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ABSTRACT
Location-based services are increasingly popular and it is a key
challenge to efficiently support query processing. We present a
novel design to process large numbers of location-based snapshot
queries on MOVing objects in road Networks (MOVNet, for short).
MOVNet’s dual-index design utilizes an on-disk R-tree to store the
network connectivities and an in-memory grid structure to maintain
moving object position updates. A method to speedily compute
the overlapping grid cells in the network relates these two indices.
Based on the above features we propose algorithms to support mo-
bile network distance range queries. We demonstrate via exper-
imental results that MOVNet yields excellent performance while
scaling to a very large number of moving objects.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Application—spatial
databases and GIS

Keywords
Location-based Services, Spatial Data Management

1. INTRODUCTION
With the widespread availability of GPS devices more and more

people are enjoying location-based services. Various applications,
such as road-side assistance and location-aware games, are popular
in many urban areas. This trend has intensified research interests
to overcome the inherent challenges in designing scalable and ef-
ficient infrastructures to support very large numbers of users con-
currently. The mobility afforded by car-based or handheld GPS
devices results in two fundamental system requirements: distance
computations within a (road) network and processing of moving
Points of Interest (POIs).

An increasing number of applications require query processing
of moving POIs based on an underlying network. For example,
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when a pedestrian calls for emergency assistance, the call-center
may want to locate all police cars within a five-mile distance and
dispatch them to the call-originating location. Note that the men-
tioned example requires a snapshot query, rather than continuous
monitoring (which is another class of applications).
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Figure 1: The index structures and query processing modules
of MOVNet.

Spatial data processing is a very active research field. Some of
the early work introduced spatial processing of stationary objects
based on Euclidean distance metrics. More recent work incorpo-
rates POI mobility or network-distance processing, but often not
both. Two of the main challenges when supporting POI mobility
on an underlying road network are to (a) efficiently manage object
location updates and (b) provide fast network-distance computa-
tions. To address these issues we have designed a novel system
to process location-based queries on MOVing objects in road Net-
works (MOVNet). The goal is to efficiently execute snapshot range
queries over moving POIs within a stationary road network. Al-
though MOVNet is not aimed at continuous query processing in
its current form, we believe that a large number of location-based
services only require snapshot query processing capabilities. Fig-
ure 1 illustrates MOVNet’s system infrastructure and components.
To handle large networks, MOVNet utilizes an on-disk R*-tree [1]
structure to store the necessary connectivity information. Efficient
processing of moving object position updates is achieved with an
in-memory grid index. An appealing feature of MOVNet is the bi-
directional mapping between the two structures that enables the re-
trieval of a minimal set of data for query processing. We present an
algorithm that speedily form the set of grid cells overlapping with
a given edge. The performance of our design has been verified
vigorously through simulations, which demonstrates the superior
performance of MOVNet.

The remainder of this paper is organized as follows. Section 2
describes the related work. Section 3 discusses our assumptions



and the dual-index design. In the following Section 4 we propose
our mobile network distance range query algorithms. A perfor-
mance evaluation is presented in Section 5. Finally we conclude
with Section 6.

2. RELATED WORK
Processing spatial queries in networks has been studied intensely.

When POIs are dynamic, the key challenge lies in the large num-
ber of location updates that must be managed with an appropriate
indexing structure. Movement predictions (i.e., the trajectory of
moving objects) have been used with R-tree-based structures (e.g.,
the TPR*-Tree [8]). However, these tree-based indices suffer from
excessive node reconstruction costs when performing location up-
dates. Therefore, grid-based structures have raised considerable
interest due to their simplicity and efficiency in indexing moving
objects. Much of the recent work leverages either an in-memory
grid index [3, 5, 11] or an on-disk grid index [4, 10]. Following
this trend, our design of MOVNet utilizes an in-memory grid index
to manage the location updates of moving POIs.

A number of grid-index based methods have been proposed to
process location-based services on moving POIs with Euclidean
distances. For instance, Chon et al. [3] first presented an algorithm
based on the trajectory of moving POIs overlapping with grid cells
to solve snapshot range and kNN queries. SEA-CNN [10] were
introduced as centralized solutions with the idea of shared execu-
tion to process continuous range and kNN queries on moving POIs.
Yu et al. [11] proposed an algorithm (referred to as YPK-CNN) for
monitoring C-kNN queries on moving objects by defining a search
region based on the maximum distance between the query point
and the current locations of previous kNNs. As an enhancement,
Mouratidis et al. [5] presented a solution (CPM) that defines a con-
ceptual partitioning of the space by organizing grid cells into rect-
angles. However, the above techniques are limited to Euclidean
distance computations.

For environments where POIs are dynamic and distances are
based on network paths only a few techniques exist. S-GRID [4]
was introduced to process kNN queries. A pre-computed struc-
ture is maintained with regard to the spatial network data such as
to improve the efficiency of query processing. Recently, Moura-
tidis et al. [6] addressed the issue of processing C-kNN queries in
road networks by proposing two algorithms (namely, IMA/GMA)
that handle arbitrary object and query movement patterns in road
networks.

3. SYSTEM DESIGN
3.1 Network Modeling and Assumptions

We define a road network (or network for short) as a directional
weighted graph G consisting of a set of edges (i.e., road segments)
E, and a set of vertices V, where E ⊆ V × V. Each edge e is rep-
resented as e(v1, v2), where v1 and v2 are the starting and ending
vertex, respectively. Each edge e is associated with a length, given
by a function length(e) : E → R

+, where R
+ is the set of positive

real numbers.
The road network is transformed into a modeling graph during

query processing. Specifically, graph vertices represent the follow-
ing three cases: (i) the intersections of the network, (ii) the dead
end of a road segment, and (iii) the points where the curvature of a
road segment exceeds a certain threshold so that the road segment
is split into two pieces to preserve the curvature property. Although
polylines can also be used to represent the edges, we use a set of
line segments to represent an edge due to the nature of our data set.

There are different objects (e.g., cars, and pedestrians) moving
along the road segments in a network. These objects are known as

the set of moving objects M. A moving object m ∈ M is a POI
located in the network. The location of m is defined as loc(m) =
(xm, ym), where xm and ym are the x and y coordinates of m at
current time. A query point q ∈ M is a moving object issuing a
location-based spatial query at different times. MOVNet assumes
that periodic sampling of the moving object positions conveys their
locations as a function of time. This method provides a good ap-
proximation of the moving object positions.

We define the distance function of two moving objects m1 and
m2 as dist(m1, m2): loc(m1) × loc(m2) → R

+. It denotes the
shortest path from m1 to m2 in the metric of the network distance.
The distance between two moving objects depends on the length
of edges and the connectivity of vertices as well as the current lo-
cations of the objects. We elaborate on our dual-index structure
designed to facilitate distance computations in the following sec-
tion.

3.2 Dual-Index Structure Design
To record the connectivity and coordinates of vertices in station-

ary networks, MOVNet utilizes an on-disk R*-tree, in which the
edges of the network are stored as MBRs bounded by their vertices.
Once the edges are retrieved from disk, a corresponding model-
ing graph as described in Section 3.1 is constructed in memory for
query processing.

A memory-based grid index is used to manage the locations of
moving objects [11]. Without loss of generality, we assume that the
service space is a square. We can partition the space into a regular
grid of cells with a size of l × l. We use c(column, row) to denote
a specific cell in the grid index (assuming the cells are ordered from
the lower left corner of the space). Each cell maintains an object
list containing the identifiers of enclosed objects. The objects’ co-
ordinates are stored in an object array, and the object identifier is
the index into this array. Figure 2 shows an example network (in
the form of a modeling graph) that is managed by a grid index of 8
× 8 cells. An example object on e(v2, v4) is enclosed by c(5, 5).
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Figure 2: An example network indexed by the grid index and
its data storage.

Given a set of grid cells, retrieving the underlying network can be
transformed into range queries on the R-tree. It is highly desirable
to have an algorithm so that for an arbitrary edge, we are able to
find the set of overlapping cells very quickly. Therefore, we devise
an incremental algorithm, which is described in [9] due to space
limits. Our experimental results show that our algorithm for com-
puting overlapping cells consumes less than 5% of the query pro-
cessing time with various settings. This indicates that our method
is well suited for online computing. More importantly, by intro-
ducing this technique, MOVNet creates a means to bi-directionally
map underlying networks and moving object positions.

4. QUERY DESIGN
We propose a Mobile Network Distance Range query algorithm

(MNDR) to facilitate the query processing. First, we observe that



only the network data in MOVNet is stored on disk. By leverag-
ing the concept of the Euclidean distance restriction [7], we first
perform a Euclidean range query with q as the center and d as the
radius to retrieve the network from the R-tree and to create the cor-
responding modeling graph. After that, we are able to perform the
later steps efficiently in memory. Second, the starting vertex of an
edge e(v1, v2) has the property that if dist(q, v1) > d, the overlap-
ping cells of the edge are not required to be examined during this
first pass because any moving object on e has a distance greater
than d from q. Finally, for each edge whose starting vertex has a
distance ≤ d, MNDR generates the list of overlapping cells and
retrieves the corresponding moving objects from the grid index.

Algorithm 1 Mobile Network Distance Range Query (q, d)
1: /* q is the query object */
2: /* d is the distance */
3: result = φ
4: /* Finding the set of edges E

′, AND vertices V
′ overlapped by

the circle with center point q, and radius d */
5: (E′, V

′) = Euclidean-range(q, d)
6: G = Create-modeling-graph(E′ , V

′)
7: e = Object-map-matching(q, E

′)
8: q = Add-vertex-into-graph(G, q, e)
9: S = Compute-distance(G, q, d)

10: for each vertex v in S do
11: for each edge e outgoing from v do
12: cellSet = cellSet ∪

cellOverlapping(e, d − dist(q, v))
13: end for
14: end for
15: result = Retrieve-objects(cellSet, G)
16: for each object m in result do
17: e(v1, v2) = Object-map-matching(m, E

′)
18: dist(q, m) = min(dist(q, v1) + dist(v1, m),

dist(q, v2) + dist(v2, m))
19: if dist(q, m) > d then
20: result = result - m
21: end if
22: end for
23: return result

Algorithm 1 details MNDR. To illustrate the algorithm with an
example, let us assume that the system is processing a network as
shown in Figure 2, where the side length of cells is 1.0 unit. A
query object q with dist(q, v2) = 1.0 submits a range query with
a range d = 3.5. MOVNet first invokes a Euclidean distance range
query with q as the center and d as the radius (Line 5 of Algo-
rithm 1). Consequently, edges overlapping with the shadowed area
will be retrieved from the R-tree index and a corresponding model-
ing graph is built as shown in Figure 3(a) (Line 6). Note that q is in-
serted as the starting vertex into the modeling graph (Line 8). Next,
Dijkstra’s algorithm is invoked (Line 9). We add a constraint d in
the distance computation so that any edge e(v1, v2) with dist(q, e)
> d will not be processed, which avoids excessive computation on
edges that are out of range. When Dijkstra’s algorithm finishes, the
distance of each vertex from q is shown in Figure 3(b). In addition,
S = 〈(v2, 1), (v4, 2.5), (v3, 3), (v5, 3.4)〉. Based on this informa-
tion, MNDR computes cellSet by using our cell overlapping algo-
rithm in Lines 10 - 14, shown as the dark-grey cells in Figure 3(b).
After that, the moving objects in cellSet are retrieved from the grid
index to constitute the result set. However, several post-processing
steps are required to ensure that the distance of each moving ob-
ject is within range d. First, some cells might overlap with several

edges. For instance, c(6, 6) overlaps with e(v2, v3) and e(v3, v4).
Hence for each object in the result set, MNDR determines which
edge the object is located on (Line 17) through a map matching
process. Second, some objects may be reachable via more than one
path from the query point. MOVNet will only consider the short-
est path and examine the path against the range d (Line 18). For
example, moving objects on edge e(v3, v4) have two paths from q
(q → v2 → v3, and q → v4). MNDR will compute the distance of
each object via each path, and only use the shortest one. Finally,
once the distance from q to the object is determined, MNDR con-
firms that the distance ≤ d. For instance, for any object m retrieved
from c(5, 0), dist(q, m) > 3.5, thus the algorithm removes these
objects in Lines 19 - 21.
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Figure 3: A Mobile Network Distance Range (MNDR) query
example.

5. EXPERIMENTAL EVALUATION

5.1 Simulator Implementation
We obtained the Los Angeles County (LA) network data set from

TIGER/Line. It has 304,162 road segments distributed over an area
of 4,752 square miles. For simplicity, we assume that each road
segment is bi-directional. The network data is indexed with an R*-
Tree. Each road segment is stored in a MBR bounded by its starting
and ending coordinates. Additionally, we used a network simula-
tor [2] to generate the positions of 100,000 moving objects in the
road network.

Existing work, such as IMA/GMA, only targets C-kNN query
processing. This method differs from the functionality of MOVNet
that focuses on snapshot range query processing at its current stage.
For performance comparison purposes, we leveraged the concept of
network expansion [7] to design baseline algorithms in our sim-
ulations. We describe the details of our baseline algorithms in [9].

Our Java simulator was executed on a workstation with 1 GB
memory and a 3.0 GHz Xeon processor. We arranged the road seg-
ments of the LA county data set into a R*-tree index file and we set
the page size of the R*-tree to 4KB. For each test case, our simula-
tor creates a service space with the area equal to the LA county size.
It then opens the R*-tree index file and uses a buffer for caching
the disk pages read by MOVNet with a size of 10 pages. Next, an
in-memory grid index is created with the positions of the moving
objects. After that, the query generator randomly picks a moving
object and launches a query from its location. By default, the num-
ber of POIs in the network is 50K; the radius for a range query is
5 miles; and the number of cells per axis is 1,000. In each experi-
mental setting we varied a single parameter and kept the remaining
ones at their default values. The experiments measured the CPU
time (in milliseconds) and the number of disk page accesses as the
performance metric of the query processing.



5.2 Simulation Results
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Figure 4: The performance of MNDR as a function of the num-
ber of cells

Figure 4(a) illustrates the effect of the number of cells on query
processing. The results show that MNDR requires less than half of
the CPU time compared with the baseline algorithm. Correspond-
ingly, Figure 4(b) studies the page accesses of both algorithms. As
we can see, the baseline algorithm consumes much more page ac-
cesses than MNDR. An important observation is that a small num-
ber of cells cause the CPU time of MNDR to degrade. On the other
hand, the disk access of MNDR is stable with different cell sizes.
This can be explained by the fact that a disk access only occurs
when we retrieve the road segments from the R*-tree file. Since
we use a fixed range in this test, the number of disk accesses is not
affected by changing the cell size. However, a larger cell size will
result in a larger number of POIs being retrieved from the grid in-
dex during query processing. Therefore, the CPU time expended in
this portion is larger than with smaller cell sizes.
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Figure 5: The performance of MNDR as a function of POIs
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Figure 6: The performance of MNDR as a function of range

Next, Figure 5(a) illustrates the effect of the number of POIs on
the execution time of MNDR. As we can see, MNDR outperforms
the baseline algorithm with various numbers of POIs. The very

small gradient of the MNDR line suggests that MOVNet is very
scalable to support a very large number of POIs. Figure 5(b) plots
the disk accesses of both algorithms. Similarly to the CPU time
results, MNDR performs consistently much lower than the baseline
algorithm.

Figure 6(a) plots the CPU time (with logarithmic scale) versus
the query range. The CPU time quadratically increases with a
larger range. Processing a range of 8 miles requires 0.2 seconds by
using MNDR compared with 0.65 seconds when using the baseline
algorithm. Additionally, MNDR always consumes about 40% of
the CPU time compared with the baseline algorithm. Figure 6(b)
plots the corresponding page accesses. The output corresponds to
the CPU results.

6. CONCLUSIONS
Location-based services have generated growing interest in the

research community. This paper presents an infrastructure aimed
at processing location-based services with moving objects in road
networks. We propose a cell overlapping algorithm that quickly re-
lates the underlying network and moving objects in memory. Based
on the infrastructure of MOVNet, we present a novel algorithm
for processing snapshot range queries. The experimental evalua-
tion suggests that MOVNet is highly efficient in processing these
queries with various networks.

We are planning to support more query types in MOVNet. An
extension to kNN query processing can be found in [9]. More im-
portantly, continuous queries are the most sophisticated query type
in location-based services. This functionality is very useful in a
number of cases, such as 911 call-centers. We are planning to ex-
tend the functionality of MOVNet to support continuous queries.
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