimizes the percentage of disk bandwidth

that is wasted when Mitra displays objects that have different bandwidth requirements. Second, it avoids

the fragmentation of disk space when supporting a hierarchy of storage devices [CHL93] where different

objects are swapped in and out of the available disk space over time. GSS minimizes the amount of time

attributed to each seek by optimizing the disk scheduling algorithm. Finally, FIXB in combination with

EVEREST enables Mitra to guarantee a continuous display while harnessing the average transfer rate of

multi-zone disks [RW94, GSZ95]. FIXB enables Mitra to strike a compromise between the percentage of

wasted disk space and how much of its transfer rate is harnessed. With each of these techniques, there

are tradeoffs associated with the choices of values for system parameters. Although these tradeoffs have

been investigated using analytical and simulation studies, Mitra’s key contribution is to demonstrate that

these analyses hold true in practice. It shows that one does not have to rewrite software to support diverse

applications with different performance objectives (startup latency versus throughput versus wasted disk

space). Instead, there is a single system, where different choices of parameters support different application

requirements.

Several related studies have described the implementation of continuous media servers1. These can

be categorized into single-disk and multi-disk systems. The single-disk systems include [AOG92, LS92,

RC95, GBC94]. These pioneering studies were instrumental in identifying the requirements of continuous

1We do not report on commercial systems due to lack of their implementation detail, see [Nat95] for an overview of these
systems.
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media. They developed scheduling policies for retrieving blocks from disk into memory to support a

continuous display. (Mitra employs these policies as detailed in Section 3.) Compared with Mitra, most

of them strive to be general purpose and support traditional file system accesses in addition to a best-

effort delivery of continuous media. Thus, none strive to maximize the number of displays supported

by a disk using alternative disk scheduling policies, techniques that harness the average transfer rate

of disk zones, or strategies that constrained the physical file layout. The multi-disk systems include:

Streaming RAID [TPBG93], Fellini [ORS94], and Minnesota’s VOD server [HLL+95]. None claims to

support either the display of a mix of media types or a hierarchical storage structure, nor do they describe

the implementation of a file system that ensures contiguous layout of a block on the disk storage medium.

(The authors of Fellini identify the design of a file system such as the one developed for Mitra as an

important research direction in [ORS96].) Moreover, all three systems employ disk arrays where the

number of disks that are treated as a single logical disk is pre-determined by the hardware. Mitra differs

in that the number of disks that are treated as one logical disk is not hardware dependent. Instead, it is

determined by the bandwidth requirement of a media type. Indeed, if one analyzes two different displays

with each accessing a different media type, one display might treat two disks as one logical disk while the

other might treat five disks as one logical disk. This has a significant impact on the number of simultaneous

displays supported by the system as detailed in Section 4.

Streaming RAID implements GSS to maximize the bandwidth of a disk array and employs memory-

sharing to minimize the amount of memory required at the server. It develops analytical models similar

to [GR93a, GK95] to estimate the performance of the system with alternative configuration parameters.

Fellini analyzes constraint placement of data to enhance the performance of the system with multi-zone

disks. The design appears to be similar to FIXB. Fellini describes several designs to support VCR features

such as Fast Forward and Rewind. (We hint at Mitra’s designs to support this functionality in Section 5

and do not detail them due to lack of space.) Neither Fellini nor Streaming RAID present performance

numbers from their system. Minnesota’s VOD server differs from both Mitra and the other two multi-disk

systems in that it does not have a centralized scheduler. Hence, it cannot guarantee a continuous display.

However, [HLL+95] presents performance numbers to demonstrate that a mass storage system can display

continuous media.

The rest of this paper is organized as follows. In Section 2, we provide an overview of the software

components of Mitra and its current hardware platform. Section 3 describes the alternative components

of the system (EVEREST, GSS, FIXB, and staggered striping) and how they interact with each other

to guarantee a continuous display. Section 4 presents experimental performance results from Mitra. As

a yard stick, we compare these numbers with theoretical expectations based on the available disk band-

width [GK95, GKS95]. The obtained results: (1) demonstrate the scalability of the system, (2) show that

Mitra attains between 65% to 100% of the theoretical expectations. Our future research directions are
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Mbps Megabits per second
Block Amount of data retrieved per time period on behalf of a PM displaying an

object of media type i. Its size varies depending on the media type and is
denoted as B(Mi).

Fragment Fraction of a block assigned to one disk of a cluster that contains the block.
All fragments of a block are equi-sized.

Time period The amount of time required to display a block at a station. This time is
fixed for all media types, independent of their bandwidth requirement.

Page Basic unit of allocation with EVEREST, also termed sections of height 0.
Startup latency Amount of time elapsed from when a PM issues a request for an object to

the onset of the display.

Table 2: Defining terms

presented in Section 5.

2 An Overview of Mitra

Mitra employs a hierarchical organization of storage devices to minimize the cost of providing on-line access

to a large volume of data. It is currently operational on a cluster of HP 9000/735 workstations. It employs

a HP Magneto Optical Juke-box as its tertiary storage device. Each workstation consists of a 125 MHz

PA-RISC CPU, 80 MByte of memory, and four Seagate ST31200W magnetic disks. Mitra employs the

HP-UX operating system (version 9.07) and is portable to other hardware platforms. While 15 disks can be

attached to the fast and wide SCSI-2 bus of each workstation, we attached four disks to this chain because

additional disks would exhaust the bandwidth of this bus. It is undesirable to exhaust the bandwidth of

the SCSI-2 bus for several reasons. First, it would cause the underlying hardware platform to not scale as

a function of additional disks. Mitra is a software system and if its underlying hardware platform does not

scale then the entire system would not scale. Second, it renders the service time of each disk unpredictable,

resulting in hiccups.

Mitra consists of three software components:

1. Scheduler: this component schedules the retrieval of the blocks of a referenced object in support of
a hiccup-free display at a PM. In addition, it manages the disk bandwidth and performs admission
control. Currently, Scheduler includes an implementation of EVEREST, staggered striping, and
techniques to manage the tertiary storage device. It also has a simple relational storage manager
to insert, and retrieve information from a catalog. For each media type, the catalog contains the
bandwidth requirement of that media type and its block size. For each presentation, the catalog
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Figure 1: Hardware and software organization of Mitra. Note: While 15 disks can be attached to the fast
and wide SCSI-2 bus of each workstation, we attached four disks because additional disks would exhaust
the bandwidth of this bus.

contains its name, whether it is disk resident (if so, the name of EVEREST files that represent this
clip), the cluster and zone that contains its first block, and its media type.

2. mass storage Device Manager (DM): Performs either disk or tertiary read/write operations.

3. Presentation Manager (PM): Displays either a video or an audio clip. It might interface with hardware
components to minimize the CPU requirement of a display. For example, to display an MPEG-2 clip,
the PM might employ either a program or a hardware-card to decode and display the clip. The PM
implements the PM-driven scheduling policy of Section 3.1.3 to control the flow of data from the
Scheduler.

Mitra uses UDP for communication between the process instantiation of these components. UDP is an

unreliable transmission protocol. Mitra implements a light-weight kernel, named HP-NOSE. HP-NOSE

supports a window-based protocol to facilitate reliable transmission of messages among processes. In

addition, it implements the threads with shared memory, ports that multiplex messages using a single

HP-UX socket, and semaphores for synchronizing multiple threads that share memory. An instantiation

of this kernel is active per Mitra process.

For a given configuration, the following processes are active: one Scheduler process, a DM process per

mass storage read/write device, and one PM process per active client. For example, in our twelve disk

configuration with a magneto optical juke box, there are sixteen active processes: fifteen DM processes,

and one Scheduler process (see Figure 1). There are two active DM processes for the magneto juke-box

because it consists of two read/write devices (and 32 optical platters that might be swapped in and out of

these two devices).
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The combination of the Scheduler with DM processes implements asynchronous read/write operations

on a mass storage device (which is otherwise unavailable with HP-UX 9.07). This is achieved as follows.

When the Scheduler intends to read a block from a device (say a disk), it sends a message to the DM that

manages this disk to read the block. Moreover, it requests the DM to transmit its block to a destination

port address (e.g., the destination might correspond to the PM process that displays this block) and issue

a done message to the Scheduler. There are several reasons for not routing data blocks to active PMs

using the Scheduler. First, it would waste the network bandwidth with multiple transmissions of a block.

Second, it would limit the scalability of the system because the processing capability of the workstation that

supports the Scheduler process would determine the overall throughput of the system. CPU processing

is required because a transmitted data block is copied many times by different layers of software that

implement the Scheduler process: HP-UX, HP-NOSE, and the Scheduler.

While the interaction between the different processes and threads is interesting, we do not report on

them due to lack of space.

3 Continuous Display with Mitra

We start by describing the implementation techniques of Mitra for a configuration that treats the d available

disks as a single disk drive. This discussion introduces EVEREST [GIZ96], Mitra’s file system, and moti-

vates a PM-driven scheduling paradigm that provides feedback from a PM to the Scheduler to control the

rate of data production. Subsequently, we discuss an implementation of the staggered striping [BGMJ94]

technique.

3.1 One Disk Configuration

To simplify the discussion and without loss of generality, conceptualize the d disks as a single disk with the

aggregate transfer rate of d disks. When we state that a block is assigned to the disk, we imply that the

block is declustered [GRAQ91, BGMJ94] across the d disks. Each piece of this block is termed a fragment.

Moreover, when we state a DM reads a block from the disk, we imply that d DM processes are activated

simultaneously to produce the fragments that constitute the block.

To display an object X of media type Mi (say CD-quality audio) with bandwidth requirement RC(Mi)

(1.34 Mbps), Mitra conceptualizes X as consisting of r blocks: X0, X1, ..., Xr−1. Assuming a block size

of B(Mi), the display time of a block, termed a time period [GKS95], equals B(Mi)
RC(Mi)

. Assuming that the

system is idle, when a PM references object X , the Scheduler performs two tasks. First, it issues a read
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request for X0 to the DM. It also provides the network address of the PM, requesting the DM to forward

X0 directly to the PM. Second, after a pre-specified delay, it sends a control message to the PM to initiate

the display of X0. This delay is due to the implementation of both GSS [YCK93] (detailed below) and

FIXB [GKSZ96] (described in Section 3.1.2). Once the PM receives a block, it waits for a control message

from the Scheduler before initiating the display. The Scheduler requests the DM to transmit the next block

of X (i.e., X1) in the next time period to the PM. This enables the PM to provide for a smooth transition

between the two blocks to provide for a hiccup-free display. With the current design, a PM requires enough

memory to cache at least two blocks of data.

Given a database that consists of η different media types (say η=2, MPEG-2 and CD-quality audio),

the block size of each media type is determined such that the display time of a block (i.e., the duration of

a time period at the Scheduler) is fixed for all media types. This is done as follows. First, one media type

Mi (say CD-quality audio) with bandwidth requirement RC(Mi) (1.34 Mbps) defines the base block size

B(Mi) (say 512 KByte). The block size of other media types is a function of their bandwidth, RC(Mi),

and B(Mi). For each media type Mj, its block size is:

B(Mj) =
RC(Mj)

RC(Mi)
× B(Mi)

In our example, the block size for MPEG-2 (4 Mbps) objects would be 1521.74 KByte.

In an implementation of a file system, the physical characteristics of a magnetic disk determines the

granularity for the size of a block. With almost all disk manufacturers, the granularity is limited to
1
2KByte2. Mitra rounds up the block size of each object of a media type to the nearest 1

2KByte. Thus,

in our example, the block size for MPEG-2 object would be 1522 KByte. However, Mitra does not adjust

the duration of a time period to reflect this rounding up. Thus, for each time period, the system produces

more data on behalf of a display as compared to the amount that the display consumes. The amount

of accumulated data is dependent on both the number of blocks that constitute a clip and what fraction

of each block is not displayed per time period. For example, with a two hour MPEG-2 video object, a

display would have accumulated 622.7 KByte of data at the end of the display. Section 3.1.3 describes a

scheduling paradigm that prevents the Scheduler from producing data should the amount of cached data

become significant.

Mitra supports the display of N objects by multiplexing the disk bandwidth among N block retrievals.

Its admission control policy ensures that the service time of these N block retrievals does not exceed

the duration of a time period. The service time of the disk to retrieve a block of media type i is a

function of B(Mi), the disk transfer rate, rotational latency, and seek time. Mitra opens each disk in

2With the buffered interface of the HP-UX file system, one might read and write a single byte. This functionality is
supported by a buffer pool manager that translates this byte read/write to a 1

2
KByte read/write against the physical device.
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RAW mode [Hew91]. We used the SCSI commands to interrogate the physical characteristics of each

disk to determine its track sizes, seek characteristics, number of zones, and transfer rate of each zone. (To

gather this information, one requires neither specialized hardware nor the use of the assembly programming

language, see [GSZ95] for a detailed description of these techniques.) The Scheduler reads this information

from a configuration file during its startup.

The Scheduler maintains the duration of a time period using a global variable and supports a linked

list of requests that are currently active. In addition to other information, an element of this list records

the service time of the disk to retrieve a block of the file referenced by this display. Mitra minimizes the

impact of seeks incurred when retrieving blocks of different objects by implementing the GSS algorithm.

With GSS, a time period might be partitioned into g groups. In its simplest form, GSS is configured with

one group (g=1). With g=1, a PM begins to consume the block that was retrieved on its behalf during

time period ℓ at the beginning of time period ℓ+1. This enables the disk scheduling algorithm to minimize

the impact of seeks by retrieving the blocks referenced during a time period using a scan policy. Mitra

implements this by synchronizing the display of the first block of an object (X0) at the PM with the end of

the time period that retrieved X0. Once the display of X0 is synchronized, the display of the other blocks

are automatically synchronized due to a fixed duration for each time period. The synchronization of X0 is

achieved as follows. A PM does not initiate the display of X0 until it receives a control message from the

Scheduler. The Scheduler generates this message at the beginning of the time period that retrieved X1.

With g > 1, Mitra partitions a time period into g equi-sized intervals. The Scheduler assigns a display

to a single group and the display remains with this group until its display is complete. The retrieval

of blocks assigned to a single group employs the elevator scheduling algorithm. This is implemented as

follows. Assuming that group Gi retrieves a block of X per time period, the display of X0 is started when

the disk subsystem begins to service group Gi+1.

3.1.1 File System Design

The current implementation of Mitra assumes that a PM does not perform complex operations such as

Fast-Forward, Fast-Rewind or Pause operations. Upon the arrival of a request for object X belonging to

media type MX , the admission control policy of the Scheduler is as follows. First, the Scheduler checks

to see if another scheduled display is beginning the display of X , i.e., references X0. If so, these two new

requests are combined with each other into one. This enables Mitra to multiplex a single stream among

multiple PMs. If no other stream is referencing X0, starting with the current active group, the Scheduler

locates the group with sufficient idle time to accommodate the retrieval of a block of size B(Mi). The

implementation details of this policy are contained in Appendix A. If no group can accommodate the

retrieval of this request, the Scheduler queues this request and examines the possibility of admitting it
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during the next time period.

With η media types, Mitra’s file system might be forced to manage η different block sizes. Moreover,

the blocks of different objects might be staged from the tertiary storage device onto magnetic disk storage

on demand. A block should be stored contiguously on disk. Otherwise, the disk would incur seeks when

reading a block, reducing disk bandwidth. Moreover, it might result in hiccups because the retrieval time

of a block might become unpredictable. To ensure a contiguous layout of a block, we considered four

alternative approaches: disk partitioning, extent-based [ABCea76, CDKK85, GR93b], multiple block sizes,

and an approximate contiguous layout of a file. We chose the final approach, resulting in the design and

implementation of the EVEREST file system. Below, we describe each of the other three approaches and

our reasons for abandoning them.

With disk partitioning, assuming η media types with η different block sizes, the available disk space

is partitioned into η regions, one region per media type. A region i corresponds to media type i. The

space of this region is partitioned into fix sized blocks, corresponding to B(Mi). The objects of media type

i compete for the available blocks of this region. The amount of space allocated to a region i might be

estimated as a function of both the size and frequency of access of objects of media type i [GI94]. However,

partitioning of disk space is inappropriate for a dynamic environment where the frequency of access to the

different media types might change as a function of time. This is because when a region becomes cold, its

space should be made available to a region that has become hot. Otherwise, the hot region might start to

exhibit a thrashing [Den80] behavior that would increase the number of retrievals from the tertiary storage

device. This motivates a re-organization process to re-arrange disk space. This process would be time

consuming due to the overhead associated with performing I/O operations.

With an extent-based design, a fixed contiguous chunk of disk space, termed an extent, is partitioned

into fix-sized blocks. Two or more extents might have different page sizes. Both the size of an extent and

the number of extents with a pre-specified block size (i.e., for a media type) is fixed at system configuration

time. A single file may span one or more extents. However, an extent may contain no more than a single

file. With this design, an object of a media type i is assigned one or more extents with block size B(Mi).

In addition to suffering from the limitations associated with disk partitioning, this approach suffers from

internal fragmentation with the last extent of an object being only partially occupied. This would waste

disk space, increasing the number of references to the tertiary storage device.

With the Multiple Bock Size approach (MBS), the system is configured based on the media type with

the lowest bandwidth requirement, say M1. MBS requires the block size of each of media type j to be

a multiple of B(M1), i.e., B(Mj) = ⌈
B(Mj)
B(M1)

⌉B(M1). This might simplify the management of disk space

to: 1) avoid its fragmentation, and 2) ensure the contiguous layout of each block of an object. However,

MBS might waste disk bandwidth by forcing the disk to: (1) retrieve more data on behalf of a PM per
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time period due to rounding up of block size, and (2) remain idle during other time periods to avoid an

overflow of memory at the PM. These are best illustrated using an example. Assume two media types

MPEG-1 and MPEG-2 objects with bandwidth requirements of 1.5 Mbps and 4 Mbps, respectively. With

this approach, the block size of the system is chosen based on MPEG-1 objects. Assume, it is chosen to be

512 KByte, B(MPEG-1)=512 KByte. This implies that B(MPEG-2)=1365.33 KByte. MBS would increase

B(MPEG-2) to equal 1536 KByte. To avoid excessive amount of accumulated data at a PM displaying

an MPEG-2 clip, the Scheduler might skip the retrieval of data one time period every nine time periods

using the PM-driven scheduling paradigm of Section 3.1.3. The Scheduler may not employ this idle slot

to service another request because it is required during the next time period to retrieve the next block

of current MPEG-2 display. If all active requests are MPEG-2 video clips and a time period supports

nine displays with B(MPEG-2)=1536 KByte then, with B(MPEG-2)=1365.33 KByte, the system would

support ten simultaneous displays (10% improvement in performance). In summary, the block size for

a media type should approximate its theoretical value in order to maximize the number of simultaneous

displays.

The final approach, and the one used by Mitra, employs the buddy algorithm to approximate a

contiguous layout of a file on the disk without wasting disk space. The number of contiguous chunks that

constitute a file is a fixed function of the file size and the configuration of the buddy algorithm. Based on

this information, Mitra can either (1) prevent a block from overlapping two non-contiguous chunks or (2)

allow a block to overlap two chunks and require the PM to cache enough data to hide the seeks associated

with the retrieval of these blocks. Currently, Mitra implements the first approach. To illustrate the second

approach, if a file consists of five contiguous chunks then at most four blocks of this file might span two

different chunks. This implies that the retrieval of four blocks will incur seeks with at most one seek per

block retrieval. To avoid hiccups, the Scheduler should delay the display of the data at the PM until it

has cached enough data to hide the latency associated with four seeks. The amount of cached data is

not significant. For example, assuming a maximum seek time of 20 milliseconds, with MPEG-2 objects

(4 Mbps), the PM should cache 10 KByte to hide each seek. However, this approach complicates the

admission control policy because the retrieval of a block might incur either one or zero seeks.

EVEREST

With EVEREST, the basic unit of allocation is a page,3 also termed sections of height 0. EVEREST

organizes these sections as a tree to form larger, contiguous sections. As illustrated in Figure 2, only

sections of size(page)×ωi (for i ≥ 0) are valid, where the base ω is a system configuration parameter. If a

section consists of ωi pages then i is said to be the height of the section. The system can combine ω height

i sections that are buddies (physically adjacent) to construct a section of height i + 1.

3The size of a page has no impact on the granularity at which a process might read a section. This is detailed below.
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Figure 2: Physical division of disk space into pages and the corresponding logical view of the sections with
an example base of ω = 2.

To illustrate, the disk in Figure 2 consists of 16 pages. The system is configured with ω = 2. Thus,

the size of a section may vary from 1, 2, 4, 8, up to 16 pages. In essence, a binary tree is imposed upon

the sequence of pages. The maximum height, computed by4 S = ⌈logω(⌊ Capacity

size(page)
⌋)⌉, is 4. With this

organization imposed upon the device, sections of height i ≥ 0 cannot start at just any page number, but

only at offsets that are multiples of ωi. This restriction ensures that any section, with the exception of the

one at height S, has a total of ω − 1 adjacent buddy sections of the same size at all times. With the base

2 organization of Figure 2, each section has one buddy.

With EVEREST, a portion of the available disk space is allocated to objects. The remainder, should

any exist, is free. The sections that constitute the available space are handled by a free list. This free list

is actually maintained as a sequence of lists, one for each section height. The information about an unused

section of height i is enqueued in the list that handles sections of that height. In order to simplify object

allocation, the following bounded list length property is always maintained: For each height i = 0, . . . , S,

at most ω − 1 free sections of i are allowed. Informally, this property implies that whenever there exists

sufficient free space at the free list of height i, EVEREST must compact these free sections into sections

of a larger height5.

The process of staging an object from tertiary onto available disk space is as follows. The first step

is to check, whether the total number of pages in all the sections on the free list is either greater than

or equal to the number of pages (denoted no-of-pages(X)) that the new object X requires. If this is not

the case then one or more victim objects are elected and deleted. (The procedure for selecting a victim is

based on heat [GIKZ96]. The deletion of a victim object is described further below.) Assuming enough

free space is available at this point, X is divided into its corresponding sections as follows. First, the

4To simplify the discussion, assume that the total number of pages is a power of ω. The general case can be handled
similarly and is described below.

5A lazy variant of this scheme would allow these lists to grow longer and do compaction upon demand, i.e., when large
contiguous pages are required. This would be complicated as a variety of choices might exist when merging pages. This would
require the system to employ heuristic techniques to guide the search space of this merging process. However, to simplify the
description we focus on an implementation that observes the invariant described above.
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number m = no-of-pages(X) is converted to base ω. For example, if ω = 2, and no-of-pages(X) = 1310

then its binary representation is 11012. The full representation of such a converted number is m =

dj−1 × ωj−1 + . . . + d2 × ω2 + d1 × ω1 + d0 × ω0. In our example, the number 11012 can be written as

1×23 +1×22 +0×21 +1×20. In general, for every digit di that is non-zero, di sections are allocated from

height i of the free list on behalf of X . In our example, X requires 1 section from height 0, no sections

from height 1, 1 section from height 2, and 1 section from height 3.

For each object, the number ν of contiguous pieces is equal to the number of one’s in the binary

representation of m, or with a general base ω, ν =
∑j

i=0 di (where j is the total number of digits). Note

that ν is always bounded by ω ⌈logω m⌉. For any object, ν defines the maximum number of sections

occupied by the object. (The minimum is 1 if all ν sections are physically adjacent.) A complication arises

when no section at the right height exists. For example, suppose that a section of size ωi is required, but

the smallest section larger than ωi on the free list is of size ωj (j > i). In this case, the section of size

ωj can be split into ω sections of size ωj−1. If j − 1 = i, then ω − 1 of these are enqueued on the list

of height i and the remainder is allocated. However, if j − 1 > i then ω − 1 of these sections are again

enqueued at level j − 1, and the splitting procedure is repeated on the remaining section. It is easy to see

that, whenever the total amount of free space on these lists is sufficient to accommodate the object, then

for each section that the object occupies, there is always a section of the appropriate size, or larger, on

the list. This splitting procedure will guarantee that the appropriate number of sections, each of the right

size, will be allocated, and that the bounded list length property is never violated.

When there is insufficient free disk space to materialize an object, then one or more victim objects

(with copies on tertiary) are removed from the disk. Reclaiming the space of a victim requires two steps

for each of its sections. First, the section must be appended to the free list at the appropriate height. The

second step ensures that the bounded list length property is not violated. Therefore, whenever a section is

enqueued in the free list at height i and the number of sections at that height is equal to or greater than ω,

then ω sections must be combined into one section at height i+1. If the list at i+1 now violates bounded

list length property, then once again space must be compacted and moved to section i+2. This procedure

might be repeated several times. It terminates when the length of the list for a higher height is less than

ω.

Compaction of ω free sections into a larger section is simple when they are buddies; in this case, the

combined space is already contiguous. Otherwise, the system might be forced to exchange one occupied

section of an object with one on the free list in order to ensure contiguity of an appropriate sequence of ω

sections at the same height. The following algorithm achieves space-contiguity among ω free sections at

height i.
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Figure 3a: Two sections are on the free list
already (7 and 14) and object Z is deallocated.
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Figure 3b: Sections 7 and 13 should be com-
bined, however they are not contiguous.

Figure 3c: The buddy of section 7 is 6. Data
must move from 6 to 13.
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Figure 3d: Sections 6 and 7 are contiguous
and can be combined.

Figure 3e: The buddy of section 6 is 4. Data
must move from (4,5) to (14,15).
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Figure 3f: Sections 4 and 6 are now adjacent
and can be combined.

Figure 3g: The final view of the disk and the
free list after removal of Z.

Figure 3: Deallocation of an object. The example sequence shows the removal of object Z from the initial
disk resident object set {X, Y, Z}. Base two, ω = 2.
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1. Check if there are at least ω sections for height i on the free list. If not, stop.

2. Select the first section (denoted sj) and record its page-number (i.e., the offset on the disk drive).
The goal is to free ω − 1 sections that are buddies of sj.

3. Calculate the page-numbers of sj ’s buddies. EVEREST’s division of disk space guarantees the
existence of ω − 1 buddy sections physically adjacent to sj.

4. For every buddy sk, k ≤ 0 ≤ ω − 1, k 6= j, if it exists on the free list then mark it.

5. Any of the sk unmarked buddies currently store parts of other object(s). The space must be re-
arranged by swapping these sk sections with those on the free list. Note that for every buddy section
that should be freed there exists a section on the free list. After swapping space between every
unmarked buddy section and a free list section, enough contiguous space has been acquired to create
a section at height i + 1 of the free list.

6. Go back to Step 1.

To illustrate, consider the organization of space in Figure 3a. The initial set of disk resident objects

is {X, Y, Z} and the system is configured with ω = 2. In Figure 3a, two sections are on the free list at

height 0 and 1 (addresses 7 and 14 respectively), and Z is the victim object that is deleted. Once page

13 is placed on the free list in Figure 3b, the number of sections at height 0 is increased to ω and it must

be compacted according to Step 1. As sections 7 and 13 are not contiguous, section 13 is elected to be

swapped with section 7’s buddy, i.e., section 6 (Figure 3c). In Figure 3d, the data of section 6 is moved

to section 13 and section 6 is now on the free list. The compaction of sections 6 and 7 results in a new

section with address 6 at height 1 of the free list. Once again, a list of length two at height 1 violates the

bounded list length property and pages (4,5) are identified as the buddy of section 6 in Figure 3e. After

moving the data in Figure 3f from pages (4,5) to (14,15), another compaction is performed with the final

state of the disk space emerging as in Figure 3g.

Once all sections of a deallocated object are on the free list, the iterative algorithm above is run on

each list, from the lowest to the highest height. The previous algorithm is somewhat simplified because it

does not support the following scenario: a section at height i is not on the free list, however, it has been

broken down to a lower height (say i − 1) and not all subsections have been used. One of them is still on

the free list at height i−1. In these cases, the free list for height i−1 should be updated with care because

those free sections have moved to new locations. In addition, note that the algorithm described above

actually performs more work than is strictly necessary. A single section of a small height, for example,

may end up being read and written several times as its section is combined into larger and larger sections.

This is eliminated in the following manner. The algorithm is first performed “virtually” — that is, in main

memory, as a compaction algorithm on the free lists. Once completed, the entire sequence of operations that

have been performed determines the ultimate destination of each of the modified sections. The Scheduler

constructs a list of these sections. This list is inserted into a queue of house keeping I/Os. Associated with

14



each element of the queue is an estimated amount of time required to perform the task. Whenever the

Scheduler locates one or more idle slots in the time period, it analyzes the queue of work for the element

that can be processed using the available time. (Idle slots might be available with a workload that has

completely utilized the number of idle slots due to the PM-driven scheduling paradigm of Section 3.1.3.)

The value of ω impacts the frequency of preventive operations. If ω is set to its minimum value

(i.e., ω = 2), then preventive operations would be invoked frequently because every time a new section is

enqueued there is a 50% chance for a height of the free list to consist of two sections (violates the bounded

list length property). Increasing the value of ω will therefore “relax” the system because it reduces the

probability that an insertion to the free list would violate the bounded list length property. However,

this would increase the expected number of bytes migrated per preventive operation. For example, at the

extreme value of ω = n (where n is the total number of pages), the organization of blocks will consist of two

levels, and for all practical purpose, EVEREST reduces to a standard file system that manages fix-sized

pages.

The design of EVEREST suffers from the following limitation: the overhead of its preventive operations

may become significant if many objects are swapped in and out of the disk drive. This occurs when the

working set of an application cannot become resident on the disk drive.

In our implementation of EVEREST, it was not possible to fix the number of disk pages as an exact

power of ω. The most important implication of an arbitrary number of pages is that some sections may

not have the correct number of buddies (ω − 1 of them). However, we can always move those sections to

one end of the disk — for example, to the side with the highest page-offsets. Then instead of choosing

the first section in Step 2 in the object deallocation algorithm, Mitra chooses the one with the lowest

page-number. This ensures that the sections towards the critical end of the disk — that might not have

the correct number of buddies — are never used in both Steps 4 and 5 of the algorithm.

Our implementation enables a process to retrieve a file using block sizes that are at the granularity of
1
2KByte. For example, EVEREST might be configured with a 64 KByte page size. One process might read

a file at the granularity of 1365.50 KByte blocks, while another might read a second file at the granularity

of 512 KByte.

The design of EVEREST is related to the buddy system proposed in [Kno65, LD91] for an efficient

main memory storage allocator (DRAM). The difference is that EVEREST satisfies a request for b pages

by allocating a number of sections such that their total number of pages equals b. The storage allocator

algorithm, on the other hand, will allocate one section that is rounded up to 2⌈lg b⌉ pages, resulting in

fragmentation and motivating the need for either a re-organization process or a garbage collector [GR93b].

The primary advantage of the elaborate object deallocation technique of EVEREST is that it avoids both
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Figure 4: Zone characteristics of the Seagate ST31200W magnetic disk

internal and external fragmentation of space as described for traditional buddy systems (see [GR93b]).

3.1.2 Multi-Zone Disks

A trend in the area of magnetic disk technology is the concept of zoning. It increases the storage capacity

of each disk. However, it results in a disk with variable transfer rates with different regions of the disk

providing different transfer rates. Figure 4 shows the transfer rate of the 23 different zones that constitute

each of the Seagate disks. (Techniques employed to gather these numbers are reported in [GSZ95].)

A file system that does not recognize the different zones might be forced to assume the bandwidth

of the slowest zone as the overall transfer rate of the disk in order to guarantee a continuous display.

In [GKSZ96], we described two alternative techniques to support continuous display of audio and video

objects using multi-zone disks, namely, FIXed Block size (FIXB) and VARiable Block size (VARB). These

two techniques harness the average transfer rate of zones. Mitra currently implements FIXB6. It organizes

an EVEREST file system on each region of the disk drive. Next, it assigns the blocks of each object to

the zones in a round-robin manner. The blocks of each object that are assigned to a zone are stored as a

single EVEREST file. In the catalog, Mitra maintains the identity of each EVEREST file that constitute

a clip, its block size, and the zone that contains the first block of this clip.

The Scheduler scans the disk in one direction, say starting with the outermost zone moving inward.

It recognizes m different zones, however, only one zone is active per time period. A global variable ZActive

denotes the identity of the active zone. The bandwidth of each zone is multiplexed among all active

displays. Once the disk reads data from the innermost zone, it is repositioned to the outermost zone to

start another sweep. The time to perform on weep is denoted as Tscan. The block size is chosen such that

6We intend to implement VARB in the near future.
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Figure 5: Memory requirement with FIXB

the amount of data produced by Mitra for a PM during one Tscan equals the amount of data consumed at

the PM. This requires the faster zones to compensate for the slower zones. As demonstrated in Figure 5,

data accumulates at the PM when outermost zones are active at the Scheduler and decreases when reading

blocks from the innermost zones. In this figure, TMux(Zi) denotes the duration of a time that a zone is

active. It is longer for the innermost zone due to their low transfer rate. In essence, FIXB employs memory

to compensate for the slow zones using the transfer rate of the fastest zones, harnessing the average disk

transfer rate.

If X0 is assigned to a zone other than the outermost one (say ZX0
) then its display may not start

at the end of the time period that the system retrieves X0 (i.e., TMUX(ZX0
)). This is because both the

retrieval and display of data on behalf of a PM is synchronized relative to the transfer rate of the outermost

zone to ensure that the amount of data produced during one sweep is equivalent to that consumed. If the

display is not delayed, then the PM might run out of data and incur hiccups. By delaying the display at a

PM, the system can avoid hiccups. In [GKSZ96], we detail analytical models to compute the duration of

a delay based on the identity of ZX0
.

A drawback of recognizing a large number of zones is a higher startup latency. Mitra can reduce the

number of zones by logically treating one or more adjacent zones as a single logical zone. This is achieved

by overlaying a single EVEREST file system on these zones. Mitra assumes the transfer rate of the slowest

participating zone as the transfer rate of the logical zone to guarantee hiccup-free displays.

3.1.3 PM-driven Scheduling

The duration of a time period might exceed the disk service time to retrieve N blocks on behalf of N active

displays. This is because: 1) Mitra assumes the transfer rate of a logical zone to equal the transfer rate of

the slowest participating physical zone, and 2) the N retrieved blocks might physically reside in the fastest
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participating zone (by luck). When this happens, the Scheduler may either (1) busy-wait until the end

of the time period, (2) employ the idle slot for house keeping activities, i.e., migrate sections in support

of the bounded list length property, or 3) proceed with the retrieval of blocks that should be retrieved

during the next time period. The third approach minimizes the average startup latency of the system (as

demonstrated in Section 4). However, it causes the Scheduler to produce data at a faster rate on behalf of

an active PM. This motivates an implementation of a PM-driven scheduling paradigm where the Scheduler

accepts skip messages from a PM when the PM starts to run out of memory.

With this paradigm, a PM maintains a data buffer with a low and a high water mark. These two water

marks are a percentage of the total memory available to the PM. Once the high water mark is reached, the

PM generates a skip message to inform the Scheduler that it should not produce data on behalf of this PM

for a fixed number of time periods (say Y time periods). Y must be a multiple of the number of logical

zones recognized on a disk (otherwise, Y is rounded to ⌊Y
m
⌋). This is due to the round-robin assignment of

blocks of each object to the zones where a display cannot simply skip one zone when m > 1. The number

of time periods is dependent on the amount of data that falls between the low and high water marks, i.e.,

the number of blocks cached. It must correspond to at least one sweep of the zones (Tscan) to enable the

PM to issue a skip message. During the next Y time periods, the Scheduler produces no data on behalf of

the PM while the display consumes data from buffers local to the PM. After Y time periods, the Scheduler

starts to produce data for this PM.

The choice of a value for the low and high water marks at the PM are important. The difference

between the total available memory and the high water mark should be at least one block due to possible

race conditions attributed to networking delays between the PM and the Scheduler. For example, the

Scheduler might produce a block for the PM at the same time that the PM is generating the skip message.

Similarly, the low water mark should not be zero (its minimum value must be one block). This would

eliminate the possibility of the PM running out of data (resulting in hiccups) due to networking delays.

3.2 Staggered Striping

Staggered striping was originally presented in [BGMJ94, GK95]. This section describes its implementation

in Mitra. With staggered striping, Mitra does not treat all the available disks (say D disks) as a single

logical disk. Instead, it constructs clusters of disks, with each treated as a single logical disk. Assuming

that the database consists of η media types, Mitra registers for each media type Mi: (1) the number of

disks that constitute a cluster for this media type, termed d(Mi), and (2) the block size for Mi, i.e, B(Mi).

(The tradeoff associated with alternative values for d(Mi) and B(Mi) is reported in Section 4.) Mitra

constructs logical clusters (instead of physical ones) using a fixed stride value (k). This is achieved as
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Figure 6: Staggered striping for two media types

follows. When loading an object (say X) of media type MX , the first block of X (X0) recognizes a cluster

as consisting of d(MX) adjacent disks starting with an arbitrary disk (say diska). Mitra declusters X0

into d(MX) fragments and assigns each fragments to a disk starting with diska: diska, disk(a+1) mod D,

..., disk(a+d(MX)) mod D. For example, in Figure 6, X0 is declustered into three fragments d(MX)=3 and

assigned to a logical cluster starting with disk 4. It places the remaining blocks of X such that the first

disk that contains the first fragment of block Xj is shifted k disks to the right relative to that of block

Xj−1. Thus, in our example, the placement of X1 would start with diskb where b = (a + k) mod D. The

placement of X2 starts with disk(b+k) mod D. In Figure 6, k=1. Thus, X1 is declustered across disks 5, 6,

and 7 while X2 is declustered across disks 6, 7, and 8. With m zones per disk, the assignment of blocks

to the zones of clusters continues to follow a round-robin assignment. For example, if X0 is assigned to

zone Zi of disks a to (a + d(MX)) mod D, X1 is assigned to zone Z(i+1) mod m of disks b to (b+ k) mod D.

This process repeats until all blocks of X are assigned to disks and zones. One EVEREST file contains

all fragments of X assigned to zone i of disk j. Thus, a total of D × m files might represent object X .

Once object X is loaded, Mitra registers with the catalog the following information: (1) the disk and zone

that the assignment of X0 started with, (2) X ’s media type, and (3) the identity of each file that contains

different fragments of X .

While the value of d(Mi) might differ for the alternative media types, k is a constant for all media

types. For example, in Figure 6, the media type of object X requires the bandwidth of three disks while

that of Y requires four disks. However, the value of k=1 for both objects.

To display an object X , the Scheduler uses the catalog to determine: (1) X ’s media type, i.e., the

value of d(MX) for this object, (2) the disk that contains the first fragment of X0 (say diska), and (3) the

zone that contains X0 (say ZX0
). Once the active zone equals ZX0

and d(MX) disks starting with diska

(i.e., diska, disk(a+1) mod D, ..., disk(a+d(MX)) mod D) have sufficient bandwidth to retrieve the fragments
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of X0, the Scheduler initiates the retrieval of X0. During the next time period, this display shifts k disks

to the right and the next active zone to retrieve X1. This process repeats until all blocks of X have been

retrieved and transmitted to the PM.

4 Performance Evaluation

This section presents performance numbers that demonstrate the scalability characteristics of Mitra. We

start with an overview of the experimental design employed for this evaluation. Next, we focus on a

single disk configuration of Mitra to demonstrate the tradeoff associated with its alternative optimization

techniques. Finally, we present the performance of Mitra as a function of the number of disks in the system

and their logical organization as clusters. In all experiments, the entire system was dedicated to Mitra

with no other users accessing the workstations.

4.1 Experimental Design

A problem when designing this evaluation study was the number of variables that could be manipulated:

block size, number of groups with GSS, mix of media types, mix of requests, the number of participating

disks, the number of disks that constitute a cluster per media type, the bandwidth of each disk as a function

of the number of participating disks, closed versus open evaluation, the role of the tertiary storage device,

the size of database, frequency of access to objects that constitute the database, etc. We spent weeks

analyzing alternative ways of conducting this study. It was obvious that we had to reduce the number

of manipulated parameters to obtain meaningful results. As a starting point, we decided to: (1) ignore

the role of tertiary storage device and focus on the performance of Mitra during a steady state where all

referenced objects are disk resident, and (2) focus on a single media type. Moreover, we partitioned this

study into two parts. While the first focused on the performance of a single disk and the implementation

techniques that enhance its performance, the second focuses on the scalability characteristics of Mitra as

a function of additional disks.

The target database and its workload were based on a WWW page that ranks the top fifty songs

every week7. We chose the top 22 songs of January 1995 to construct both the benchmark database and its

workload. (We could not use all fifty because the total size of the top 22 audio clips exhausted the storage

capacity of one disk Mitra configuration.) Figure 7.a and b shows the frequency of access to the clips and

the size of each clip in seconds, respectively. The size of the database was fixed for all experiments.

7This web site is maintained by Daniel Tobias (http://www.softdisk.com/comp/hits/). The ranking of the clips is deter-
mined through voting by the Internet community, via E-mail.
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Figure 7: Characteristics of the CD audio clips

Seagate ST31200W

Capacity 1.0 gigabyte
Revolutions per minute 5400

Maximum seek time 21.2 millisecond
Maximum rotational latency 11.1 millisecond

Number of zones 23 (see Figure 5)

Database Characteristics

CD Quality Audio

Sampling rate 44,100 per second
Resolution 16 bits
Channels 2 (stereo)

Bandwidth requirement 1.3458 Mbps

Table 3: Fixed Parameters

We employed a closed evaluation model with a zero think time. With this model, a workload generator

process is aware of the number of simultaneous displays supported by a configuration of Mitra (say N ). It

dispatches N requests for object displays to Mitra. (Two or more requests may reference the same object,

see below.) As soon as Mitra is done with the display of a request, the workload generator issues another

request to the Scheduler (zero think time). The distribution of request references to clips is based on

Figure 7.a. This is as follows. We normalized the number of votes to the 22 clips as a function of the total

number of vote for these objects. The workload generator employs this distribution to construct a queue of

requests that reference the 22 clips. This queue of requests is randomized to result in a non-deterministic

reference pattern. However, it might be the case that two or more requests reference the same clip (e.g.,

the popular clip) at the same time. In all experiments Mitra was configured not to multiplex a single

stream to service these requests.
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This experimental design consists of three states: warmup, steady state, and shutdown. During the

system warmup (shutdown), Mitra starts to become fully utilized (idle). In our experiments, we focused

on the performance of Mitra during a steady state by collecting no statistics during both system warmup

and shutdown.

4.2 One Disk Configuration

We analyzed the performance of Mitra with a single disk to observe the impact of: 1) alternative mode

of operation with the PM-driven scheduling paradigm, 2) block size, 3) different number of groups with

GSS, and 4) multiple zones. In the first experiment, we configured the system with 384 KByte block

size, g=1, a single zone, with the low and high water marks set to 1 and 2 respectively. In theory, the

number of guaranteed simultaneous displays supported by our target disk is 12. This is computed based

on the transfer rate of the slowest zone, i.e., 18 Mbps, to capture the worst case scenario where all blocks

retrieved during a time period reside in this zone. Mitra realized these theoretical expectations successfully.

However, during a time period, the referenced blocks might be scattered across the disk surface, causing

the system to observe the average disk transfer rate (26 Mbps). This results in a number of idle slots

per time period. The PM-driven scheduling approach to proceed with the retrieval of blocks for the next

time period (see Section 3.1.3) reduces the average latency when compared with busy waiting (0.3 seconds

compared with 2.4 seconds). This paradigm enhances the probability of a new request locating an idle slot

during the current time period.

In the second experiment, we changed the block size from 32 KByte to 64, 128, and 256 KByte. (The

remaining parameters are unchanged as compared with the first experiment.) As the block size increases,

Mitra supports a higher number of simultaneous displays (6, 8, 10, and 12 displays, respectively). The

maximum number of simultaneous displays supported by the available disk bandwidth is 13 and can be

realized with a block size of 625 KByte8. The explanation for this is as follows. With magnetic disks, the

block size impacts the percentage of wasted disk bandwidth attributed to seek and rotational delays. As

the block size increases, the impact of these delays becomes less significant, allowing the disk to support a

higher number of simultaneous displays [GVK+95].

The number of groups (g) with GSS impacts the seek times incurred by the disk when retrieving blocks

during a time period. In general, small values of g minimize the seek time. The number of groups (g) has

an impact with small block sizes where the seek time is significant. This impact becomes negligible with

large block sizes. For example, with a 64 KByte block size, Mitra supports 6 displays with six groups,

8Thirteen is computed based on the bandwidth of the innermost zone, consumption rate of CD-quality audio, and maximum
seek and rotational latency times.
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7 displays with three groups, and 8 displays with one group. However, with a 384 KByte block, Mitra

supports 11 displays with eleven groups, and 12 displays with one group. This block size is large enough

to render the seek time insignificant when compared with the transfer time of a block.

In a final experiment, EVEREST was configured to recognize all the 23 zones of the disk. The block size

was 539 KByte to guarantee a continuous display with FIXB. In this case, Mitra can store only twelve clips

(instead of 22) on the disk because once the storage capacity of the smallest zone is exhausted, no additional

clips can be stored (due to a round-robin assignment of blocks to zones). With this configuration, Mitra

supports 17 displays with an average startup latency of 35.9 seconds. The higher number of simultaneous

displays (as compared to 12 in the previous experiments) is due to the design of FIXB that enables Mitra to

harness the average disk transfer rate. The higher startup latency is because a display must wait until the

zone containing its first block is activated. The number of logical zones recognized by Mitra is a tradeoff

between the number of displays supported by the system, the average startup latency and the percentage

of wasted disk space. We now report on several experiments that demonstrate this tradeoff. In the first

experiment, we configured EVEREST to recognize two logical zones. The first logical zone consists of zones

Z0 to Z11 while the second consists of the remaining physical zones. In this case, Mitra can store 15 clips on

the disk. With this configuration, while the number of simultaneous displays is reduced to 14, the average

startup latency is reduced to 0.22 seconds. In a second experiment, we configured EVEREST to recognize

one logical zones consisting of only the nine outermost zones. With this configuration, Mitra can store

twelve clips on the disk because EVEREST has eliminated the storage capacity of the 14 innermost zones.

This increases the transfer rate, allowing Mitra to support 19 displays with an average startup latency of

2 seconds. The higher startup latency is due to a longer duration of a time period. In [GKSZ96], we detail

a planner that determines system parameters to satisfy the performance objectives of an application (it

desired throughput and maximum startup latency tolerated by its clients).

4.3 Multi-disk Configuration

In these experiments, the following system parameters are fixed: block size is 384 KByte, GSS is

configured with a single group (g=1), and a single logical zone spans all 23 physical zones of each disk.

We analyzed the performance of Mitra as a function of additional disks by varying D from 1 to 2, 4, 8,

and 12. For each configuration, we analyzed the performance of Mitra as a function of the number of disks

that constitute a cluster (i.e., d). In all experiments, the stride (k) equals to d. For example, with a 12

disk configuration (D=12), a cluster may consist of two disks (d=2). With this configuration, stride would

also equal to two (k=2). Obviously, the choice of d and k has a significant impact on the obtained results.

We analyze the performance of Mitra for those values of d and k that are reasonable9. For example, with

9However, the results are presented such that one can estimate the performance of the system with unreasonable choice of
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Figure 8: Performance of Mitra as a function of D and d (k=d)

D=12, it would be unreasonable to configure Mitra with d=k=8 because it would force the bandwidth of

four disks to sit idle because the database consists of a single media type. With d=k=8, the performance

of Mitra with D=12 would be reduced to that with D=8. Figure 8.a presents the number of simultaneous

displays supported by Mitra as a function of D and d. In this figure, the number of disks available to

Mitra is varied on the y-axis, the number of disks that constitute a cluster is varied on the x-axis, and the

throughput of the system is reported on the z-axis.

As the number of disks in the system (D) increases from 1 to 12 with d=k=1, the throughput of

the system increases super linearly (the throughput of Mitra with D=12 is fourteen times higher than

that with D=1). This is because the average transfer rate of each disk increases as a function of D. The

explanation for this is as follows. In this experiment, the size of the database is fixed and the EVEREST

file system organizes files on a disk starting with the outermost zone, i.e., fastest zone. The amount of data

assigned to each disk shrinks as D increases. With D=1, the innermost zone of the disk contains data,

while with D=12, only the three outermost zones contain data. The average transfer rate of the three

outermost zones is higher than the average transfer rate of all 23 zones of a disk (see Figure 5).

In Figure 8.b, for a given hardware platform (fixed D), the throughput of Mitra drops as d increases.

For example with D=12, Mitra’s throughput drops from 168 streams to 100 as d increases from 1 to 12.

d and k values.
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This is because the percentage of wasted disk bandwidth increases as d increases in value [GK95]. To

observe this, note that both the maximum seek time and rotational latency are fixed. Moreover, they

waste disk bandwidth. The percentage of wasted disk bandwidth is a function of these two values along

with the amount of data read from each disk drive per time period. As d increases in value, the amount

of data retrieved from each disk decreases because a block is declustered across a larger number of disks.

This wastes a higher percentage of disk bandwidth, resulting in a lower throughput.

For each choice of D, we located the slowest participating zone of the disks that contains data. This

zone is the same for all disks due to the round-robin assignment of blocks of each object to disks. We

computed expected performance of Mitra as a function of this zone’s transfer rate for each configuration

(using the analytical models of [GKS95, GK95]). Next, we examined how closely Mitra approximates these

theoretical expectations. Figure 8.b presents the percentage difference between the measured results and

theoretical expectations. Each value of this figure is computed based on: 1 − Measured
Theory

. With D = 1, the

system approximates the theoretical expectation with 100% accuracy. With D > 1, Mitra’s performance

is anywhere from 10% to 35% lower than its theoretical expectations. Part of this is due to loss of network

packets using UDP and their retransmission with HP-NOSE. However, there are other factors (e.g., SCSI-2

bus, software overhead, system bus arbitration, HP-UX scheduling of processes, etc.,) that might contribute

to this difference. These delays are expected with a software based system (based on previous experience

with Gamma [DGS+90] and Omega [GCKL92]) because the system does not have complete control on the

underlying hardware.

A limitation associated with values of d smaller than D is that the placement of data is constrained

with staggered striping. This results in a higher average startup latency (see Figure 9.a). In addition, it

increases the amount of memory required at each PM even with the PM-driven scheduling paradigm (see

Figure 9.b). Consider each observation in turn. The average startup latency is higher because a display

must wait until the cluster containing its first subobject has sufficient bandwidth to retrieve its referenced

block. Similarly, each PM requires a larger amount of memory because the Scheduler cannot simply skip

one time period on its behalf. Its next block resides on the cluster adjacent to the currently active cluster.

Assuming the system consists of C clusters, a PM must cache enough data so that the Scheduler skips

multiples of C time periods on behalf of this PM.

5 Conclusion and Future Research Directions

Mitra is a scalable storage manager that support the display a mix of continuous media data types. Its

primary contribution is a demonstration of several design concepts and how they are glued together to attain

high performance. Its performance demonstrates that an implementation can approximate its theoretical
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Figure 9: Startup latency and memory requirement of a PM with Mitra

expectations.

As part of our future research direction, we are extending Mitra in several novel directions. First,

we have introduced techniques to support on-line re-organization of data when new disks are added to a

system that has been in operation for a while [GK97]. These technique modify the placement of data to

incorporate new disks (both their storage and bandwidth) without interrupting service. Second, we are

investigating several designs based on request-migration and object replication to minimize the startup

latency of the system [GK95]. Third, we are evaluating techniques that speedup the rate of display to

support VCR functionalities such as fast-forward and fast-rewind. These techniques are tightly tied to

those of the second objective that minimize the startup latency of a display. Finally, we are investigating

distributed buffer pool management technique to facilitate sharing of a single stream among multiple

PMs that are displaying the same presentation. The buffer pool is distributed across the available DMs.

However, its content is controlled by the Scheduler.
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A Admission Control with GSS

This appendix details the implementation of the Scheduler’s admission policy with GSS. A building com-

ponent is a function, termed seek(#cyl), that estimates the disk seek time. Its input is the number of

cylinders traversed by the seek operation. Its output is an estimate of the time required to perform the

seek operation using the models of [GSZ95]. Assuming CYL cylinders for the disk and n displays assigned

to a group Gi, we assume that the n blocks are CY L
n cylinders apart.

The Scheduler maintains the amount of idle time left for each group Gi. With a new request for object

X , the scheduler retrieves from the catalog the record corresponding to X to determine its media type,

MX . Next, it retrieves from the catalog the record corresponding to media type MX to determine B(MX).

Starting with the current group Gi, the Scheduler compares the idle time of Gi with the disk service time

to retrieve a block of size B(MX). The disk service time with Gi is:

Sdisk(Gi) =
B(MX)

RD

+ max rotational latency + seek(CY L)

It assumes the maximum seek time (i.e., seek(CY L)) because the blocks to be retrieved during Gi have

already been scheduled and the new request cannot benefit from the scan policy. Assuming that Gi is

servicing n-1 requests and its idle time can accommodate Sdisk(Gi), its idle time is reduced by Sdisk(Gi).

Prior to initiating the retrieval of blocks that belong to group Gi+1, the scheduler adjusts the idle time of
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group Gi to reflect that the active requests can benefit from the scan policy. Thus, the idle time of Gi is

adjusted as follows:

idle(Gi) = idle(Gi) − [seek(CY L) + (n − 1)× seek(
CY L

n − 1
)] + [n × seek(

CY L

n
)]

The subtracted portion reflects the maximum seek time of the request that was just scheduled and the

seek time of n-1 other active requests. The added portion reflects the n seeks incurred during the next

time period by this group with each CY L
n cylinders apart.

If current group Gi has insufficient idle time, the Scheduler proceeds to check the idle time of other

groups Gj where j = (i + 1) mod g, 0 < j < g and j 6= i. Assuming that Gj is servicing n − 1 active

requests, the disk service time with Gj is:

Sdisk(Gj) =
B(MX)

RD

+ max rotational latency + [n × seek(
CY L

n
)]− [(n − 1) × seek(

CY L

n − 1
)]

If the idle time of Gj is greater than Sdisk(Gj), then the new request is assigned to Gj and its idle time is

subtracted by Sdisk(Gj).
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