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Abstract In modern geographic information systems, route search represents an important
class of queries. In route search related applications, users may want to define a number
of traveling rules (traveling preferences) when they plan their trips. However, these travel-
ing rules are not considered in most existing techniques. In this paper, we propose a novel
spatial query type, the multi-rule partial sequenced route (MRPSR) query, which enables
efficient trip planning with user defined traveling rules. The MRPSR query provides a uni-
fied framework that subsumes the well-known trip planning query (TPQ) and the optimal
sequenced route (OSR) query. The difficulty in answering MRPSR queries lies in how to in-
tegrate multiple choices of points-of-interest (POI) with traveling rules when searching for
satisfying routes. We prove that MRPSR query is NP-hard and then provide three algorithms
by mapping traveling rules to an activity on vertex network. Afterwards, we extend all the
proposed algorithms to road networks. By utilizing both real and synthetic POI datasets, we
investigate the performance of our algorithms. The results of extensive simulations show
that our algorithms are able to answer MRPSR queries effectively and efficiently with un-
derlying road networks. Compared to the Light Optimal Route Discoverer (LORD) based
brute-force solution, the response time of our algorithms is significantly reduced while the
distances of the computed routes are only slightly longer than the shortest route.
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1 Introduction

In Geographic Information Systems (GIS) related research [4,8,24,27,30], significant efforts
have been spent on nearest neighbor (NN) queries, range queries as well as their variants [16,
18,31,35]. While these query types are building blocks for many existing applications, more
advanced spatial query types must be studied for future GIS systems. Route queries [5,
14, 18, 27, 32, 33] are an important class of spatial queries for users to request an efficient
path by specifying a source and a destination. As an essential component, route queries are
widely supported by many of today’s popular online map service providers (e.g., Google
Maps1, MapQuest 2, Yahoo! Maps3, Bing Maps4). By issuing a route query to a map service
provider, users will obtain a recommended route on the map with an estimated mileage and
turn-by-turn driving instructions. Li et al. [18] proposed solutions for Trip Planning Queries
(TPQ). With TPQ, the user specifies a set of Point of Interest (POI) types and asks for the
optimal route (with minimum distance) from her starting location to a specified destination
which passes through exactly one POI in each POI type. On the other hand, Sharifzadeh et
al. [27,29] presented OSR queries where the user asks for an optimal route from her starting
location and passing through a number of POIs (each with a different type) in a particular
order (sequence) imposed on all the types of POIs to be visited. However, both TPQ and
OSR queries fail to consider the sub-sequences of POI types which occur naturally in many
GIS applications. To remedy this, in this study, we propose a novel route query type, Multi-
Rule Partial Sequenced Route (MRPSR) query. Our objectives are to assist users to plan
trips that involve multiple POIs which belong to different POI categories (types) and satisfy
a number of user defined traveling rules in road networks with a short response time. Our
MRPSR query aims at unifying the well-known TPQ and OSR queries.

1.1 Motivation

As a motivating application, consider the scenario as shown in Figure 1. Alice is planning
a trip that starts from her home and involves visiting the following POI categories: a bank,
a restaurant, a gas station, and a movie theater. In addition, Alice also makes the following
traveling rules on her trip:

1. Visit a bank to withdraw money before having lunch at a restaurant.
2. Fill up gas before going to watch a movie.

In order to fulfill the two traveling rules, the returned trip must contain two sub-sequences:
(a) traveling to a bank before going to a restaurant and (b) visiting a movie theater after fill-
ing up the gas tank in a gas station. Aside from these two sequences, Alice is free to visit any
of the other POI categories in any order she pleases and furthermore, they can be interleaved
in any order with the two rule-based sequences. Figure 1 illustrates two possible satisfying
routes in a road network with different travel distances.

1 http://maps.google.com/
2 http://www.mapquest.com/
3 http://maps.yahoo.com/
4 http://maps.bing.com/
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User defined traveling rules can be formulated as sub-sequences of POI categories in
MRPSR queries. Such sub-sequences (or partial sequence) exist inherently in many GIS ap-
plications or can be specified by users as external constraints. Therefore, MRPSR queries are
useful in numerous fields such as automotive navigation systems, transportation planning,
supply chain management, online Web mapping services, etc.

Note that the MRPSR query differs from the Traveling Salesman Problem (TSP). In
both cases a least-cost route is sought. However, with TSP a set of POIs (e.g., cities) is given
and each element must be visited exactly once. On the other hand, with MRPSR each POI
is associated with a category and one may select any element of that category. For example,
if the route should include a gas station visit, then one may choose any one of the available
gas stations.

Gas
Station

Home

Gas
Station

Bank

Movie
Theater

Gas
Station

Restaurant

Bank

Restaurant

Fig. 1 Two possible routes (solid and dashed arrows) of a MRPSR query.

1.2 Contribution

In this study we present the MRPSR query and provide three fast approximation algorithms
which are designed to efficiently compute satisfying routes with the near-optimal travel
distance in road networks. This paper is based on our earlier paper [5], in which all the pro-
posed solutions and experiments are based on Euclidean distance in a vector space. In order
to serve real-world GIS applications effectively, we extend all the route query algorithms to
road networks with an extensive set of simulations in this paper. The contributions of our
work are as follows:

– We formally define the Multi-rule Partial Sequenced Route (MRPSR) query and prove
the MRPSR problem to be a member of the NP-complete class.

– By casting traveling rules into an activity-on-vertex network, we utilize topological sort-
ing [13] to integrate traveling rules with multiple choices of POIs and study the solv-
ability of MRPSR queries.
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– We propose the Nearest Neighbor-based Partial Sequence Route query (NNPSR) algo-
rithm. The NNPSR algorithm uses activity-on-vertex networks to guide the search to
retrieve a near-optimal route satisfying all the traveling rules in road networks.

– We integrate NNPSR with the Light Optimal Route Discoverer (LORD) algorithm [27]
to create NNPSR-LORD that further reduces the trip distance based on the NNPSR
algorithm.

– We also design an Advanced A* Search-based Partial Sequence Route query (AASPSR(k))
algorithm. AASPSR(k) takes advantage of the location of the destination as well as trav-
eling rules to generate an efficient trip plan in road networks.

– We compare the performance of NNPSR, AASPSR(k) and NNPSR-LORD analytically.
– By using real and synthetic POI datasets, we compare experimentally the performance

of NNPSR, AASPSR(k), NNPSR-LORD and the LORD-based brute-force solution in
the road network of California.

1.3 Paper Organization

The rest of the paper is organized as follows. The research problem is formally defined in
Section 2. In Section 3 we introduce AOV networks. We elaborate on NNPSR, NNPSR-
LORD, and AASPSR(k) algorithms in Section 4. The experimental validation of our design
is presented in Section 5. Section 6 surveys the related work. We conclude the paper with a
discussion of future work in Section 7.

2 The Multi-Rule Partial Sequenced Route Query

In this section, we formulate the proposed multi-rule partial sequenced route query and
then discuss the properties of the proposed query type. The definitions of the multi-rule
partial sequenced route query and the partial sequence rules are introduced in Section 2.1.
The properties of the multi-rule partial sequenced route query are discussed in Section 2.2.
Section 2.3 presents the definition of the percentage of the constrained categories.

2.1 Problem Formulation

Definition 1 Given n disjoint sets of POI category {C1, C2, . . . , Cn}, each containing a
number of POIs in R2, the MRPSR query is to search for a route that satisfies the following
three requirements:

1. The route will traverse through exactly one POI in each category;
2. The total traveling distance is minimized;
3. The route conforms with the given constraints (i.e., traveling rules).

While the first two requirements are commonly seen in the other types of route queries [18,
27], the third requirement is unique. Here, the issue is how we should properly define a con-
straint. Without loss of generality, we assume that each constraint can be mapped into a
partial sequence rule, defined as follows.

Definition 2 A partial sequence rule is defined as an ordered subset of categories Ck1 →
Ck2 → · · · → Ckm

, which specifies the order of visits between < Cki
> in the subset.
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For instance, a user may issue a MRPSR query with a constraint that he would like to
withdraw money at a bank before going for grocery shopping and dinner. This constraint
can be converted to the following two partial sequence rules:

1. CBank → CSupermarket

2. CBank → CRestaurant.

These two rules enforce that a bank should be visited before a supermarket and a restau-
rant on the trip, but do not put a restriction on the order between the supermarket and the
restaurant.

Notice that if no restriction is placed on the format of the user’s constraints, the transla-
tion itself is a challenging artificial intelligence research problem [21]. The human natural
language can be ambiguous and non-grammatical. The automatic translation requires to
create algorithms that can deal with not only the ambiguity but also with parsing and inter-
pretation of a large dynamic vocabulary, which is not likely to be accomplished in real time.
With the help of input forms, the types of the user’s constraints can be limited so that the
translation from the constraints to the partial sequence rules can be handled with ease. With
the notion of the partial sequence rules, the compatibility of a set of partial sequence rules
can be defined as follows.

Definition 3 A set of the partial sequence rules is defined to be compatible if and only if
there is a total order of < Ci > that satisfies the order specified in each of the rules in the
set.

For instance, the set of rules {C1 → C2, C2 → C3, C3 → C1} is not compatible since
it will be impossible to satisfy all these three rules at the same time. When all the travel
constraints are represented as a set of partial sequence rules, the original definition of the
MRPSR query can be formulated as follows.

Definition 4 Given a set of POI categories and a set of partial sequence rules, a MRPSR
query is defined to return the route with the minimal total traveling distance that satisfies the
order specified in each of the partial sequence rules.

2.2 Properties of The MRPSR Query

The following theorem shows that MRPSR query provides a unified framework that sub-
sumes the well-known trip planning techniques, including the trip planning queries (TPQ) [18]
and the optimal sequenced route (OSR) queries [27].

Theorem 1 The problems of the trip planning query and the optimal sequenced route query
are special cases of the problem of the multi-rule partial sequenced route query.

Proof According to [18], the problem of the trip planning query is identical to the problem
of the multi-rule partial sequenced route query when the set of partial sequence rules is
empty. In addition, according to [27], the problem of the optimal sequenced route for a
given sequence of categories of POIs is the same as the problem of the multi-rule partial
sequenced route query when the set of partial sequence rules contains one partial sequence
rule specifying the same order.

From Theorem 1, we obtain the following important property for the MRPSR query.
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Corollary 1 The problem of the multi-rule partial sequence route query is NP-hard.

Proof According to [18], the problem of the trip planning query is NP-hard. To show our
problem of the multi-rule partial sequence route query is also NP-hard, we need to construct
a polynomial transformation f from the problem of the trip planning query to ours. Given
an instance of the trip planning query, i.e., the optimal route between a pair of source and
destination with a given set of POI types, we can easily transform it to a MRPSR query,
which asks for the optimal route between exactly the same source/destination and the same
set of POI types with no partial order between the types. This transformation is obviously
polynomial. According to [7], it follows immediately that the problem of the multi-rule
partial sequenced route query is NP-hard.

Corollary 1 implies that when the search space is large, it is advisable to quickly find a
suboptimal route that satisfies the given partial sequence rules instead of the route with the
minimal total distance.

The set of the partial sequence rules plays an important role in the MRPSR query. As
indicated in Theorem 1 and Corollary 1, if the set is empty, the search space will be large
and the MRPSR query is NP-hard. However, if the rule specifies the total order of the cat-
egories, the MRPSR problem can be solved in polynomial time [27]. Intuitively, the tighter
the set of rules is, the smaller the search space will be and the easier the MRPSR query
can be answered. While it is difficult to quantify the level of tightness for a set of partial
sequence rules, we provide Theorem 2 to see if a given set of rules will possibly lead to a
solution. Theorem 2 shows the relationship between the solvability of a MRPSR query and
the compatibility of a given set of rules.

Theorem 2 If a multi-rule partial sequenced route query is solvable, then the correspond-
ing set of the partial sequence rules must be compatible.

Proof The proof is done by contradiction. Assume that the set of rules is not compatible,
then according to Definition 3 there is no ordered sequence of categories that satisfies all the
rules. In other words, no matter how POIs are selected, it will be impossible to order them
so that the ordered sequence meets all of the constraints.

Notice that Theorem 2 does not guarantee that a compatible set of partial sequence rules
can always lead to a solution for a corresponding MRPSR query because some categories
may contain no POI. If each category contains at least one POI, the inverse of Theorem 2
(i.e., the compatible set of rules implies the solvability of the corresponding MRPSR query)
will also be true. According to Definition 3, if the partial sequence rules are compatible, then
there must exist at least one total order of categories < Ci > that satisfies the order specified
in each of the rules. Let one of such orders be {C1, C2, . . . , Cn}. Now since each category
is not empty, we can arbitrarily pick one POI px from each category Ci to compose a route
{p1, p2, . . . , pn} which traverses through exactly one POI in each category and conforms
with the given traveling rules. According to Definition 1, if there is only one such route, we
have our answer. If not, the one with the minimal traveling distance will be what we want
to retrieve. In Section 3, we will elaborate how to verify if a set of partial sequence rules is
compatible.
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2.3 Percentage of the Constrained Categories

Definition 5 Given a MRPSR query, the Percentage of the Constrained Categories (PCC)
is defined as the percentage of the number of categories included in the set of traveling rules
over the total number of categories to be visited in the query.

PCC is used to measure the extent that a MRPSR query is constrained by traveling rules.
According to the definition of PCC, the trip planning query (TPQ) [18] can be considered
as a MRPSR query with a PCC of 0% while the optimal sequenced route (OSR) query [27]
can be treated as a MRPSR query with a PCC of 100%.

3 Activity-on-Vertex Networks

In order to plan a route which can fulfill all the user defined partial sequence rules, we need
a solution to combine all the provided traveling rules and verify if they are compatible. The
relationship between all the given traveling rules can be represented as a directed graph in
which the vertices represent POI categories and the directed edges represent prerequisites.
This graph has an edge <i, j> if and only if category i is an immediate prerequisite for
category j in one of the rules. The complete graph is named Activity-On-Vertex (AOV)
network [11]. The following theorem provides the relationship of an AOV network and the
compatibility of the traveling rules.

Theorem 3 The partial sequence rules are compatible if and only if the corresponding AOV
network is a directed acyclic graph.

Proof Definition 3 indicates that the rules are compatible if and only if there is a category
sequence that satisfies the order specified in each of the traveling rules. Let that category
sequence be the feasible sequence of tasks that satisfies all of the orders. According to [11],
an AOV has a feasible sequence of tasks if and only if the precedence relations in the AOV
network are both transitive and irreflexive. In other words, the corresponding AOV network
must be directed and acyclic.

Table 1 lists the POI categories and partial sequence rules specified by an example
MRPSR query Q. The corresponding AOV network for Q is shown in Figure 2.

Data Type Name Prerequisites
C1 Bank None
C2 Bookstore None
C3 Restaurant C1, C2
C4 Gas Station None
C5 Hospital C4
C6 Shopping Center C5
C7 Church C3, C6
C8 Coffee Shop C3
C9 Gift Shop C7, C8
C10 Park C7

Table 1 POI categories and partial sequence rules in an example MRPSR query Q.
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Fig. 2 The AOV network of Q represents POI categories as vertices and prerequisites as edges.

After we represent all the partial sequence rules in a MRPSR query as an AOV network,
providing that the AOV network is directed and acyclic, Topological Order (or Topological
Sorting) can be used to generate a feasible complete ordering of POI categories which is
compatible with every partial sequence rule in the MRPSQ query. In graph theory, a topo-
logical order of a directed acyclic graph (DAG) is a linear ordering of its vertices in which
each vertex comes before all vertices to which it has outbound edges. Each DAG has at least
one topological order. The algorithm to find a topological order is as follows. The first step
is to list out a vertex in the network that has no predecessor. Then the second step is to
delete this vertex and all edges leading out from it from the AOV. By repeating these two
steps until either all the vertices have been listed or all remaining vertices have predecessors
and hence none of them can be removed. In the latter case, the AOV has a cycle and the trip
is infeasible, i.e., the partial sequence rules are not compatible. If a topological order has
the property that all pairs of consecutive vertices in it are connected by AOV edges, then
these edges form a directed Hamiltonian path in the AOV [13]. If a Hamilton path exists,
the topological sort order is unique and no other order respects the edges of the path. On the
contrary, if a topological order does not form a Hamiltonian path, the AOV will have two
or more valid topological orderings, for in this case it is always possible to form a second
valid ordering by swapping two consecutive vertices that are not connected by an AOV edge
to each other. For supporting both cases, we keep a counter of the number of immediate
predecessors for each vertex and represent the network by its adjacency lists. Then we can
carry out the deletion of all incident edges of a vertex v by decreasing the predecessor count
of all vertices on its adjacency list. Whenever the count of a vertex drops to zero (in-degree
= 0), we place the vertex on a list (Lzero) of vertices with a zero count. As mentioned in
Section 1, the traveling rules (the AOV network) may not cover all the user selected POI
categories. With the goal of creating a complete trip plan (i.e., the plan covers all requested
categories), we add all the requested POI types which are not included in the AOV into the
list Lzero. The complexity of topological sort is O(e+n), where n is the number of vertices
and e is the total edge number. The sort can be finished in linear time.

4 Algorithm Design

After having the AOV networks in hand, we can start to compute a trip plan satisfying all
the traveling rules. In this section, we propose three approximate algorithms to answer a
MRPSR query: the Nearest Neighbor-based Partial Sequenced Route (NNPSR) algorithm,
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the Nearest Neighbor-based Partial Sequenced Route with Light Optimal Route Discov-
erer [27] (NNPSR-LORD) algorithm, and the Advanced A* Search-based Partial Sequenced
Route (AASPSR(k)) algorithm. NNPSR applies AOV networks to capture traveling rules
and launches successive nearest neighbor queries to answer a given MRPSR query. NNPSR-
LORD utilizes the Light Optimal Route Discoverer [27] to optimize the route obtained by
NNPSR. In AASPSR(k), as a hybrid scheme of NNPSR and ASPSR, distance heuristic
functions are integrated with NNPSR to answer a MRPSR query. All of the proposed algo-
rithms aim to find the near-optimal route which follows all of the traveling rules. Table 2
summarizes our set of notations.

Symbol Meaning

A The adjacency list representation of an AOV
C The set of all the user selected categories
R The set of all the traveling rules
P A set of POIs
Q The priority queue
S The starting point of a MRPSR query
D The destination of a MRPSR query
q The query point of a nearest neighbor query
Ci A POI category

Ci.P All the POIs of a category
Lzero A list of AOV vertices with a zero count
Lroute A list of the POI sequence of a trip plan
PNN The query result of a nearest neighbor query

DistE(x, y) The Euclidean distance between points x and y
DistN (x, y) The network distance between points x and y

Table 2 Symbolic notations.

4.1 Nearest Neighbor Search in Road Networks

In practice, users usually move only in the underlying road networks rather than traveling
freely through obstacles (e.g., buildings, rivers, etc.). Network distance computations and
nearest neighbor queries in road networks have been well studied [12, 15, 20]. As the basic
building block of our proposed algorithms, in this subsection, we briefly review how to
answer a nearest neighbor query in road networks by the incremental network expansion
approach [20].

Figure 3 demonstrates the nearest neighbor search by applying the incremental network
expansion technique [20]. In Figure 3, the black point, q, stands for the query point, the
white points, A, B, C, D, E, and F , denote road network conjunctions, the triangles, P1,
P2, and P3, represent POIs (which are in ascending order of their Euclidean distance to
q), and the numbers symbolize the distance between two points. Incremental network ex-
pansion performs network expansion from q and examines POIs in the order which they
are encountered. To be specific, first, the road segment CD that covers q is found and all
POIs on CD are retrieved. Then a priority queue, Q =< (C, 5), (D, 7) >, is initiated.
Since no POI is covered by CD, the node C which is closest to q is de-queued and its
adjacent nodes, A and E, are inserted into Q with their accumulated distance from q, i.e.,
Q =< (D, 7), (A, 9), (E, 10) >. No POI is discovered on CA and CE. Next, D whose dis-
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Fig. 3 NN search by the incremental network expansion algorithm [20].

tance is closest to q in current Q is expanded and its adjacent nodes, B and F , are en-queued.
Then, we have Q =< (A, 9), (E, 10), (F, 10), (B, 15) >. Afterward, P3 can be discovered
on DB with a distance of 9 while no POI is found on DF . This distance offers an upper
bound to restrict the search space. Because the next node to expand is A and the distance
from q to A is already 9, which is no less than the upper bound, the algorithm terminates
and returns P3 as the nearest neighbor to q with a network distance of 9.

4.2 Nearest Neighbor-based Partial Sequenced Route Algorithm

Here we devise a Nearest Neighbor-based Partial Sequence Route (NNPSR) query algorithm
by utilizing both the Lzero list and the nearest neighbor query (i.e., the incremental network
expansion [20] based implementation) to generate a trip satisfying all the traveling rules.
With NNPSR, we first search for the nearest POI to the query point q (as the starting point)
whose category is included in Lzero. The retrieved nearest POI PNN will be stored in a
route list Lroute and the category of PNN (i.e., PNN .C) will be removed from Lzero. Next,
we update the adjacency list and new zero count vertices may be added to Lzero. In addition,
the query point q is also updated to the location of PNN . The process will repeat until all
the selected categories are contained in the route. The complete algorithm of NNPSR is
formalized in Algorithm 1.

4.3 NNPSR with Light Optimal Route Discoverer Algorithm

Suppose a complete POI sequence to be visited is given, the Light Optimal Route Discov-
erer (LORD) algorithm [27] can guarantee to retrieve a route of minimum distance. Since
we can obtain a complete POI sequence after each execution of the NNPSR algorithm, we
can further optimize the trip by applying LORD on the POI sequence found by NNPSR.
LORD is a threshold-based algorithm and requires less memory space compared with Dijk-
stra’s shortest path solution. The first step in LORD is to issue consecutive nearest neighbor
queries to find the greedy route that follows the given POI category sequence from the start-
ing point. Then, the length of the greedy route becomes a constant threshold value Tc. In
addition, LORD also keeps a variable threshold value Tv whose value reduces after each
iteration and LORD discards all the POIs whose distances to the starting point are more
than Tv . Afterward, LORD iteratively builds and maintains a set of partial sequenced routes
in the reverse sequence (i.e., from the end points toward the starting point). During each
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Algorithm 1 Nearest Neighbor-based Partial Sequenced Route query(C, R, S, D)
1: Set Lroute = ∅ and q = S
2: Integrate all elements in R into an AOV adjacency list A and put all vertices with zero count in Lzero

3: if The AOV network is a DAG then
4: Add all elements of C \ A into Lzero

5: while Lzero �= ∅ do
6: P = ∅
7: for each Ci ∈ Lzero do
8: P = Ci.P ∪P

9: end for
10: Identify the road segment ninj covering q.
11: Find all the POIs in P on ninj .
12: if If there exists at least one POI in P on ninj then
13: Update pNN with the POI Pk with the smallest DistN (q, Pk).
14: else
15: Q =< (ni, DistN (q, ni)), (nj , DistN (q, nj)) >
16: De-queue the node n in Q with the smallest DistN (q, n)
17: while DistN (q, n) < Threshold do
18: for each non-visited adjacent node nk of n do
19: Find all the POIs in P on the road segment nnk .
20: Update PNN from the POI p′ in P with the smallest network distance found so far
21: Update Threshold with DistN (q, p′)
22: En-queue (nk, DistN (q, nk)) in Q
23: end for
24: De-queue the node n in the updated Q with the smallest DistN (q, n)
25: end while
26: end if
27: q = PNN

28: Lroute = Lroute ∪ PNN

29: Remove PNN .C from Lzero

30: Update A and Lzero

31: end while
32: return Lroute

33: else
34: Report cycles in R

35: end if

iteration of LORD, POIs from the following category are added to the head of each of these
partial sequence routes to make them closer to the starting point. The two thresholds are
utilized to prune non-promising routes for reducing the search space.

After executing the NNPSR algorithm, we can acquire a sequence of POIs. Since each
POI belongs to an individual POI category, we can also obtain a POI category sequence as
the input of LORD. For most cases, the NNPSR-LORD solution outperforms the original
NNPSR algorithm in terms of route distance. More detailed performance evaluations are
presented in Section 5.

4.4 Advanced A* Search-based Partial Sequenced Route Algorithm

Although the NNPSR and NNPSR-LORD algorithms can fulfill the traveling rules and re-
duce the travel distance of a trip, they do not consider the location of the destination when
greedily generating the route sequence. Consider the example shown in Figure 4. In Figure 4,
S and D denote the start point and destination of the trip. Suppose we have a traveling rule
which can be denoted as Bank → Restaurant. We will find that the dashed route returned
by NNPSR is much longer than another feasible trip (the solid route) which considers the
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`

Fig. 4 Two trips generated by NNPSR (the dashed route) and ASPSR (the solid route) with the traveling rule
Bank → Restaurant.

location of the destination. Therefore, another approach is to limit the trip planning within a
range defined by S and D (e.g., an ellipse whose two focal points are S and D).

The A* search based Partial Sequenced Route (ASPSR) algorithm considers the location
of the destination in its heuristic function. Similar to the admissible heuristic of the A*
algorithm [23], in ASPSR, we retrieve the POI p with the minimum cost of DistE(S, p) +

DistE(p, D) in each category included in Lzero. Afterward the POI p with the lowest cost
will be added into the route list Lroute and the category of p will be withdrawn from Lzero.
Then both A and Lzero will be updated and the location of p is set as the new query point.
The process will reiterate until all the user selected categories are covered.

However, there could be roundabout ways when we plan a trip by ASPSR. Consider the
example as shown in Figure 5. Because the POIs which are closer to the major axis of the
ellipse (S and D are the two focal points) have a lower distance cost, Bank1, Restaurant1
and Gas Station1 will be picked sequentially in ascending order of their costs. Consequently,
a detour will occur where the user has to travel far away from from D to visit Gas Station1
and Restaurant1 before reaching D at last. Therefore, we need to improve ASPSR to solve
the aforementioned problem.

`

Fig. 5 An illustration of trip search by ASPSR with the traveling rule Bank → Restaurant.

The improved version of ASPSR is named as the Advanced A* Search-based Partial
Sequenced Route query (AASPSR) algorithm. In the following sections of this paper, we
use AASPSR(k) to denote our AASPSR algorithm with parameter k to specify the number
of POIs we retain for each category. AASPSR(k) can be considered as a hybrid scheme to
combine ASPSR and NNPSR. To be specific, AASPSR(k) first computes Ci.P* for each
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`

Fig. 6 An illustration of trip search by AASPSR(1) with the traveling rule Bank → Restaurant.

`

Fig. 7 An illustration of trip search by AASPSR(2) with the traveling rule Bank → Restaurant.

category Ci in C such that every POI in Ci.P* is a POI with the top-k minimum traveling
distance sum from S to D in Ci. In particular, if k = 1, only one POI with the shortest
traveling distance sum from S to D for Ci is added to Ci.P*. On the contrary, if k = ∞,
then all the POIs on the underlying road network will be included in Ci.P* for each Ci.
After Ci.P* has been generated for each category, we launch NNPSR to generate a route
only on these selected POIs in each Ci.P*. Starting with S, we search for the nearest POI p

in Ci.P* (Ci ∈ Lzero). Afterward, p is inserted into Lroute and the location of p is used as
the query point of the following NN query. Next we remove the category of p from Lzero and
recompute the adjacency list. The whole process will repeat until Lzero becomes empty. The
complete algorithm of AASPSR(k) is illustrated in Algorithm 2. For comparison purpose,
the trips generated by AASPSR(1) and by AASPSR(2) are demonstrated in Figure 6 and
Figure 7, respectively.

4.5 Comparison between NNPSR, NNPSR-LORD and AASPSR

In order to analyze the performance of the three aforementioned algorithms, we have the
following two definitions:

Definition 6 A MRPSR query is called to be a strictly constrained query if its PCC value is
relatively high.

Definition 7 A MRPSR query is called to be a loosely constrained query if its PCC value
is relatively low.
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Algorithm 2 Advanced A* Search-based Partial Sequenced Route query(C, R, S, D, k)
1: Set Lroute = ∅ and Q = S
2: Integrate all elements in R into an AOV adjacency list A and put all vertices with zero count in Lzero

3: if The AOV network is a DAG then
4: Add all elements of C \ A into Lzero

5: for each category Ci ∈ C do
6: for each POI pj ∈ Ci.P do
7: Costj = DistE(S, pj) + DistE(pj , D)
8: end for
9: Sort POI pj ∈ Ci in ascending order based on Costj and add the top-k pj ∈ Ci with the

minimum Costj into Ci.P*
10: end for

{ASPSR search done, the subsequent NNPSR search starts}
11: while Lzero �= ∅ do
12: P = ∅
13: for each Ci ∈ Lzero do
14: P = P ∪ Ci.P∗
15: end for
16: Identify the road segment ninj covering q.
17: Find all the POIs in P on ninj .
18: if If there exists at least one POI in P on ninj then
19: Update PNN with the POI Pk with the smallest DistN (q, Pk).
20: else
21: Q =< (ni, DistN (q, ni)), (nj , DistN (q, nj)) >
22: De-queue the node n in Q with the smallest DistN (q, n)
23: while DistN (q, n) < Threshold do
24: for each non-visited adjacent node nk of n do
25: Find all the POIs in P on the road segment nnk .
26: Update PNN from the POI p′ in P with the smallest network distance found so far
27: Update Threshold with DistN (q, p′)
28: En-queue (nk, DistN (q, nk)) in Q
29: end for
30: De-queue the node n in the updated Q with the smallest DistN (q, n)
31: end while
32: end if
33: q = PNN

34: Lroute = Lroute ∪ PNN

35: Remove PNN .C from Lzero

36: Update A and Lzero

37: end while
38: return Lroute

39: else
40: Report cycles in R

41: end if

y2

z1

`

y1x1

z2 x2

Fig. 8 An example where AASPSR generates a longer route than NNPSR.
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Query Features NNPSR AASPSR(k) NNPSR-LORD

Strictly constrained MRPSR (e.g., OSR) � �
Loosely constrained MRPSR (e.g., TPQ) � �
Further optimized route �
Time sensitive applications � �

Table 3 The feature comparison among proposed algorithms.

Theorem 4 Given a MRPSR query, AASPSR does not necessarily return a shorter route
than NNPSR.

Proof We can prove it by a counter-example as shown in Figure 8. In Figure 8, the triangle,
rectangle, and pentagon each represents a different category of POIs, and S and D denote
the start point and destination of the trip, respectively. Additionally, we have a traveling rule
denoted as triangle → rectangle → pentagon. Consequently, the NNPSR created trip plan
T1 = {S, px1, py1, pz1, D} (the solid route) is shorter than the AASPSR created trip plan
T2 = {S, px2, py2, pz2, D} (the dashed route). The existence of traveling rules leads to a
roundabout route in AASPSR, which only chooses the POIs inside the ellipse. Therefore,
AASPSR performs worse than NNPSR in terms of route distance in this scenario.

In each category, AASPSR(k) only chooses the k POIs which have the minimum trav-
eling distance sum from the start point to the destination for the subsequent NN search.
Consequently, if there are too many traveling rules imposed, i.e., there are many restric-
tions on the category order, AASPSR(k) will be very likely to generate a roundabout route.
Therefore, for strictly constrained MRPSR queries, which have a higher PCC, NNPSR usu-
ally returns a shorter route than AASPSR(k). On the other hand, for loosely constrained
MRPSR queries, which hold a lower PCC, such as TPQ (PCC equals zero), AASPSR(k)
usually outperforms NNPSR in terms of route distance.

By taking advantage of the LORD algorithm [27], NNPSR-LORD can further shorten
the length of the route retrieved by the NNPSR algorithm. Consequently, NNPSR-LORD
can consistently outperform NNPSR in terms of route distance. However, as far as the re-
sponse time is concerned, NNPSR-LORD, compared with NNPSR and AASPSR, needs
much more computational time, especially in road networks. This is due to its extensive us-
age of network distance functions. Therefore, NNPSR-LORD is only applicable to non-time
sensitive applications. A complete comparison among proposed algorithms is illustrated in
Table 3.

5 Experimental Validation

5.1 Experimental Setup

The experimental results are reported in this section. We implemented the NNPSR, NNPSR-
LORD, and AASPSR(k) algorithms in road networks to evaluate their performances with
respect to the returned route distance and the response time to generate the corresponding
routes. Besides, to highlight the benefits of our three approximate approaches, we used the
LORD-based brute-force solution as the baseline, which applies LORD [27] on each pos-
sible permutation of all categories to get the optimal sequenced route for each particular
category sequence. For each run of the LORD-based brute-force solution, we compared
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the distances of all the possible optimal sequenced routes and recorded the minimum route
distance and overall response time.

As we discussed in Section 4, AASPSR(k) will exhibit more characteristics of NNPSR
when k increases (in particular, AASPSR(k) degrades to NNPSR if k = ∞) and show more
characteristics of AASPSR(1) when k decreases. Therefore, in this section we only focused
on the performance of AASPSR(1) (the terms AASPSR and AASPSR(1) are used inter-
changeably in this section). We varied the following parameters to obtain their effects on
the route distance and response time: the Percentage of the Constrained Categories (PCC),
the average category cardinality, and the number of query categories. PCC describes the
percentage of the number of categories involved in traveling rules over the total number of
categories to be visited in a query. The average category cardinality is the average num-
ber of POIs over all categories while the number of query categories is the total number of
categories to be visited in the query. For each result of the NNPSR, AASPSR and NNPSR-
LORD algorithms, 100 MRPSR queries were launched with a starting point and a destina-
tion generated randomly on the road network, and then the results were averaged. All the
experiments were conducted on a Linux machine with an Intel Core2 Quad CPU (Q9400
2.66GHz) and 4GB memory.

Fig.9(a) Road network of California. Fig.9(b) California points of interest distribution.

Fig. 9 Real Datasets from the state of California.

5.1.1 Road Network Dataset

To investigate the performance of our proposed algorithms for road networks, first we ob-
tained the road network dataset of the state of California from [1]. As shown in Figure 9(a),
the road network of California contains 21,048 nodes and 22,830 edges. Each node is de-
scribed with a tuple of 〈Node ID, Longitude, Latitude〉 and each edge is represented by a
tuple of 〈Edge ID, Start Node ID, End Node ID, L2 Distance〉.

5.1.2 California Point of Interest Dataset

We collected the points of interest of the state of California from [2] as shown in Figure 9(b).
This California dataset has 63 different categories, including airports, hospitals, schools,
populated places, etc., which correspond to more than 100,000 points of interest. Each cat-
egory exhibits a distinct density and distribution. Each point of interest is represented as
a tuple of 〈Category Name, Longitude, Latitude〉. The cardinalities of all the categories
used in our research is shown in Table 4.
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Category Size

Airport 995
Area 287
Bar 278

Building 4110
Church 7680
Hospital 835
Locale 13481
Park 6728

School 11173
Populated place 6900

Summit 5594
Valley 7596

Table 4 The category cardinalities used in our California dataset.

To merge the points of interest in the real dataset with the road network, we adopted the
map format where each point of interest was at first mapped to a point on an edge and then
represented as the distance of this point to the start node of that edge.

5.1.3 Synthetic Point of Interest Datasets

To control different cardinalities and distributions of categories, we also applied synthetic
datasets in our experiments. We generated different numbers of points of interest for differ-
ent datasets and uniformly distributed the points of interest on the edges of the California
road networks.

5.1.4 Traveling Rules

Without loss of generality, for the real dataset, rules were generated between Building and
Populated place, Church and Hospital, and Locale and Park, i.e., rules can be represented
as follows: Building → Populated place, Church → Hospital and Locale → Park. For the
synthetic datasets, rules were generated between any two arbitrary categories at random.

5.2 Effect of the Percentage of the Constrained Categories

In our first experiment, we varied the Percentage of the Constrained Categories (PCC) to
investigate the performance of NNPSR, AASPSR, NNPSR-LORD and the LORD-based
brute-force solution in terms of the route distance and response time. Since our proposed
MRPSR query subsumes the TPQ and OSR queries, the MRPSR queries exhibit the charac-
teristics of TPQ queries when PCC decreases and the characteristics of OSR queries when
PCC increases. Our results are based on the California POI dataset and the synthetic POI
datasets, respectively. In the synthetic POI dataset, the average category cardinality is 6000.
Furthermore, we assumed that the number of query categories is 6. Figure 10 illustrates the
relationship between route distance and PCC for NNPSR, AASPSR, NNPSR-LORD, and
LORD-based brute-force algorithms.

In Figure 10 route distance increases with the increase of PCC for all the algorithms.
This is because with a higher PCC, there will be more restrictions on the order of the cat-
egories, which leads to a longer route. Note that the route distance of AASPSR changes
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Fig.10(a) California dataset Fig.10(b) Synthetic dataset

Fig. 10 Route distance of NNPSR, AASPSR, NNPSR-LORD, and LORD-based brute-force as a function of
PCC.
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Fig. 11(a) NNPSR and AASPSR (California
dataset)

Fig. 11(b) NNPSR-LORD and LORD-based
brute-force (California dataset)
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Fig. 11(c) NNPSR and AASPSR (synthetic
dataset)

Fig. 11(d) NNPSR-LORD and LORD-based
brute-force (synthetic dataset)

Fig. 11 Response time of NNSPR, AASPSR, NNPSR-LORD, and LORD-based brute-force as a function of
PCC

remarkably against PCC in contrast to NNPSR and NNPSR-LORD. The lower PCC is, the
better AASPSR works compared with NNPSR. With a higher PCC, the route distance of
AASPSR increases dramatically. In other words, AASPSR is only suitable for planning a
trip with a low PCC, such as TPQ (PCC equals zero). This is because AASPSR only picks
a single POI in each category for the subsequent NN search. Consequently, given a higher
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PCC (there are more restrictions on the category order), a longer route may be needed to
traverse all the POIs picked up in the first step. In addition, NNPSR-LORD outperforms
NNPSR and AASPSR in terms of route distance given any PCC. The reason is that NNPSR-
LORD employs LORD to obtain the shortest route under the specific order of categories in
the route found by NNPSR.

Figure 11 plots the response time against PCC for NNPSR, AASPSR, NNPSR-LORD,
and the LORD-based brute-force method. Notice that in Figure 11(b) and (d), we plotted
the relationship by using the log values of the response time instead of the original values
because the response times of NNPSR-LORD and LORD-based brute-force solutions are
in different orders of magnitude. First, as shown in Figure 11, all our proposed algorithms
significantly reduce the response time compared with the LORD-based brute-force solution.
To be specific, NNPSR and AASPSR are more than 10000 times faster in some cases than
the LORD-based brute-force method while NNPSR-LORD is more than 100 times faster.
Second, the response times decrease with the increase of PCC. This is because a higher PCC
will decrease the search space of POIs.

5.3 Effect of the Average Category Cardinality
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Fig.12(a) PCC = 33% Fig.12(b) PCC = 66%

Fig. 12 Route distance of NNSPR, AASPSR, NNPSR-LORD, and LORD-based brute-force as a function of
the average category cardinality.

Next, we studied the effect of the average category cardinality by varying the cardinality
from 2000 to 14000 using synthetic datasets. Here we assumed that the number of query
categories is 6. Figure 12 shows the route distances of NNPSR, AASPSR, NNPSR-LORD,
and the LORD-based brute-force method where PCC equals 33% and 66%, respectively. As
Figure 12 shows, the route distance decreases for each algorithm with the increase of the
average category cardinality. The reason is that a denser distribution of a category will lead
to more POI choices, which result in a lower probability of detours. Notice that AASPSR
has relatively poor performance with either a PCC of 33% or 66% because AASPSR outper-
forms NNPSR in terms of route distance only if PCC is very low. The PCC of 33% or 66% is
large enough to deteriorate the performance of AASPSR. Figure 13 shows the response time
for the above algorithms. As Figure 13 demonstrates, the response time of each algorithm
increases with the enlargement of the average category cardinality. This is due to a higher
density of each POI category which elongates the computational time.
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Fig. 13(a) NNPSR and AASPSR (PCC = 33%) Fig. 13(b) NNPSR-LORD and LORD-based
brute-force (PCC = 33%)
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Fig. 13(c) NNPSR and AASPSR (PCC = 66%) Fig. 13(d) NNPSR-LORD and LORD-based
brute-force (PCC = 66%)

Fig. 13 Response time of NNSPR, AASPSR, NNPSR-LORD, and LORD-based brute-force as a function of
the average category cardinality.

5.4 Effect of the Number of Query Categories
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Fig.14(a) California dataset Fig.14(b) Synthetic dataset

Fig. 14 Route distance of NNPSR, AASPSR, NNPSR-LORD, and LORD-based brute-force as a function of
the number of query categories.
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Fig. 15(a) NNPSR and AASPSR (California
dataset)

Fig. 15(b) NNPSR-LORD and LORD-based
brute-force (California dataset)
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Fig. 15(c) NNPSR and AASPSR (synthetic
dataset)

Fig. 15(d) NNPSR-LORD and LORD-based
brute-force (synthetic dataset)

Fig. 15 Response time of NNSPR, AASPSR, NNPSR-LORD, and LORD-based brute-force as a function of
the number of query categories.

In this subsection, we changed the number of query categories to 3, 6, 9 and 12 to
investigate the impact of the number of query categories on the performance of NNPSR,
AASPSR, NNPSR-LORD, and the LORD-based brute-force method. Our experiments are
based on the California POI and the synthetic POI datasets, respectively. In the synthetic
POI dataset, the average category cardinality is assumed to be 6000. In addition, we assume
that PCC equals 66%. Figures 14 and 15 illustrate the experimental results. As shown in
Figure 14, when the number of query categories increases, the route distance of each algo-
rithm extends dramatically. This is because with an increasing number of categories to be
visited, there will be more POIs to be traversed in a trip. Notice that the number of query cat-
egories has a significant impact on whether AASPSR outperforms NNPSR in terms of route
distance. For three-category cases, AASPSR returns a shorter route distance than NNPSR.
On the contrary, for the 6, 9, or 12 category cases, AASPSR reports a longer route than
NNPSR. The reason is that fewer categories will lead to a lower probability for a detour
to occur when AASPSR tries to traverse all the POIs selected in its first step. On the other
hand, as Figure 15 shows, when the number of query categories increases, the response
time prolongs accordingly. The reason is that all the algorithms need more time to compute
more categories to answer a MRPSR query. In particular, AAPSR consistently needs more
response time than NNPSR, irrespective of the number of query categories.
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6 Related Work

In this section we review previous work related to nearest neighbor queries and route plan-
ning queries.

6.1 Nearest Neighbor Query

The nearest neighbor query is a very important query type for supporting GIS applications.
With the R-tree family [3, 9, 26] of spatial indices, depth first search (DFS) [22] and best
first search (BFS) [10] have been the prevalent branch-and-bound techniques for process-
ing nearest neighbor queries. The DFS method recursively expands the intermediate nodes
for searching NN candidates. At each newly visited index node, DFS computes the order-
ing metrics for all its child nodes and applies pruning strategies to remove non-promising
branches. When the search reaches a leaf node, the data objects are retrieved and the NN
candidates are updated. On the other hand, the BFS method employs a priority queue to
store nodes to be explored through the search process. The nodes in the queue are sorted
according to their minimum distance (MINDIST) to the query point. During the search pro-
cess, BFS repeatedly dequeues the top entry in the queue and enqueues its child nodes with
their MINDIST into the queue. When a data entry is dequeued, it is included in the result
set.

Recently nearest neighbor search solutions have been extended to support queries on
spatial networks. Jensen et al. [12] proposed data models and graph representations for NN
queries in road networks and designed corresponding solutions. Papadias et al. [20] pre-
sented solutions for NN queries in spatial network databases by progressively expanding
road segments around a query point. A network Voronoi diagram based solution for NN
search in road network databases was proposed in [15]. Sharifzadeh et al. [28] extended the
Voronoi diagram based approach for spatial data streams by using approximate Voronoi cell
computation. On the contrary, in order to speed up the NN search, Samet et al. [25] pro-
posed a solution to explore the entire spatial network by pre-computing the shortest paths
between all the vertices in the network and using a shortest path quadtree to capture spatial
coherence. By employing their approach, the shortest paths between various vertices can be
computed only once to answer different NN queries on a given spatial network. However,
the above pre-computation based approaches suffer from high overhead and adapt poorly
to network updates. To overcome this shortcoming, Lee et al. [17] presented an efficient
and flexible query framework, ROAD, based on search space pruning by using shortcuts for
accelerating network traversals and object abstracts for guiding traversals.

6.2 Route Planning Query

In many GIS applications (e.g., logistics and supply chain management), users have to plan
a trip to a number of locations with several sequence rules and the goal is to find the opti-
mal route that minimizes the total traveling distance. One related query type is named the
optimal sequenced route (OSR) query proposed by Sharifzadeh et al. [27]. OSR query re-
trieves a route of minimum length starting from a given source location and passing through
a number of locations (with different types) in a particular order (sequence) imposed on all
the POI types. In [29], a pre-computation approach was provided to answer OSR query by
taking advantage of a family of AW-Voronoi diagrams for different POI types. However,
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because the searches in [29] are based on NN queries, the authors need to investigate the
performance of their method in terms of the traveling distance besides the response time. A
multi-type nearest neighbor (MTNN) query solution was proposed in [19] by Ma et al. Given
a query point and a collection of locations (with difference types), a MTNN query finds the
shortest path for the query point such that only one instance of each type is visited during
the trip. MTNN can be treated as an extended solution of OSR by exploiting a page-level
upper bound. On the contrary, Li et al. [18] designed solutions for another new query type –
Trip Planning Queries (TPQ). With TPQ, the user specifies a set of POI types and asks for
the optimal route from her starting location to a specified destination which passes through
exactly one POI in each POI type. Notice that compared to a OSR query, there is no order
imposed on the types of POIs to be visited in a TPQ query. Terrovitis et al. [34] illustrated
a-autonomy shortest path and k-stops shortest path problems for spatial databases. Given a
source point and a destination point, the first query retrieves a sequence of points from the
database where the distance between any two consecutive points in the path is not greater
than a. The second query searches for the optimal path from a origin to an end which passes
through exactly k intermediate points in the database. Tian et al. [32] proposed skyline path
queries in road networks based on multiple route search criteria (i.e., shortest traveling dis-
tance and shortest traveling time). By taking into account the probability that each POI type
satisfies the user’s particular need, an interactive approach was proposed in [14]. In order
to capture the characteristics of ever-changeling road networks, Tian et al. [33] proposed
the continuous min-cost path query and presented a system, PathMon, to monitor min-cost
routes in dynamic road networks. However, all the aforementioned solutions cannot support
MRPSR queries.

Another related problem to MRPSR is the sequential ordering problem (SOP) [6] and
it is stated as follows. Given a graph G with n vertices and directed weighted edges, find
a minimal cost Hamiltonian path from the start vertex to the terminal vertex which also
observes precedence constraints. Nevertheless, a Hamilton path is not required in MRPSR
and the types of visited locations are considered by our solution.

7 Conclusions

Geographic information systems are getting increasingly sophisticated and route queries
with traveling rules represent a significant class of spatial queries. Existing solutions only
focus on trips with a complete POI category sequence or without any sequence. However,
GIS users usually want to set a number of traveling preferences when they plan their trips. In
this paper we propose the MRPSR query and design three fast approximation algorithms to
efficiently compute routes which can fulfill all the traveling rules with a near-optimal travel
distance based on the underlying road networks. With extensive simulations, we show that
our techniques can generate satisfying trips which are very close to the shortest routes with
remarkable short response time. For future work, we plan to extend our algorithms to support
dynamic road networks in which traffic information (e.g., travel time, traffic congestion, etc.)
is incrementally becoming available as a data stream.
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