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Abstract—Advanced technologies in consumer electronics
products have enabled individual users to record, share and view
videos on mobile devices. With the volume of videos increasing
tremendously on the Internet, fast and accurate video search and
annotation have become urgent tasks and have attracted much
research attention. A good similarity measure is a key component
in a video retrieval system. Most of the existing solutions only rely
on either the low-level visual features or the surrounding textual
annotations. Those approaches often suffer from low recall as
they are highly susceptible to changes in viewpoint, illumination,
and noisy tags. By leveraging geo-metadata, more reliable and
precise search results can be obtained. However, two issues
remain challenging: (1) how to quantify the spatial relevance of
videos with the visual similarity to generate a pertinent ranking of
results according to users’ needs, and (2) how to design a compact
video representation that supports efficient indexing for fast video
retrieval. In this study, we propose a novel video description
which consists of (a) determining the geographic coverage of a
video based on the camera’s field-of-view and a pre-constructed
geo-codebook, and (b) fusing video spatial relevance and region-
aware visual similarities to achieve a robust video similarity
measure. Toward a better encoding of a video’s geo-coverage,
we construct a geo-codebook by semantically segmenting a map
into a collection of coherent regions. To evaluate the proposed
technique we developed a video retrieval prototype. Experiments
show that our proposed method improves the Mean Average
Precision by 4.6% ∼ 10.5%, compared with existing approaches.

Index Terms—Video search, feature fusion, geographic cover-
age, map segmentation, semantic annotation.

I. INTRODUCTION

The ubiquitous availability of smartphones and tablets at

affordable prices has encouraged people to engage with the

web on the go. Creating, sharing and viewing videos are

immensely popular activities with mobile users. Accordingly,

user-generated videos have been experiencing unprecedented

growth, e.g., more than 100 hours of video are uploaded to

YouTube every minute [1]. This high and increasing volume

trend has created new challenges for video search. Automat-

ically describing and accurately retrieving video clips from a

diverse collection is highly desired.

Traditionally, video search has been conducted by matching

query keywords to user generated texts such as titles and tags.

However, experience has shown that such metadata are often

inaccurate and noisy [2], which leads to an unsatisfactory
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performance of text-based video search engines. Content-

based video reranking [2], [3] is a key technology to address

the aforementioned problem, by leveraging content analysis

to complement the incompleteness or ambiguity of tags.

Unfortunately, this method suffers from the semantic gap [4]

that hinders an accurate discovery of video content of interest.

To solve this issue, geographic contextual modeling has been

investigated recently. Methods have been proposed to judge

the relevance of documents based on the textual and spatial

similarity with a query [5]. In multimedia, most previous work

fuses visual content and geo-context to facilitate image man-

agement, whereas little effort has focused on video retrieval.

For example, image location information is widely applied

for geo-clustering in landmark mining [6], [7], or to create

a conjunctive ranking in image annotation and retrieval [8],

[9]. Such approaches cannot make full use of the geographic

information since in most cases only the camera location is

incorporated. For video, in most of the current geo-referenced

retrieval systems [10]–[12], clips are ranked purely based

on their spatial relevance to the geospatial queries. In this

study, we focus on sensor-rich videos where the geographic

metadata refers to camera location and orientation. Since such

geographic properties are usually automatically recorded using

a built-in GPS and compass, we use outdoor videos where the

sensor readings are more accurate. We leverage the geographic

metadata of videos to improve the performance of text-based

and content-based video retrieval techniques. Thus more robust

and diverse semantic annotations and similarity search results

can be obtained by applying multi-feature fusion.

One issue of the previous fusion approaches is that they

utilize the camera location directly. However, such informa-

tion only captures the camera properties (e.g., photographer

location in some street in Paris) rather than the video content

(e.g., the Eiffel Tower). This inconsistency motivated us to

propose a new content-oriented geo-feature to facilitate video

annotation and search. The key components of the approach

are illustrated in Fig. 1: the Hybrid Model Generation (see

Section III) and the Geo-Codebook Generation (see Sec-

tion IV). In the Hybrid Model Generation module, a two-

level hierarchical model is introduced where multiple cues

collaboratively contribute to the video representation. At level

one, we generate a geo-histogram which represents the regions

that a video covers based on the camera’s field-of-view and a

pre-defined geo-codebook. Different from the earlier viewable

scene model [10] which focuses on individual frames, our

proposed model describes the overall geographic coverage

of a video. It enables the estimation of spatial relevance

between videos through the cosine similarity between the two
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Fig. 1: Illustration of key techniques for geographic and visual feature fusion in our proposed video retrieval system.

corresponding geo-histograms. At level two, we map frames to

the regions they capture and select the visually representative

ones. Note that in our model, frames are indexed by the regions

they capture instead of the camera location. By doing so,

geo and visual features are directly connected via regions.

Thereafter, we propose a video similarity measure which

sums up local similarity scores on a region-by-region basis.

Next, toward a better encoding of the geographic coverage in

the hybrid model, we present the Geo-Codebook Generation

module. In this component, we propose an approach that can

semantically segment a map into a collection of coherent

regions as a geo-codebook. We further quantify the saliency

of each region, as humans perceive geographic objects in

different areas differently, e.g., a building is more likely to

be of interest than a road. Finally, we built a video annotation

and retrieval system based on the proposed model. We show

that the initial tags generated by querying geo-information

services can be enriched by leveraging social multimedia

sharing platforms. For evaluation, we carried out a survey

to capture user preferences related to the results. Here we

summarize the contributions of this study in the following

three aspects:

• We propose a novel hybrid model for video represen-

tation which generates content-oriented geographic fea-

tures that can be effectively fused with visual cues to

improve the precision of video annotation and search.

• We utilize the information available from the geo-

information sources to semantically segment an area into

a set of coherent regions, based on which the geographic

coverage of a video can be better encoded.

• We have developed a video retrieval prototype based on

the proposed video description to demonstrate its effec-

tiveness in retrieving the most relevant search results.

The rest of the paper is organized as follows. We first report

the important related work in Section II. The generation of

the hybrid model is introduced in Section III, followed by the

construction of the geo-codebook introduced in Section IV.

Next we present the video annotation and retrieval prototype

in Section V. The thorough experimental results in Section VI

validate the effectiveness of our system. Section VII concludes

and suggests future work.

II. RELATED WORK

Many of the previous text-based video retrieval techniques

perform unsatisfactorily due to the mismatch between textual

information and video content. To solve this problem, a

number of fusion strategies have been developed to improve

video retrieval from different modalities [13]. Campbell et

al. presented a fully automatic retrieval system for speech,

visual and semantic modalities [14]. Different types of visual

features extracted from keyframes (e.g., color and texture)

and text features extracted from speech transcripts were em-

pirically evaluated by experiments for concept detection and

video search. To better exploit the underlying relationship

between video shots, Liu et al. proposed a PageRank-like

graph-based approach which simultaneously leveraged textual

relevancy, semantic concept relevancy, and low-level-feature-

based visual similarity in video ranking [3]. Apart from the

low-level visual features, more advanced image and video

descriptors have been proposed and can be applied in video

retrieval systems [15], [16]. Additionally, several multimodal

reranking methods have been proposed to improve the initial

text search results. Hsu et al. proposed a context reranking

method by leveraging the contextual information associated

with recurrent images or videos over distributed sources [17].

A context graph was constructed where the nodes are videos
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and the edges are weighted by multimodal contextual simi-

larities, then the video reranking problem was solved through

a random walk on this context graph. Tian et al. proposed a

content-based reranking technique by formulating video search

reranking as a global optimization problem within a Bayesian

framework [2]. The conditional prior indicates the ranking

score consistency between visually similar samples, and the

likelihood reflects the disagreement between the reranked list

and the initial one returned by text-based search. However, it

is worth emphasizing that none of these methods utilize the

geographic metadata which is one of the important kinds of

contextual information.

In recent years, geographic metadata has been widely uti-

lized in multimedia mining, annotation and retrieval [18], [19].

Kennedy and Naaman proposed a system that can generate

diverse and representative sets of images for landmarks by

combining context and content [6]. Crandall et al. investigated

the problem of organizing a large collection of geotagged

photos [7]. Kamahara et al. proposed a conjunctive ranking

function using both geographic distance and image distance

for image retrieval [9]. Liao et al. [20] studied geo-aware

tag features for image classification. They built tag features

by tag propagation from both visual and geo neighbors.

For video, Arslan Ay et al. proposed to model a camera’s

field-of-view based on camera position, orientation, viewable

angle, and the far visible distance [10]. This viewable scene

model was further utilized for efficient video tagging and

searching by other work [11], [12], [21], [22]. Arslan Ay et

al. proposed to rank geo-referenced videos based on three

fundamental metrics related to the search area, i.e., the total

overlap area, the overlap duration and the accumulation of

overlap regions [11]. Zhang et al. proposed to calibrate camera

location and orientation by registering videos to a mirror 3D

world [21], but it requires interactive registration and accurate

3D terrain and building models. Without leveraging the visual

features, it is difficult to detect occlusions as this world is

not static and we do not have the geo-information of dynamic

obstacles such as vehicles.

Unfortunately, few efforts have concentrated on fusing the

visual content and the geo-context for a sophisticated video

similarity measure. Many of the content-based video retrieval

solutions decompose videos into a set of keyframes and

define the video similarity based on the pairwise keyframe

distances [23], [24]. This prior work usually suffers from

low recall rates as the search relies on visual duplication.

To better describe video content, modern approaches utilize

a set of concepts as intermediate descriptors to facilitate

video search [25]–[27]. The concept set is usually general and

frequent so as to answer as many queries as possible [28],

yet this results in difficulties for the precise interpretation of

queries (e.g., queries for a specific building). To overcome

these limitations, this study presents a hybrid video represen-

tation, based on which precise delimited search results can

be obtained. It conjunctively leverages video spatial relevance

and local visual similarities in video ranking, and hence it

provides excellent support for query-by-example in geospatial

video search systems. Experiments show that, based on a geo-

referenced video clip or a geotagged image, our proposed

system can effectively retrieve the most relevant video clips

compared with existing methods.

III. HYBRID MODEL FOR VIDEO REPRESENTATION

While the viewable scene model [10] has been adopted for

many geo-referenced video applications [11], [21], [22], one

fundamental issue is that it describes the camera properties

rather than the video content. We argue that content-oriented

geo features are highly desired because their consistency with

visual clues can make the fusion more seamless. As illustrated

in Fig. 2, we propose a novel two-layer model in which

frames are indexed by the regions they capture instead of the

camera location. Therefore, geo and visual features are directly

connected via regions.

Video Clips

Level 1

Geographic Features

Level 2

Visual Features

Fig. 2: Illustration of the proposed hybrid model for video

representation.

On the first level, this model computes the overall geo-

graphic coverage of a video instead of emphasizing individual

frames for an efficient spatial relevance measure. On the

second level, it indexes frames by regions and selects a number

of representative ones based on the visual cues. In the rest of

this section, we will first introduce the feature modeling of

the proposed two-level video representation and then present a

robust video similarity measure based on which more accurate

search results can be retrieved.

A. L1: Geographic Coverage Calculation

As introduced earlier, level one aims to capture the overall

geographic coverage of a video. To achieve this goal, we pre-

segment a map into a set of regions with different saliency

values. This is used as a geo-codebook to encode the geo-

coverage of a video. The approaches for map segmentation and

saliency estimation will be discussed in the next section. The

geographic metadata is described by the viewable scene model

proposed by Arslan Ay et al. [10] (referred to as FOVScene).

Fig. 3 illustrates the 2-dimensional FOV Scene(P, ~d, θ,R)
model overlapping with a geographic region, where ol rep-

resents the overlap area, P c denotes the centroid of overlap

ol, and ~dc is the vector pointing from point P to P c. These are

the important concepts that will be used in the geo-coverage

calculation.

To quantify what portion of a region is covered by a frame,

we compute the overlap between the camera’s FOVScene and
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Fig. 3: Illustration of FOVScene model in 2D and the concept

of geographic overlap.

the regions in the geo-codebook and use the overlap area to

emphasize their spatial relevance [11]. As research indicates

that people tend to focus on the center of an image [29], we

prioritize regions that are close to the camera location and

viewing direction [21], [22]. Let olij denote the overlap area

between region ri and frame fj . We assign weights to the

regions based on the following three criteria:

• Normalized area of the overlap: Considering the regions

differ in size, we normalize the area of the overlap

A(olij) by the area of the region A(ri), that is Â(olij) =
A(olij)/A(ri).

• Closeness to the camera location: We compute the Eu-

clidean distance D(P c
ij , Pj) between the overlap geome-

try center P c
ij and the camera location Pj , and formulate

this criterion as 1√
2πσ

exp(−
D(P c

ij ,Pj)
2

2σ2 ).

• Closeness to the viewing direction: Let ~dcij denote

the vector pointing from the camera location Pj

to the overlap centroid P c
ij . We compute the angu-

lar distance Dθ( ~dcij ,
~dj) between vector ~dcij and the

camera direction ~dj , and formulate this criterion as

1√
2πσθ

exp(−
Dθ( ~dc

ij
, ~dj)

2

2σ2

θ

).

Consequently, we compute the weight for region ri captured

in frame fj using Eq. 1 given below

hist
geo
i (fj) =

Kσ,σθ
(D(P c

ij , Pj), Dθ( ~dcij ,
~dj))Â(olij)

∑

k
Kσ,σθ

(D(P c
kj , Pj), Dθ( ~dckj ,

~dj))Â(olkj)
(1)

where Kσ,σθ
(d, dθ) = 1

2πσσθ
exp

(

− 1
2 (

d2

σ2 +
d2

θ

σ2

θ

)
)

. Since a

frame can cover multiple regions, the denominator is a factor

that normalizes the sum of the region weights to one.

Subsequently, the geo-coverage histogram for a video v is

calculated as the sum of histgeoi (fj) using Eq. 2. Since the

video segments showing regions with a higher saliency value

are more likely to be perceived by humans, we weight the

histogram entries by the corresponding region saliency values

saliency(ri), that is:

histgeoi (v) = saliency(ri)
∑

fj∈v

histgeoi (fj) (2)

Finally, we normalize histgeo(v) by its Euclidean norm:

ˆhist
geo

i (v) =
histgeoi (v)

‖histgeo(v)‖2
(3)

Now the geospatial relevance between videos can be effi-

ciently measured as the cosine similarity between the gen-

erated geo-histograms, which quantifies the common areas

covered by both of the videos:

Sg(vi, vj) =
∑

k

ˆhist
geo

k (vi) ˆhist
geo

k (vj) (4)

Note that for videos where only the GPS location is avail-

able in the geo-metadata, it is possible to relax the direction

criterion when generating the geo-histograms. We define the

geographic area covered by such a frame to be a circle region

centered at it with a radius of r. Therefore, Eq. 1 can be

reduced to:

histgeoi (fj) =
Kσ(D(P c

ij , Pj))Â(olij)
∑

k Kσ(D(P c
kj , Pj))Â(olkj)

(5)

The regions are weighted based on the first two criteria which

are Â(oli) and Kσ(D(P c
ij , Pj)) =

1√
2πσ

exp(−
D(P c

ij ,Pj)
2

2σ2 ).
The parameters σ and σθ in Eq. 1 can be heuristically

decided based on Fig. 3. Recall that R denotes the visible

distance and θ represents the viewable angle of FOVScene.

Thus, we set σ = 1
3R and σθ = 1

3 · θ
2 . We use θ

2 because we

emphasize the center of FoVScene. Subsequently, the visible

angle becomes θ
2 to both sides.

B. L2: Representative Visual Features Selection

On the second level, visual features are extracted as the

complementary information. In general, it is insufficient to

measure video similarity purely based on the common geo-

areas covered by both videos because (1) occlusions can occur

due to moving objects such as people and vehicles, and (2)

the geo-histogram generated on the first level is susceptible to

sensor inaccuracy. Therefore, it is highly desired to compare

visual features for a more robust similarity measure. The

traditional content-based video similarity measures are mostly

based on pair-wise keyframe distances. Comparatively, with

the prior knowledge of camera location and viewing direction,

we can geographically index the frames of a geo-referenced

video based on the regions they capture, and compute the local

visual similarities in each region.

Since a large number of video frames are near-duplicates,

it is necessary to cluster the frames and select their represen-

tatives in each region. We build upon an effective lightweight

clustering technique called the reciprocal election approach

proposed by van Leuken et al. [30]. The key idea is to let

every frame vote for all others. We make adaptations to the

voting function to incorporate the frame geo-features. In a

video v, let F = {f1, f2, ..., fn} denote the set of frames of

v that capture the same region ri. For each frame fj in F ,

we rank the others based on their visual similarities to fj .

Particularly, the visual similarity between frames is computed

using Eq. 6.

W (fi, fj) = exp

(

−
‖fi − fj‖

2
2

σ2
f

)

(6)

Let f denote the k-th nearest neighbor of fj . The vote f
receives from fj is defined to be vote(fj) = histgeoi (fj)/k. A

smaller k indicates that the two frames are highly similar and f
is a good representative for fj . A larger histgeoi (fj) indicates

that fj is highly relevant to region ri and it is a salient frame



SUBMISSION TO IEEE TRANSACTIONS ON MULTIMEDIA 5

in set F . Subsequently, the total votes f receives from the

others is
∑

j vote(fj) where fj is a frame in set F other than

f .

After all the frames have cast their votes, the frame with the

highest number of votes is selected as the first representative.

The cluster around it is formed by those frames whose

visual similarity to it exceeds a pre-defined threshold. Next,

we exclude the first representative and its cluster members,

and select the frame with the highest number of votes in

the remaining set as the second representative. This process

repeats until the percentage of the remaining frames is less

than a threshold.

As the appearance of a region can change among videos,

the visual similarity of a region’s appearances can be measured

based on its representative sets in different videos. To promote

visually similar ones in ranking, we present an approach to

fuse video spatial relevance with region visual similarity in

the following section.

C. Video Similarity Measure

As introduced earlier, the proposed video representation

transforms the original per-frame features into per-region fea-

tures (spatial weight and visual representatives). Subsequently,

video similarity can be decomposed as the sum of region fea-

ture similarities. As an example, Fig. 4 shows two video clips

A and B where a same region, the Marina Bay Sands hotel

circled in red, is captured. Recall that the spatial relevance

between two videos can be measured as the cosine similarity

between the geo-histograms:
∑

k
ˆhist

geo

k (vi) ˆhist
geo

k (vj), that

is 0.88 × 0.6 = 0.528 between A and B. One issue arises in

this case if we measure their similarity purely according to

the spatial relevance. That is, the Marina Bay Sands hotel is

occluded by trees in B, resulting in a low visual similarity

score of 0.43. Furthermore, though the frames circled in blue

and yellow show different regions, interestingly they happen

to be visually similar.

0.45 0.88 

0.6 0.8 

0.43 

0.74 

0.48 
0.37 

A 

B 

Geo-histogram 

Geo-histogram 

Visual 

Similarity 

Fig. 4: An example of similarity calculation between two

videos.

Without loss of generality, let wvis
k (vi, vj) represent the

local visual similarity between videos vi and vj in terms

of region rk. A small wvis
k (vi, vj) indicates that the region’s

appearances in the two videos are dissimilar, which is possibly

caused by unpredictable occlusions, or changes in illumination

and viewpoints. Additionally, the geo-metadata error also has

an impact on the calculation of the local visual similarity, as

it may cause the wrong mappings between frames and regions

and therefore affect the selection of the visual representatives.

Based on these observations, we penalize such situations by

modifying Eq. 4 as follows:

Sim(vi, vj) =
∑

k

wvis
k (vi, vj) ˆhist

geo

k (vi) ˆhist
geo

k (vj) (7)

Note that wvis
k (vi, vj) can be computed by any existing

visual similarity measure [23], [24], [31]. The proposed mech-

anism conjunctively leverages the geographic coverage simi-

larity and the visual content similarity. wvis
k (vi, vj) controls

the impact of visual features on the similarity calculation.

If wvis
k (vi, vj) is set to one under all circumstances, Eq. 7

would become a histogram-based approach which is similar

to the one proposed by Arslan Ay et al. [11]. The difference

is that their approach measures the spatial relevance between a

video and a region query, whereas ours focuses on measuring

the similarity between two videos. Such methods have the

advantages of being highly efficient as the computation is

only based on the geographic metadata, but without visual

features its performance can degrade due to missed obstacles

and occlusions.

On the other hand, the average size of the regions in the

geo-codebook controls the impact of geographic features on

the similarity calculation. Assume that there is only one region

in the geo-codebook which is the entire globe, then Eq. 7

would reduce to one of the existing visual-based similarity

measures. In general, better precision can be achieved by using

a geo-codebook with finer granularity, as it arranges frames in

smaller groups where the visual semantics are more explicit.

But considering the errors in GPS and compass readings, a

geo-codebook whose granularity is compatible with the size

of the FOVScene model should be used.

In summary, the proposed model enables efficient spatial

relevance calculations between videos as a dot-product of the

geo-histograms on the first level and fuses visual clues to

promote visually similar ones on the second level. By applying

the geographic indexing of frames, our model not only reduces

the computational costs, but also excludes noise that exists due

to the mismatch between frames from different regions.

IV. GEO-CODEBOOK GENERATION

The geo-codebook is a key component in the hybrid model

generation. Perhaps the simplest way to generate a geo-

codebook is to use a grid-based map. However, a grid-based

codebook suffers from two drawbacks as shown in Fig. 5.

First, geographic objects (e.g., A, B and C) naturally differ

in granularity while grid cells are equal-sized. Second, an

object (e.g., C) can be separated into multiple cells even if

it is smaller than the cell size.

To solve the above two problems, we propose to construct a

geo-codebook by a set of coherent regions that cover the map

without gaps or overlaps. There are several approaches that

can discover the geographic coherent regions by investigating

large image collections [32], [33]. However, such techniques

cannot be applied for the geo-codebook generation because:

(1) the regions discovered are usually not a full coverage

of the map, and (2) the granularity of the generated regions

is usually too coarse. Alternatively, geo-information services,
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A

B

C

Fig. 5: Limitations of a grid-based codebook that cannot

satisfactorily capture the diverse granularity of geographic

objects.

e.g., OpenStreetMap (OSM), provide information of the geo-

graphic objects all over the world. Compared with social image

collections, this data source is more detailed and precise based

on which a reliable geo-codebook can be generated.

A. Problem Formulation

For a geographic area, we first partition it into a set of

square grid cells. Let G = {gi|i = 1, 2, ...,m × n} denote

the set of cells, where m and n represent the number of rows

and columns, respectively. Next we retrieve the information

of geographic objects in each cell from OSM. Let Oi =
{oi1, o

i
2, ..., o

i
k} represent the object set of grid cell gi, where k

is the total number of objects in it. Each object is represented

by a quintuple, o = {id, name, tags, footprint, height}. A

graph G = (V,E) is constructed where the nodes V are

grid cells and the edges E are weighted by node similarities.

Thereby, the geo-codebook generation can be modeled as

a graph clustering problem where each cluster represents a

coherent region.

B. Clustering Cells into Coherent Regions

Based on the observation that adjacent similar cells should

be merged into the same coherent region, we model the edges

in graph G according to the following two criteria, the distance

and the similarity between cells, in Eq. 8.

eij = Kσ(D(gi, gj)) · S(gi, gj) (8)

where Kσ(d) = 1√
2πσ

exp(− d2

2σ2 ); D (gi, gj) and S(gi, gj)
denote the distance and the similarity between grid cells gi
and gj , respectively.

Intuitively, cells should more likely be merged if they

contain one or more common geographic objects. Therefore,

we compute S(gi, gj) based on the semantic similarity of the

geographic objects in them. Recall that the geographic object

set in cell gi is Oi = {oi1, o
i
2, ..., o

i
k}. Further, we assign a

weight to each object by measuring the percentage of area

it occupies in cell gi, i.e., P = {pi1, p
i
2, ..., p

i
k}. Thereafter,

similarity S(gi, gj) is computed as the weighted sum of the

pairwise similarity of the geographic objects in grid cells gi
and gj :

S(gi, gj) =
∑

v,w

pivp
j
wS(o

i
v, o

j
w) (9)

Recently, Ballatore et al. proposed a mechanism to compute

the semantic similarity of the OSM geographic classes [34].

They extracted a semantic network from the OSM Wiki

website, and computed the tag-to-tag similarity score based

on the network topology. As each geographic object can be

assigned with multiple tags in OSM, we extend their approach

to measure the object-to-object similarity by averaging the

corresponding tag-to-tag similarities:

S(oi, oj) =

{

1 if oi.id = oj .id

S̄(ti, tj) else
(10)

where ti and tj are tags attached with objects oi and oj ,

and S̄(ti, tj) denotes the average value of the pairwise tag

similarities.

After the graph is constructed, we adopt an effective clus-

tering approach called Newman and Girvan’s Algorithm [35].

This algorithm avoids the shortcomings of the traditional hi-

erarchical clustering methods by detecting cluster peripheries

instead of finding the strongly connected cores. Additionally,

it provides a quality measurement called modularity which is

more effective than empirically chosen thresholds. One issue

is that finding a maximum-modularity clustering of a graph is

computationally intractable. In our system, we utilized a Java

implementation from the project linloglayout1 which used an

effective heuristic algorithm for modularity maximization.

Based on the above discussion, semantically coherent re-

gions are obtained, resulting in a descriptive geo-codebook.

Therefore, the features encoded in the hybrid model are

more explicit and interpretable, leading to a better similarity

estimation.

C. Region Saliency Estimation

As aforementioned, the importance of buildings and other

geographic objects varies significantly in different areas. For

example, landmarks are usually more attractive than ordinary

buildings. Therefore, it is necessary to score the regions in the

geo-codebook, based on which important objects appearing in

a video can get emphasized in the video representation. Visual

saliency and social saliency [36] complement each other in

attractiveness estimation. Here we estimate the region saliency

according to these two criteria as follows.

Visual Saliency: Higher objects are more likely to draw the

attention of the human eye, e.g., a building is more likely

to be of interest than a road. Based on this observation, we

formulate this criterion as V S(r) =
∑

i {pi × oi.height},

where oi represents a geographic object in region r and pi
is the percentage of the area covered by oi in r.

Social Saliency: This criterion measures the impact of social

factors on a region. We collect a set of geotagged images from

Flickr, and compute the score for this criterion as SS(r) =
∑

i Kσ(di), where di is the distance between the region center

and the location of the i-th image. It can be viewed as the

sum of image counts weighted by a Gaussian kernel based on

distance.

1https://code.google.com/p/linloglayout/
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With the popularity of mobile devices and positioning tech-

nologies, multimedia contents can be easily recorded together

with the location information. Therefore, a number of existing

approaches estimate the popularity of a place based on the

distribution of geotagged images [7], [37]. Such methods

are effective in mining famous landmarks and popular cities.

However, they become less descriptive for common regions

where not enough photos were taken by people. In order to

acquire the ability to effectively rank the less popular regions,

we consider the attention-based visual saliency additionally.

As the traditional attention-based saliency map estimation in

computer vision involves intensive computation [38], [39],

we adopt a lightweight approach that relies on the attributes

of buildings which can be easily acquired from Geographic

Information Systems (GIS) [21], [22].

To combine the above two criteria, the saliency of region

r is calculated as saliency(r) = V S(r) + λSS(r) where λ
is a scaling factor. In famous places around the world, the

Social Saliency should be the major criterion for scoring.

This is because some old buildings, although they may not

be tall, are actually very famous and have important soci-

etal saliency. Under such circumstances, a larger value of λ
should be adopted. On the other hand, in less popular areas,

the number of images uploaded to social sharing platforms

decreases and the calculation of Social Saliency becomes less

reliable. As the buildings in such areas are more likely to have

relatively equal societal values, the scoring should rely more

on the attention-based Visual Saliency. Recall that in the geo-

coverage calculation, geo-histogram entries are weighted by

region saliency scores. Therefore, our proposed hybrid model

is able to promote important regions that are more likely to

be of interest in the video representation.

V. VIDEO ANNOTATION AND RETRIEVAL

We developed a retrieval prototype for sensor-rich videos

based on the proposed hybrid model. Besides traditional

geospatial queries, our system supports query-by-example

where the search results are ranked using the similarity

measure introduced in Section III-C. Videos in our system

are indexed using inverted files according to the geographic

regions they cover. Therefore, only the geo-relevant videos

will be processed for similarity computations for efficiency.

Video text annotation is a useful and powerful feature to

facilitate video search and browsing in many social media

and web applications. However, the majority of tags assigned

to videos still come from the manual annotations, which are

not only highly time-consuming but also often inaccurate and

incomplete. To handle sensor-rich videos, Shen et al. [22]

proposed to detect the visible geographic objects, the textual

cues of which are extracted to serve as geotags. However, this

method has one limitation that only geographically related tex-

tual tags can be retrieved. To enrich the semantics of the tags

generated by this approach, state-of-the-art tag suggestion and

refinement techniques can be applied with the help of social

multimedia sharing services such as Flickr. More specifically,

the names of the visible geographic objects computed based

on the geo-metadata will serve as the initial tags. Thereafter,

tag refinement techniques based on social knowledge will be

performed to enrich the initial tags by utilizing a Flickr image

set.

Let F = {f1, f2, ..., fn} denote the representative

keyframes of a video and T = {t1, t2, ..., tm} denote the

list of tag candidates for annotation. In the following we

briefly describe two data driven approaches that can be used

to improve the initial tags generated by Shen’s method. The

refined scores of tags are represented by an n ×m matrix L
where lij is the confidence score of frame fi associated with

tag tj .

A. Neighborhood similarity measure: Wang et al. [40]

Recently, graph-based semi-supervised learning has gained

much attention in this domain. In the regularization frame-

works such as LLGC [41], one of the crucial factors is the

estimation of the pairwise similarity between images. Tradi-

tionally, the similarity between two samples is estimated based

on the Euclidean distance between them. However according

to Wang et al. [40], this distance-based similarity measure may

lead to high classification error rates. Therefore, they proposed

a novel neighborhood similarity measure which outperformed

the Euclidean distance in video annotation as they pointed out

that the similarity between samples is not merely related to

their distance but also related to the distribution of surrounding

samples and labels.

B. Tag suggestion and localization: Ballan et al. [42]

As we mentioned earlier, the initial tags associated with

frames in our framework are the names of the visible ge-

ographic objects detected from OpenStreetMap. In Ballan’s

approach [42], they used the initial tags as queries to retrieve

Flickr images, based on which visual neighborhoods of the

keyframes were created. The union of the tags associated

with the images in the neighborhood was considered as the

candidates to annotate a keyframe. These tag candidates were

next ranked based on the relevance score computed as the

count of a tag t in the visual neighborhood of the keyframe

minus the prior frequency of t [43], [44].

By applying the above techniques, we were able to get the

refined score matrix L. Based on L, the relevance of tags to

a video, Lv , is computed as follows,

Lv =
∑

i,j

αij
ˆhist

geo

i (v)Lj (11)

where Lj is the j-th row of matrix L. Let Ri denote the set

of representative frames of region ri in video v. Then, αij is

defined as:

αij =

{

1
|Ri| if fj ∈ Ri

0 else
(12)

We will see later in the experiments that the utilization of

Flickr images can not only promote the popular geotags (e.g.,

names of landmarks), but also greatly diversify the semantics

of the candidate tags.
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VI. EVALUATION

We implemented a video search prototype and evaluated its

effectiveness. We proceed in three steps. The first part shows

two examples of the geo-codebook generation. The second

part evaluates the performance of the proposed model in video

retrieval. The third part reports the results of a user study

that demonstrates the advantages of the proposed semantic

annotation approach over its competitors.

A. Experimental Setup

We evaluated our proposed approach on the publicly avail-

able geo-referenced video dataset from the GeoVid2 website.

It hosts more than 1,500 videos recorded by smartphones

from all over the world. The videos and their corresponding

geographic metadata can be retrieved via the provided web

APIs3.

Besides the above dataset, another dataset comprising

15,616 geotagged images was collected from Flickr by per-

forming keyword-based search. Two types of tags were

used as the query keywords: (1) the textual information of

the geographic objects and (2) 25 popular concepts includ-

ing airport, animal, birds, boat, bridge, buildings, cityscape,

clouds, college, crowd, dancing, flowers, food, garden,

grass, lake, person, plants, sky, street, sunset, temple, tree, ve-

hicle, and water. This image dataset was used in both the

region saliency estimation and the video semantic annotation.

For each of the frames and images, we extracted the

following three low-level visual features in our experiments:

• 48-D Gabor Wavelet Texture: Texture features extracted

at four scales and six orientations using a Gabor wavelet

decomposition [45].

• 225-D Block-Wise Color Moments: The first (mean), the

second (variance) and the third order (skewness) color

moments in HSV space extracted over 5×5 fixed grid

partitions [46].

• 512-D Gist Descriptor: The spatial structure of an image

described by global features derived from the spatial

envelope [47].

These features are used for visual similarity measurement.

B. Geo-Codebook Generation

In our implementation, the geographic information of ob-

jects was collected from the OpenStreetMap (OSM) which is

a geo-information service that provides editable maps of the

world. We recorded the name, the tags, and the footprint of

each object. However, for buildings described in the OSM,

interestingly the height attribute is mostly not available. To

solve this problem, we collected the building heights from

EMPORIS4, a real estate data mining company collecting and

publishing data and photographs of buildings worldwide. In

Singapore for example, it has records of 6,915 buildings, 321

of which have the height information. For the rest where the

height of the building is not available, we estimate based on

other clues, e.g., the number of storeys.

2http://geovid.org/
3http://api.geovid.org
4http://www.emporis.com/

(a) Singapore (b) Chicago

(c) Japan (d) Hong Kong

Fig. 6: Examples of the generated geo-codebook in different

areas around the world.

Fig. 6 presents examples of the generated geo-codebook in

four different areas, namely Singapore, Chicago, Japan, and

Hong Kong. The cell length of the grids was set to 50 m and

the parameter σ in Eq. 8 was set to 65 m (σ = 1.3 × 50 =
65 m). This parameter σ controls the connections between

adjacent cells. If a large value is used, a cell will be bonded

with its neighbors more tightly and therefore result in a coarse

geo-codebook. Conversely, a small value of σ will result

in a fine-grained geo-codebook. Additionally in Fig. 6, the

colors indicate the estimated saliency for each region and the

scaling parameter λ was empirically set to 0.4. Compared

with the grid-based codebook in Fig. 5, we can see that

this model successfully captures the diverse granularity of

different geographic objects, and the estimated saliency is also

consistent with human perception. Let us take Fig. 6(a) as an

example since it shows the same area as in Fig. 5. In the

center of the picture, we can see that the shape of Marina Bay

(Object A in Fig. 5) is well captured by the geo-codebook. The

building on its right (Object B in Fig. 5) is the most famous

Marina Bay Sands hotel. Other salient regions marked in red

are mainly the popular landmarks including the Singapore

Flyer, the Esplanade, the Singapore River, and the financial

district. In Fig. 6(b), the salient regions belong to the Loop

which is the central business district of Chicago. In Figs. 6(c)

and 6(d), the salient regions are the Kofukuji Temple and the

Time Square (Hong Kong), respectively.

Note that the current geo-codebook was generated within a

city. For large-scale video datasets, our method can be easily

scaled up by using a hierarchy: (1) segment the Earth surface

into countries and cities, (2) generate geo-codebooks within

cities, and (3) index videos using the generated geo-codebooks

in various cities.

C. Evaluation on Video Retrieval

To evaluate the effectiveness of our proposed model in

video retrieval, we collected a total of 423 videos, ranging

from 21 to 523 s in duration. Considering the geo-referenced

videos in GeoVid are unevenly distributed, we selected popular
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regions (e.g., Singapore and Chicago) where the videos are

more concentrated to collect the dataset for experiments. The

videos were further segmented into 1,656 shots, each of which

are about 30 s in duration. Furthermore, we selected 50 video

clips and 30 Flickr images (see Fig. 7) as queries. The selection

criterion is that they contain some recognizable places and

landmarks which are more likely to be of interest.

Fig. 7: Illustrations of geotagged Flickr images used as queries.

In our implementation, we adopt the method proposed by

Cheung et al. [23] to measure the distance based on visual

clues. Thereby, wvis
k (vi, vj) in Eq. 7 is computed as:

w
vis
k (vi, vj) = exp

(

−
Dvis

k (vi, vj)

σ

)

(13)

D
vis
k (vi, vj) =

∑

fv∈Rk(vi)

(

minfw∈Rk(vj)‖fv − fw‖2
)

|Rk(vi)|+ |Rk(vj)|

+

∑

fw∈Rk(vj)

(

minfv∈Rk(vi)‖fv − fw‖2
)

|Rk(vi)|+ |Rk(vj)|

(14)

where Rk(v) denotes the set of representative frames of region

rk in video v, |Rk(v)| represents its size, and Dvis
k (vi, vj) is

the visual distance between the two sets of frames, Rk(vi)
and Rk(vj). As can be seen, we first compute the local

visual distance Dvis
k (vi, vj) as the average distance between

the closest matched frames using Cheung et al.’s method [23].

Then, we use a Gaussian kernel to acquire the local visual

similarity score, which is wvis
k (vi, vj).

For the hybrid model generation, we empirically set σ = R
3

and σθ = θ
6 in Eq. 1, where R and θ denote the visible distance

and the viewable angle of the FOVScene model illustrated in

Fig. 3.

1) Effectiveness comparison: To evaluate the effectiveness

of our proposed region-aware video similarity measure, here

we compared the following four methods and reported the

results:

• GEO: It ranks videos based on the geospatial relevance

using Eq. 4.

• CRLF: It filters the collection based on location, and then

ranks the remaining based on visual similarity [48].

• CRGV: It ranks the collection based on a conjunctive

function using both geographic distance and visual dis-

tance [9].

• RASM: It ranks videos based on the proposed region-

aware similarity measure using Eq. 7.

• OB: A visual approach based on the state-of-the-art

ObjectBank image descriptor. It represents an image

based on its response to a large number of pre-trained

object detectors [16].

• BoS: A visual approach based on the state-of-the-art Bag-

of-Scene video representation. It generates a compact

descriptor based on a dictionary of scenes, each of which

represents a semantic concept [15].

As the existing work [9], [48] built their model using only

GPS, to make it a fair comparison we generated the geo-

histograms using Eq. 5 in this experiment. Later we will

discuss how the performance can be further improved when

camera direction is also available in the geo-metadata. For each

of the queries, we examined the results and plotted the average

precision at n (P@n) in Fig. 8. We also compared the methods

based on the Mean Average Precision (MAP) measure which

is reported in Table I.

TABLE I: MAP comparison of the proposed and the existing

fusion methods.

Method GEO CRLF CRGV OB BoS RASM

By-video 39.6% 40.6% 41.2% 44.6% 38.7% 49.2%

By-image 38.9% 39.7% 39.8% 41.7% 34.6% 44.2%

GEO serves as a baseline method because it ranks videos

based only on the geo-metadata. CRLF and CRGV outper-

formed the baseline method by integrating the visual clues.

One issue is that these fusion approaches utilized the camera

location directly. However, such information only captures

the camera properties rather than the video content. This

inconsistency between geo and visual features limited the

effectiveness of such approaches. Additionally, we carried out

experiments using the state-of-the-art visual features OB and

BoS for comparison. OB is an object-level image descriptor

which is generated based on pre-trained object detectors. It

increased the MAP compared with methods CRLF and CRGV

where the low-level visual features were adopted. However,

due to the high dimensionality of the ObjectBank descriptor,

it has the drawback of being time-consuming in feature extrac-

tion and similarity calculation. The time complexity of each

method will be compared in Section VI-C4. In contrast, BoS

is a high-level compact video descriptor. In this experiment,

we used a dictionary of 500 concept scenes and soft coding

technique. The BoS descriptor represents a video segment

using a single vector. Therefore, it is highly efficient in

computing the similarity score between videos (see Table VI).

However, it might be difficult to maintain a high MAP at the

same time. As can be seen, our hybrid model RASM achieved

the best results overall. It improved the MAP by 4.6% and

10.5% compared to OB and BoS. Our model generates the geo-

coverage of a video which is a content-oriented geo-feature.

Good performances can be achieved by fusing only with the

low-level visual features. Moreover, our proposed model also

works well with more advanced visual features such as OB

and BoS. As reported in Table II, our fusion technique can

improve the MAP by as much as 7.7% compared with the

original content-based approaches.

TABLE II: MAP comparison of fusion with OB and BoS.

Method OB RASMOB BoS RASMBoS

By-video 44.6% 51.9% 38.7% 46.4%

By-image 41.7% 48.4% 34.6% 42.1%

As a final point, our model can make use of multiple geo-

features in the metadata, while how the camera direction can
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Fig. 8: P@n comparison of the proposed and the existing fusion methods.

be utilized in other methods remains unknown.

2) Geo-metadata availability: Next, we studied how the

retrieval performance varied when the geo-metadata was avail-

able at different levels. The comparison of average P@n is

illustrated in Fig. 9, and the MAP statistics are reported in

Table III. The subscript indicates which geo-metadata was

used in the geo-coverage modeling.

TABLE III: MAP comparison based on different availability

of geo-metadata.

Method GEOgps RASMgps GEOfov RASMfov

Query-by-video 39.6% 49.2% 66.9% 71.8%

Query-by-image 38.9% 44.2% 48.4% 53.2%

As can be seen, the effectiveness of both GEO and RASM

was greatly improved by utilizing camera direction. It indicates

the importance of camera orientation in video content analysis,

but unfortunately compass record is still only available in

the minority of multimedia documents. Such geo-restrictions

can greatly help reduce the semantic gap between the low-

level visual features and the high-level semantic concepts.

For query-by-video, RASMfov improved the MAP by 22.6%

compared to RASMgps. For query-by-image, the increments

were 9.0%. RASM is more robust than GEO because its

similarity measure is more tolerant to dynamic obstacles and

geo-metadata errors by analyzing the visual clues.

In terms of geo-metadata, social sharing platforms such

as Flickr provide an accuracy level of geotags associated

with photos. Therefore users can avoid using images with

inaccurate geotags as queries. As pointed out by Hauff [49],

the positional accuracy of the geotag information of Flickr

images is highly dependent on the popularity of the venue.

The average distance to the ground truth location is between

11 − 13 meters for images taken at popular venues, which

is small compared to the size of the viewable scene model

that we consider. Moreover, the good retrieval results shown

in Figs. 8 and 9 indicate that our method is robust within a

certain range of geotag errors.

3) Step-By-Step Model Justification: The proposed video

similarity measure includes two main components: geospatial

relevance calculation and multi-feature fusion. To demonstrate

the effectiveness of our proposed approach in each step, we

replace our method by a functionally reduced counterpart and

compare the corresponding retrieval performance.

• The geo-codebook generation is a key component in

the first step. We use it to encode the geo-histograms,

based on which the geospatial relevance between

videos is computed. To illustrate its effectiveness, we

replace it by a grid-based approach. Each region in the

grid-based codebook is a square area that has a side

length of 300 m.

• To justify the effectiveness of the region-aware fusion

approach illustrated in Eq. 7, we compare it with the

late fusion method [5]. The similarity is estimated

as S = 1
2 (Sg + Sv), where Sg and Sv denote the

geospatial relevance and visual similarity, respectively.

As shown in Fig. 4, additional noise can be introduced

by late fusion due to the mismatch between visual

features from different regions.

TABLE IV: Mean average precision decrement.

Query Type Query-by-video Query-by-image

geo-codebook→grid map -2.7% -2.1%

region-aware→late fusion -4.3% -4.4%

As shown in Table IV, the MAP decreased when we

replaced one component by an existing one. This demonstrates

the effectiveness and the indispensability of our proposed

approach.

4) System Efficiency: We performed the retrieval experi-

ments on a desktop computer with a 3.20 GHz dual core

CPU and 4 GB of main memory. The comparison of the

execution time for feature extraction is reported in Table V.

For each query that we executed, we recorded the retrieval

latency which includes the similarity calculation and the result

ranking. The average value is reported in Table VI.

TABLE V: The comparison of the execution time for feature

extraction per image.

Feature GEO Color Texture Gist OB BoS

Time 0.01 ms 0.06 s 0.12 s 0.46 s 4.68 s 4.682 s

In comparison of the execution time for feature extraction,

the encoding of the proposed geo-features is highly efficient
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Fig. 9: P@n comparison based on different availability of geo-metadata.

TABLE VI: The comparison of the average retrieval latency.

Method GEO CRLF CRGV OB BoS RASM

By-video 6 ms 512 ms 525 ms 927 ms 11 ms 295 ms

By-image 6 ms 83 ms 98 ms 185 ms 11 ms 64 ms

as the calculation is only based on the camera location and

orientation. In contrast, the time complexity for visual feature

extraction is much higher. As can be seen, the low-level

visual features such as color and texture would cost dozens

of milliseconds for extraction, while the more descriptive

ObjectBank representation would cost more than four seconds.

BoS cost slightly more than OB as the former takes an extra

step by soft encoding each frame to its nearest neighbors in the

dictionary. Our proposed model can achieve high MAP while

maintaining good efficiency. With the help of the proposed

content-oriented geo-feature, effective retrieval performances

can be achieved by using only the less descriptive low-

level visual features, and thus the time complexity is greatly

reduced.

As aforementioned, the videos in our system are indexed

using inverted files based on the geographic regions. There-

fore, only the geo-relevant videos are processed for similarity

calculations. Method GEO is highly efficient because the high-

dimensional visual features are not utilized in the similarity

calculations. The visual approach BoS reduced the time com-

plexity by generating a visual descriptor per video segment

instead of per frame. Method OB is the least efficient due

to its high dimensionality compared with color, texture, and

Gist used in other approaches. For hybrid approaches, the

visual feature comparison is always the major cost for both

storage and computation. Let n̄ denote the average number

of keyframes in a video, then the complexity for the visual

similarity calculation in CRLF, CRGV, and the late fusion

approach will be O
(

n̄2
)

. Different from the above methods

where a pairwise comparison between keyframes is required,

our proposed approach RASM reduces the computational costs

by geographic indexing where only the local visual similarities

of each region are computed. If the keyframes of a video

are divided into an average of k̄ region groups, the time

complexity will be reduced to O
(

n̄2/k̄
)

. Comparatively, most

of the previous work focused on the compact video repre-

sentations that support efficient visual indexing [24], [31].

It is worth emphasizing that such techniques are parallel

to our model, which can be integrated on the region-level

after frames are geographically indexed. The geographic and

the visual indexing complement with each other in a large

video database. Considering the limitations on the availability

of current geo-referenced videos, discussions of integrating

efficient approximate visual similarity measure are left as part

of the future work.

D. Evaluation on Semantic Annotation

The geotags generated based on OSM were compared to

the enriched tags generated by the approaches, EnrichedA and

EnrichedB, introduced in Section V. Images were filtered based

on the geo-locations. Therefore, annotation accuracy can be

further improved by geographic restrictions.

Due to the lack of enough sensor data, it is dif-

ficult to use acknowledged datasets (e.g., TRECVID,

http://trecvid.nist.gov/) for our experiments. Additionally, the

geo-referenced videos are usually organized by the geographic

information without any ground-truth textual labels on a list

of concepts. Therefore, we carried out a user study to evaluate

the quality of the generated tags. Ten video clips from different

regions were selected. Without loss of generality, only the top

ten tags generated using different methods were preserved. 26

volunteers who are familiar with the regions where the videos

were taken participated in this user study. They were requested

to watch the video carefully and then give scores based on the

(1) relevance and (2) diversity of the generated tags (1-least,

10-most). The results of this user study are presented in Fig. 11

and 12. As can be seen, while the three methods achieved

comparative results in terms of relevance, the diversity of the

tags has been greatly improved by applying tag refinement

techniques.

To demonstrate the annotation results, we show an example

in Fig. 10. The first row lists the tags generated by Shen et

al.’s approach. It relies on the OSM which may have uneven

building and detail coverage. Therefore, the annotation errors

can be caused by missed obstacles and occlusions. Despite the

issues above, its overall precision is high. One limitation of

this method is that the type of tags it selects is uniform, i.e., the

name of the surrounding places and buildings, which is usually
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OSM The Fullerton Hotel, Maybank Tower, One Fullerton, HSBC Building, Hitachi Tower, 

Tung Centre, Marina Bay Reservoir,  North Tower, One Raffles Quay, Change Alley 

EnrichedA The Fullerton Hotel, Singapore, One Fullerton, Cityscape, Street, Buildings, City, Water,  

Asia, Urban 

 

EnrichedB The Fullerton Hotel, Boat Quay, Artwork, Statues, Cavenagh Bridge, Singapore River, 

One Fullerton, HSBC, Maybank, Esplanade Bridge 

Fig. 10: Illustration of the top ten tags generated for an

example video.

not the most preferred situation by users. Comparatively, the

enriched tags listed in the second and third rows are more

consistent with the user preferences. Not only the semantics

have been greatly enriched, the wrongly assigned geotags due

to occlusions have also been removed. As we can see, some

of the tags (e.g., Asia) generated by EnrichedA may be too

general for a specific video clip. Comparatively, EnrichedB

tends to favor more specific tags by learning the tag relevance

from its visual neighbors. This is also consistent with the

results of the user study. The participants generally agreed

that EnrichedB performed the best in terms of tag diversity.

However, EnrichedB may suffer from a slight decrease in

precision compared with EnrichedA as shown in Fig. 11.

VII. CONCLUSIONS AND FUTURE WORK

This paper proposed the generation of content-oriented geo-

features to facilitate video annotation and search. It does

not focus on one specific visual similarity measure, rather it

shows that the innovative fusion of visual and geo features

provides improved performance over the existing approaches.

A novel hybrid model is proposed as video representation,

describing both the video geographic coverage and the region-

aware representative visual features. Additionally, we propose

to construct a geo-codebook by utilizing the information

available from the geo-information services to segment an area

into a set of coherent regions. It overcomes the limitations of a

grid-based codebook, based on which the geographic coverage

of a video can be better encoded. Lastly, we developed a

video search prototype based on our proposed hybrid model.

To evaluate its performance, we compared it to existing

approaches and a user study was carried out accordingly. The

good results demonstrate the effectiveness of our proposed

approaches. Toward a more effective video retrieval system,

more efforts will be made on the correction of geographic

metadata and the acceleration of visual similarity calculations.
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