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Point of Interest Detection and Visual Distance

Estimation for Sensor-rich Video
Jia Hao, Guanfeng Wang, Beomjoo Seo, Roger Zimmermann

Abstract—Due to technological advances and the popularity of
camera sensors it is now straightforward for users to capture
and share videos. A large number of geo-tagged photos and
videos have been accumulating continuously on the web, posing
a challenging problem for mining this type of media data. In
one application scenario users might desire to know what the
Points of Interest (POI) are which contain important objects or
places in a video. Existing solutions attempt to examine the signal
content of the videos and recognize objects and events. This is
typically time-consuming and computationally expensive and the
results can be uneven. Therefore these methods face challenges
when applied to large video repositories. We propose a novel
technique that leverages sensor-generated meta-data (camera lo-
cations and viewing directions) which are automatically acquired
as continuous streams together with the video frames. Existing
smartphones can easily accommodate such integrated recording
tasks. By considering a collective set of videos and leveraging
the acquired auxiliary meta-data, our approach is able to detect
interesting regions and objects (POIs) and their distances from
the camera positions in a fully automated way. Because of its
computational efficiency the proposed method scales well and
our experiments show very promising results.

Index Terms—Point of Interest, visual distance estimation,
sensor-rich video

I. INTRODUCTION

The astounding volume of camera sensors produced for and

embedded in cellular phones has led to a rapid advancement

in their quality, wide availability and popularity for captur-

ing, uploading and sharing of videos (also referred to user-

generated content or UGC). In our work we are interested in

mobile videos that have been collected by users during various

activities such as vacations, business trips, etc. Specifically,

smartphones are carried by millions of people and can now

record quite high-quality videos. A recent study by Cisco
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reported that mobile video already constitutes a large fraction

of the overall Internet traffic [1].

With the pervasiveness of these affordable, portable, and

networked devices, a large number of geo-tagged photos and

videos have been accumulating continuously on the web [2],

[3]. However, most applications process this type of informa-

tion by using only the raw GPS data, such as coordinates and

timestamps, without attempting a deeper analysis. They often

only allow users to post videos based on a single GPS location,

usually the initial camera position. These existing approaches

are unsatisfactory under two common conditions: (a) when a

user moves during recording the resulting video is taken along

a trajectory, hence a single location is insufficient to describe

the content, and (b) the location of the most salient object in

the video is often not at the position of the camera, but may in

fact be quite a distance away. Consider the example of a user

recording the pyramids of Giza – he or she would probably

need to stand at a considerable distance.

A significant research challenge in recent years has been

how to organize large video repositories and make them

searchable. This typically requires some kind of understanding

of the video content and it has turned out to be a very difficult

problem. In our study we propose a method to identify Points

of Interest (POIs) in videos which contain important objects

and places. Such POIs can be part of an attraction, such as the

Eiffel Tower, or consist of a more diffuse area that contains

no specific physical objects but may be of interest to users,

such as the center of an event. Existing approaches [4], [5]

often use content-based techniques to extract image features

which are then matched to keywords taken from bag-of-words

vocabularies. However, due to the overwhelming amount of

video material, it is not always realistic to exhaustively process

every video segment. Because of the time-consuming proce-

dure of video decoding and the complex feature extraction

computations involved, these methods often lack scalability.

Here we present our unique and unconventional solution

to address three important challenges in mobile video man-

agement: (1) how to find interesting places in user-generated

sensor-rich videos, (2) how to leverage the viewing direction

together with the GPS location to identify the salient objects in

a video, and (3) how to efficiently estimate the visual distance

to objects in a video frame. Fig. 1 shows the architecture of

the proposed framework. We do not restrict the movement of

the camera operator (for example to a road network) and hence

assume that mobile videos may be shot along a free-moving

trajectory. At first, to obtain a viewable scene description,

we continuously collect GPS location and viewing direction

information (via a compass sensor) together with the video
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Fig. 1. Architecture of the proposed framework.

frames. Then the collected data are sent via the wireless

network to server. This is practically achievable today as

smartphones contain all the necessary sensors for recording

videos that are annotated with meta-data. On the server side,

in the first stage we process the sensor meta-data of a collective

set of videos to identify POIs containing important objects or

places. The second stage computes a set of visual distances

R between the camera locations and the POIs. Finally, the

obtained POI and R are ready for other usage.

The overall objective of the proposed work is to enhance

the multimedia and mobile web by leveraging the knowledge

mined from sensor-rich videos. Manual POI creation, i.e.,

clicking on a digital map, is possible. However, such manual

operations cannot scale to a large spatial dataset. Furthermore,

the connection between video content and POI is lost. More

importantly, the concept of POI includes not only static

objects, but also interesting events, which may dynamically

change over time. Relying on manual annotation is not enough

to successfully detect all the POIs within a short time period.

In contrast, the contributions of our work are as follows:

(1) Two algorithms are proposed to detect POIs (or objects)

with high accuracy and fully automatically from large sets of

sensor data.

(2) The proposed method identifies salient objects and com-

putes the effective visual distances from the camera location

in each video frame.

(3) The approach is scalable to large video repositories

as it does not rely on complex video signal analysis, but

rather leverages the geographic properties of associated meta-

data, which can be done computationally fast and requires no

manual intervention.

POI detection can assist in object recognition in videos

and landmark detection. It can also be useful in a number

of application fields such as providing video summaries for

tourists, or as a basis for city planning. Additionally, automatic

and detailed video tagging can be done and even simple video

search can benefit. This work builds upon our prior work (short

paper: [6], demo paper: [7]). The differences and connection

between these two works are as follows: (1) The short paper

describes a high-level framework for keyframe presentation

and the keyframe extraction algorithm from sensor data is its

main contribution. (2) In this journal paper we focus on how

to accurately detect POIs and their visual distances, and we

provide a detailed description and analysis of the two POI

detection methods. (3) In the prior work, we made use of

the detected POIs and estimated visual distance to identify

the keyframes and present the obtained keyframes on a map

interface.

The remainder of this paper is organized as follows. Sec-

tion II describes the related work. Section III details our

approach. In Section IV we report on major experimental

results and offer some discussions. Finally, in Section V we

draw conclusions and present possible future work.

II. RELATED WORK

Our framework draws upon several related areas. Below we

provide an overview of some of the existing work.

A. Digital Media with Geo-Locations

Associating GPS coordinates with digital photographs has

become an active area of research [8]. There has been work

on organizing and browsing personal photos according to

location and time. Toyama et al. [9] introduced a meta-data

powered image search and built a database, also known as

the World Wide Media eXchange (WWMX), which indexes

photographs using location coordinates and time. A number

of additional techniques in this direction have been pro-

posed [10], [11]. There also exist several commercial web sites

(e.g., Flickr, Woophy) that allow the upload and navigation

of geo-referenced photos. All these techniques use only the

camera geo-coordinates as the reference location in describing

images. We instead use a multi-sensor approach to describe

video scenes.

More related to our work, Ephstein et al. [12] proposed

to relate images with their view frustum (viewable scene)

and used a scene-centric ranking (termed geo-relevance) to

generate a hierarchical organization of images. The key

differences between geo-relevance [12] and our grid-based

approach lie in three aspects: (1) the geo-relevance method

is designed for static images that contain accurate location

and orientation information, while our method is working

based on a real-world, noisy GPS and compass dataset and

is successfully discovering meaningful POIs therefrom. (2)

Our method is designed for incremental updates, while it has

not been explicitly stated that the geo-relevance approach is

suitable for this purpose. (3) The conceptual model of [12]

has not been thoroughly validated while we propose two

different methodologies (sector-based and center-line-based)
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and provide evidence that the center-line-based solution is the

most efficient, while achieving comparable accuracy.

Some methods [13], [14] use location and other meta-data,

as well as text tags associated with images and the images’

visual features, to generate representative candidates within

image clusters. Geo-location is often used as a filtering step.

Our work considers a much more comprehensive scenario that

is concerned with continuous sensor-streams of mobile videos,

which are dynamically changing over time.

B. Location Mining History

During the past years, trajectory mining of moving objects

and location history mining have attracted significant research

efforts. An area of investigation has considered the prediction

of the movement of mobile users by mining trajectories [15],

[16]. Location-based recommendation systems [17], [18] have

also been investigated to provide navigation information. Gi-

annotti et al. [19] mined similar sequences from user’s moving

trajectories, and Hariharan et al. [20] presented a framework

to parse and model location histories. Li et al. [21] mined user

similarities based on location histories, and Zheng et al. [22]

have investigated mining correlations among locations and

between interesting locations and travel sequences. The main

differentiation between these prior methods and our proposed

approach is their isolated use of the location information while

we focus on a multi-sensor, multi-video approach that enables

the computation of more comprehensive result information.

C. Landmarks Mining from Social Sharing Websites

Some related work focuses on landmark mining using user-

generated texts or photos. Ji et al. [23] mined city landmarks

from blogs by exploiting graphic models. Kennedy et al. [24]

adopted a tag-location-vision strategy to group city views

from geo-tagged Flickr photos of San Francisco. Zheng et

al. [25] investigated finding highly photographed landmarks

automatically from a large collection of geotagged photos. Liu

et al. [26] presented a filter-refinement framework to discover

hot topics corresponding to geographical dense regions. The

key difference from prior work is that we identify the location

of places (or buildings, etc.) that are of interest to people,

not the camera location (which could be far away). Thus the

video can be associated with the object(s) that are the focus

of attention in a video.

III. APPROACH DESIGN

In this section we present the details of our approach.

As key features we use statistical knowledge to infer POI

locations from collected sensor measurements without any a

priori information and then estimate the visual distance R
between camera positions and those POIs.

Conceptually, the estimation of the effective visual distance

R is the process of determining the distance to object or scene

locations where one or many camera views are pointing. In

the rest of this paper we term such a location (or its grid cell

representation on a 2D map) as POI. Such POIs can be part of

an attraction or landmark or consist of a more diffuse area that

contains no specific physical objects but may be of interest to

users (e.g., a beautiful lake or valley).

Our approach leverages a two-stage process which is out-

lined in Fig. 1. First, POIs are detected from profiling of

data collected from a large set of sensor recordings and then

second, the visual distances R are estimated between camera

and POI locations. Our framework utilizes the meta-data which

is concurrently collected with video frames to describe the

geographic properties related to the camera view. We start

in Section III-A by describing the viewable scene model

used and present how we collected videos and their sensor

measurements. Next, Section III-B introduces two methods for

POI detection. Cluster-based method computes the intersection

points of all the camera views and then identifies the clusters

inferred from this point cloud as POIs. This is an intuitive

design based on the concept of POI. Grid-based method

generates a popularity map based on how often an area appears

in different camera views and then identifies the most popular

places. This method quantizes the target space into a finite

number of cells, and fast processing time which depends on

number of cells in each dimension in quantized space is its

advantage. Finally we estimate the effective visual distance R
by calculating the distance between camera locations and the

closest POIs in Section III-C.

A summary of the terms and a definition of the symbols

appearing in this paper are shown in Table I.

TABLE I
TERMS AND DEFINITION OF SYMBOLS.

Notation Definition

α Camera orientation
di Multi-dimensional sensor data observation (FOV)
D Set of sensor measurement di (FOVs)
FOV Field-of-View
G Target geographic map area
g Square grid cell
h POI grid cell
H Set of h
li Center line of FOV di

θ Viewable angle
P Camera location consists of the latitude and longitude
Rmax Maximum visible distance
R Effective visual distance
xi Measurement vector consists of the subtended angle a

and distance d to a POI
X Set of xi

A. Viewable Scene Model

A camera positioned at a given point P in geo-space

captures a scene whose covered area is referred to as the

camera field-of-view (FOV, also called the viewable scene). We

adapt the FOV model introduced in our prior work [27], which

describes a camera’s viewable scene in 2D space by using four

parameters: the camera location P , the camera orientation α,

the viewable angle θ and the maximum visual distance Rmax

(see Fig. 2).

The camera position P consists of the latitude and longitude

coordinates read from a positioning device (e.g., GPS sensor)

and the camera direction α is obtained based on the orientation

angle provided by a digital compass. The orientation obtained

here refers to the shift from the geographic north, not the
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Fig. 2. Illustration of the camera field-of-view (FOV) in 2D space.

magnetic north. Rmax is the maximum visual distance from

P at which a large object within the camera’s field-of-view

can be recognized [27]. The angle θ is calculated based on

the camera and lens properties for the current zoom level [28].

The collected meta-data streams consist of sequences of di =
〈nid, vid, tFOV , tf , P, α, θ〉 tuples, where nid represents the

ID of the mobile device, vid is the ID of the video file and

tFOV indicates the time instant at which the FOV tuple was

recorded. The timecode associated with each video frame is

denoted by tf . In 2D space, the field-of-view of the camera

at time tFOV forms a pie-slice-shaped area as illustrated in

Fig. 2.

To acquire sensor-annotated videos we have developed two

custom recording apps for Android- and iOS-based smart-

phones and tablets. When a mobile device begins to capture

video, the GPS and compass sensors are concurrently enabled

to record the location and orientation of the camera. Our

data-acquisition software fetches such sensor values whenever

new values are available. Video data are processed in real-

time to extract frame timecodes (tf ). All collected meta-data

(i.e., location, direction, frame timecode and video ID) are

combined as a tuple and stored for uploading to a server.

POI

R

Rmax

(a)

phantom  
POI

(b)

camera 
trajectories

POI

POI

POI

Fig. 3. (a) Conceptual illustration of visual distance estimation. (b) Illustration
of the detection of a non-existent “phantom” POI.

Fig. 3(a) illustrates the concept of visual distance R esti-

mation in conjunction with the identification of POIs. Along

the camera trajectory (curves), the camera views (arrows) tend

to point to some areas (solid circles) more frequently, and R
can be determined as the distance between such popular areas,

i.e., POIs, and the camera locations.

To explain our POI detection and visual distance estimation

better, we now provide some descriptions of two terms which

will be used later.

Description (POI): POI is a point of interest in a video

which contains an important object, place or event. When

mapping to geographic space, the term POI refers to a poplular

area to which camera views tend to point more frequently. We

define a POI as an area encompassing a set of points (square

grid cells).

Description (phantom POI): A phantom POI is not a real

point of interest. It is generated due to the interference of

nearby POIs (as shown in Fig. 3(b)), i.e., multiple cross-

intersections from at least two lines of two independent POIs.

A phantom POI should not be included in the set of detected

POIs.

B. POI Detection

We introduce two approaches for detecting POIs. The

cluster-based POI detection method (Section III-B1) applies

a clustering algorithm on the cloud of intersection points of

the FOV center lines. The second, grid-based POI detection

method (Section III-B2) is utilizing a grid counting approach

to obtain a popularity distribution of FOVs. The target space

is assumed to be a 2D geographical map (i.e., G = R
2). Let

the sensor measurement results be expressed as sets of tuples

of D = d1, · · · ,dn, where each di is a multi-dimensional

observation consisting of GPS coordinates, compass direction

angles, etc., as described in the previous section.

1) Cluster-based POI Detection: As is illustrated in

Fig. 3(a), an intuitive way to detect POIs is to use the

intersection points of the center vector of FOVs. All the

intersection points together form a point cloud on which a

clustering algorithm can be applied to obtain clusters as the

detected POIs. However, as we found from our experiments,

this method suffers from a major performance issue due to

the generally large number of intersection points. Hence, we

propose a pre-processing step to reduce the number of input

points for the clustering algorithm.

We separate the center line li of FOV (illustrated in Fig. 2)

di into m segments (l1i , · · · , l
m
i ) of equal length Rmax/m.

Next we calculate the intersection points of segment li with

all the other center lines. The algorithm maintains a data struc-

ture for each segment containing a monotonically increasing

counter of intersection points. Subseqently, for each center line

we represent it as a curve to describe the distribution of the

intersection points. To increase the signal-to-noise ratio (SNR),

we smooth the curve with a moving-average filter. Among all

the segments of li we compute the local maxima of the curve

and then identify their positions as the points of interest of li.

The key rationale behind this operation is that the intersection

points tend to crowd around the interesting points where the

FOVs really focus on.

After collecting the interesting points for each center line

we apply a density-based clustering algorithm, DBSCAN [29],

to detect POI regions. A number of clustering algorithms are

available and the reasons we selected DBSCAN are as follows.

(1) DBSCAN does not require the number of clusters to be

selected in advance. This is important as we do not know how

many POIs may exist. (2) DBSCAN can find arbitrarily shaped

clusters so that we can identify irregularly shaped POIs. (3)

DBSCAN has a notion of noise suppression so that unpopular

areas can be pruned. Finally, (4) DBSCAN is insensitive to

the ordering of the input points.

2) Grid-based POI Detection: The target space is first

partitioned into equally-spaced square grid cells g. Assuming
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H ⊂ G is the set of POI grid cells given D, then the

probability that a grid cell g belongs to a POI given the sensor

observations is expressed as p(g ∈ H|D), or simply p(g|D).

To obtain the posterior probability p(g|D) we use a grid

counting-based popularity method. Unlike existing popularity

estimation methodologies for geo-tagging [30], [31], where

GPS locations are typically used as the popularity measure,

we leverage the visual coverage model conveyed by the field-

of-view of a camera, because the camera position may be

displaced from the area or location in which users are actually

interested in when recording video. The key rationale behind

our approach is that if an area is pointed to by cameras

more often, it will more likely be a POI. This reasoning is

analogous to the PageRank [32] algorithm where a web page is

considered more important if it is linked to by many other web

pages. As illustrated in Fig. 3(a), POIs tend to be pointed to,

or experience overlap from, many camera FOVs. One situation

needs to be specially handled, namely when important objects

are located across from each other and hence camera direction

vectors coincidentally intersect in an area between the actual

POIs – see the example in Fig. 3(b). In the rest of this paper we

term such areas “phantom POIs” and they will be considered

later.

(a) (b) 

max
R

max
R

Fig. 4. (a) Sector-based coverage model. (b) Center-line-based coverage
model.

Our algorithm maintains a 2-dimensional data structure

representing every map grid cell and containing a monotoni-

cally increasing counter of interest. Without prior knowledge

of the underlying landmarks or attractions, the counter is

incremented whenever its grid cell is visually covered by an

FOV. We investigate two visual coverage models: a sector-

based coverage model and a line-based model. The sector-

based coverage model uses an FOV that is abstracted as a

sector whose maximal visual distance is Rmax (say, 1 km). As

illustrated in Fig. 4(a), we increase the counter of all the grid

cells that overlap partially or fully with the sector shape. Since

this exhaustive coverage is time-consuming to process, we

introduce a lightweight solution, namely a center-line-based

coverage model. It uses a line vector with length Rmax, whose

origin coincides with the GPS location and whose heading

is the camera direction – see Fig. 4(b). With this model we

increase only the counters of the grid cells that intersect with

the center vector. The intuition for this approach is that the

main focus of interest in videos is often on objects located

near the center of the frame or the FOV as shown in Fig. 5.
Using either of these two coverage models we generate a

posterior popularity probability for every grid cell, p(g|D), by

0
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POI position within a video frame

Percentage of occurance

Fig. 5. Distribution of horizontal POI position within a video frame for two
videos V8636 and V1477 in Fig. 13 (0 – left margin, 50 – center, 100 – right
margin).

normalizing the counters as follows

p(g|D) =
cg

∑

dj∈D
sj

, (1)

where cg is the counter of grid cell g and sj is the number of

grid cells affected by each coverage model generated by the

sensor measurement dj . Without loss of generality we use the

posterior probability as the counter value interchangeably.

Among all the grid cells, we then compute the local maxima

across the map and identify them as POIs if their probability

is higher than those of all their neighboring cells and the

difference exceeds a certain threshold (K)

p(g = h|D) ≥ K + p(i|D), i ∈ Ng, (2)

where Ng is the set of g’s neighboring cells.

One important aspect of large-scale systems is the efficiency

of the employed algorithms. Next we will perform a complex-

ity analysis of the two POI detection algorithms.

3) Computational Complexity Analysis: We consider that

there are Nf FOVs (sensor measurement results) in the target

2D space.

For the cluster-based method, computing the intersection

points of Nf center lines of FOVs results in time complexity

O(N2

f ). Next we compute the local maxima along the m
segments of each center line, and the complexity for this

operation is O(Nf ×m). Assuming that for each center line

we get k (k < m) interesting points on average as input to

the DBSCAN algorithm, then the total number of input points

is O(k × Nf ) and the run time complexity for clustering is

O((k×Nf )
2). Therefore, the overall time complexity for the

clustering-based method is

O(N2

f ) +O(Nf ×m) +O((k ×Nf )
2) = O(N2

f )

For the grid-based method, the time complexity of comput-

ing the counters for Nc grid cells covered by Nf FOVs is

O(Nf ). The complexity of computing the local maxima of

the map is O(Nc). Hence, the overall time complexity for the

gird-based method is

O(Nf ) +O(Nc)

From the above analysis we observe that when N2

f is much

larger than Nc, the grid-based approach is much more efficient

than the clustering-based method. On the other hand, when N2

f

is much smaller than Nc, the cluster-based method is more

efficient. We conclude that the grid-based approach is more
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suitably applicable to dense areas with a lot of FOV data

(which is the more frequently case), while the cluster-based

method is best applied to sparse data areas.

C. Effective Visual Distance Estimation

Let H be a set of grid cells from the estimated POIs

computed from the previous stage. The sensor values related

to a camera view are transformed into a measurement vector

X = {x1, . . . ,x|H|}, where xi consists of the subtended angle

a of a compass direction to the center of POI grid cell i ∈ H
and the Euclidean distance d to the center of i.

Our effective visual distance estimation is based on the

assumption and observation that a camera view tends to point

to an interesting place more often than to an unattractive area.

Therefore, we can leverage this information to estimate the

effective visual distance by the closeness – in terms of lower

angular disparity and higher popularity rank – to a POI and

select the closest one. Eqn. 3 expresses the effective visual

distance as the distance to the POI which is most likely pointed

to by a camera view, by choosing the minimum subtended

angle along with a higher posterior popularity probability, i.e.,

1 - p(i|D).

{argmin
xi

(xi.a) · (1− p(i|D))}.d (3)

This computation, however, may result in an incorrect

decision because of the existence of phantom POIs. As seen

in Fig. 3(b), camera views crowd around real POIs, but

occasionally four or more camera views point to the same

area by-passing the real POIs. Such an area is detected as

a POI by our algorithm. However, a phantom POI should

not be chosen as the closest POI, since it may be erroneous.

We may exclude such non-existing POIs with information

from third-party landmark databases such as Google Maps

or OpenStreetMap. However, such landmark information is

generally only available for some highly popular areas.

To eliminate such undesirable phantom POIs when no land-

mark databases are available, we propose a cross-intersection

elimination heuristic. This exhaustive technique is based on the

observation that a phantom POI is generated by multiple cross-

intersections from at least two lines of two independent POIs.

This implies that some candidate POIs near the intersection

points are highly likely to be phantom POIs. Algorithm 1

outlines our method. It first creates all possible intersection

points of two disjoint lines from a set of candidate POIs (lines

2–9). If the intersection points and their corresponding POIs

are too close, we discard them (lines 4–5). Next, we compute

how far each POI is located from the intersection points and

select some within a given threshold distance (lines 11–15).

Finally, we recover the POIs that contribute to the elimination

of other POIs and return the remaining POIs without any cross-

intersections (lines 16–21). The setting of threshold Th relates

to the size of grid cells. In our experiment, we set Th as the

length of diagonal of a grid cell.

IV. EXPERIMENTS

We first describe how we collected the test data for our

experiments. Second, we report on the experimental results

and provide some discussions.

Algorithm 1 Cross-Intersection Elimination Algorithm

Require: H: set of candidate POIs, Th: a threshold
1: P ← ∅
2: for all different i, j, k, l ∈ H do
3:

p{i, j, k, l} = intersection({i, j}, {k, l})

∪ intersection({i, k}, {j, l})

∪ intersection({i, l}, {j, k})

4: if ∃ p ∈ p{i, j, k, l}, q ∈ p{i, j, k, l} and ||p, q|| ≤ Th
then

5: continue
6: else
7: P ∪ = p{i, j, k, l}
8: end if
9: end for

10: C ← ∅
11: for all i ∈ H, p ∈ P do
12: if ||i, p|| ≤ Th then
13: C = C + i, break
14: end if
15: end for
16: for all c ∈ C do
17: if ∃ p{· · · , c, · · · } ∈ P then
18: C = C − c
19: end if
20: end for
21: return H − C

A. Data Collection

1) Recording Hardware and Software: Fig. 6 shows the

screenshots of the acquisition software we used to collect our

dataset. The software apps provide automated annotation of

captured videos with their respective field-of-views (FOV).

The resolution of the collected videos is 640×480 pixels

(Android) or 720×480 (iOS). The frame rate is 24 frames per

second, and the sampling rate for the location and orientation

sensor information is 1 sample per second.

2) Video and Sensor Dataset: To evaluate the performance

of our framework for POI detection and effective visual dis-

tance estimation, we prepared two video and sensor datasets.

(1) Singapore dataset

The videos were collected in the Marina Bay area in Sin-

gapore. We recorded 71 video sequences of sensor-annotated,

mobile videos over a three months period (Dec. 2010 – March

2011) in a 2km-by-2km area, with most of the videos taken in

open space. The trajectories of these test videos are shown in

Fig. 9(c) (bright green lines). The total length of the test videos

is 9,718 s. Different users were capturing the videos and they

were not told to deliberately capture landmarks. Therefore, the

videos were taken in various locations within the area and not

all landmarks appeared in every video. All FOVs of the test

videos are contained within a rectangular area with the top left

corner at (lat/long 1.29328497, 103.8481559) and bottom right

corner at (lat/long 1.27728497, 103.8661559). We partitioned

the area into 100×100 grid cells. The size of each cell was

about 20×18 m2.

(2) Chicago dataset

This dataset was collected during the period of NATO
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Fig. 6. Screenshots of acquisition software for Android-based (left) and iOS-based (right) smartphones used in the experiments.

Summit (18 – 19 May 2012) held in Chicago. 284 videos were

recorded by college students in the downtown area. We choose

228 videos in a 3km-by-3km area as our test dataset. The

trajectories of these test videos are shown in Fig. 10 (bright

green lines). The total length of the test videos is 9,634 s. All

FOVs of the test videos are contained within a rectangular area

with the top left corner at (lat/long 41.893993, -87.649107)

and bottom right corner at (lat/long 41.865440, -87.611713).

More details about the two datasets are listed in Table II.

TABLE II
STATISTICS OF THE TWO DATASETS.

Dataset # of Recording Total length Total length

photographer period of videos of trajectories

Singapore 5 Dec. 10 – Mar. 11 9,718 s 8,022 m

Chicago 40 18 – 19 May 12 9,634 s 11,520 m

3) Sensor Data Error Filtering: State-of-the-art mobile

devices report the GPS accuracy of the received GPS signal in

addition to the location. We found that the two different mobile

devices we tested had two different minimum GPS error

bounds: 6 meters and 2 meters. The GPS error distribution

for Singapore dataset is shown in Fig. 7. One can see that

most of the GPS errors are below 20 meters.

Based on this observation we filtered out GPS values with

GPS error values higher than 20 meters. Hence, because

some sample points were discarded, there existed a few gaps

between some consecutive GPS measurements and we linearly

interpolated those values. The above method is introduced by

Hakeem et al. [33].

Even after filtering, we still cannot guarantee that all the

errors are corrected. Since our method is based on the FOVs
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Fig. 7. GPS error distribution for Singapore dataset.

constructed by continuous sensor data sampling, sensor data

errors can counterbalance each other to a certain degree. For

example, for a specific point, the GPS data sampled at one

time may be located on one side of the accurate location

while for another sampling it may be located on the opposite

side. By accumulating these measurements, the randomness of

the errors provides compensation and should not significantly

affect the accuracy of POI detection and visual distance

estimation.

Orientation data collected from the digital compass is not

accurate enough either. To improve the accuracy of noisy

orientation sensor measurements generated by mobile devices,

we use the OSCOR system [34], [35]. The system collects

visual landmark information and matches it against GIS data

sources to infer a target landmark’s real geo-location. By

knowing the geographic coordinates of the captured landmark

and the camera, we are able to calculate corrected orientation

data.
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B. Results

Two POI detection algorithms are written in C and Matlab.

We used C program to get the intersection points info (Cluster-

based) and the grid counting results (Grid-based), after which

we ran DBSCAN algorithm (Cluster-based) and computed the

local maxima (Grid-based) in Matlab.

1) POI Detection Results:

Fig. 8. POI detection results of the cluster-based method (Singapore).

a) POI detection from Singapore Dataset: Fig. 8 shows

POI detection results from the cluster-based method. The

labeled POIs a, b, c, d, and e all represent the locations of

interesting areas (a: Clifford Pier; b: Merlion; c, d: Esplanade;

e: Marina Bay Sands). The gray circles correspond to noise

which was separated from the POIs by DBSCAN. In this

method, we use the Euclidean distance as the distance metric.

From the figure, we can see that the cluster-based method

can successfully identify a set of POIs. However, DBSCAN

does not cluster data sets well with large differences in

densities. Therefore, some areas that are more dense than the

surrounding regions but still have an overall quite low density

will not be selected even though they should be identified as

POIs.

Results from our grid-based POI detection method on

Singapore dataset are presented in Fig. 9. Fig. 9(a) and 9(b)

show the contour plots for two popularity maps obtained from

the sector-based and the center-line-based coverage models,

respectively. As more points are sampled with the sector-

based method, the corresponding FOV popularity density map

(Fig. 9(a)) is more smooth in appearance. On the other hand,

the FOV density popularity map we obtained from the center-

line-based coverage model (Fig. 9(b)) appears more jagged

and a greater number of local maxima can be observed.

Fig. 9(c) and 9(d) show two snapshots from Google Maps

with superimposed POIs detected from the popularity maps of

Fig. 9(a) and 9(b). The bright green lines are the trajectories of

the 71 videos and the red points represent the POIs that were

detected. In Fig. 9(c) we can observe that the POIs around the

Merlion and Marina Bay Sands complex were successfully

detected. However, compared with Fig. 9(d), several POIs are

missing in Fig. 9(c). In Fig. 9(d), the POIs labeled A, B,

C, D, E, H, G all represent the locations of landmarks or

locations near landmarks (A: Clifford Pier; B: The Fullerton

Hotel Singapore; C: Merlion; D, E: Esplanade; G: The Float;

H: Marina Bay Sands). However, point F is located in the water

in between those landmarks. F is an example of a phantom POI

that was detected because of the intersection of center lines

targeting surrounding landmarks. With our cross-intersection

elimination heuristic (Algorithm 1), F can be removed.

We observe from the above figures that the sector-based

coverage model obtains a subset of all the POIs detected

by the center-line-based model. The reason is that the most

interesting objects in a video frame often appear in the middle

of the frame. Hence the sector-based model actually has a more

diffuse focus, resulting in POI regions that are less clearly

distinguishable. As an additional benefit, the center-line-based

model is more computationally lightweight, therefore we select

it for our visual distance estimation process. We can observe

that the POI distribution in the center-line-based model is very

similar to the results achieved by the cluster-based method

(Fig. 8).

Fig. 10. POI detection results of the grid-based method (Chicago).

b) POI detection from Chicago Dataset: Fig. 10 shows

POI detection results obtained from the center-line-based

coverage model for grid-based method based on Chicago

dataset. The bright green lines are the trajectories of the

228 videos and the red points represent the POIs that were

detected. The pictures pointed by individual black arrows are

the keyframes which represent the important events occurred

in the POI areas. As the dataset was collected during the NATO

Summit, most of the POIs detected are crowded by agitated

protestors who were waving placard and shouting slogan. For

instance, picture 1, 3, 5, 7, 9 show marching demonstrators,

while picture 2, 6 are interviews with the citizens. Obviously,

the property of POIs obtained from two datasets are quite

different. POIs from Singapore dataset represent famous land-

mark and interesting physical object, while POIs from Chicago



9

2e−005

2e−0054e−005

6e−005

6e−005

8e−0058e−005

0.0001

0.0001

0.00012

0.00014

0.00016

0.00018

200 400 600 800 1000 1200 1400 1600 1800 2000

180

360

540

720

900

1080

1260

1440

1620

1800

(a) Sector-based FOV density popularity map.

0.0007

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

200 400 600 800 1000 1200 1400 1600 1800 2000

180

360

540

720

900

1080

1260

1440

1620

1800

(b) Center-line-based FOV density popularity map.

(c) POIs estimated from sector-based FOV density popularity
map.

(d) POIs estimated from center-line-based FOV density popularity
map.

Fig. 9. FOV density popularity and POI detection results for two coverage models with the grid-based method (Singapore).

dataset represent events which have a specific timeline. Both

sets of POIs are mined from a certain number of sensor-

rich videos within a geographical area, and they indicate the

popular location or the interesting object around that area.

Results from our cluster-based POI detection method on

Chicago dataset are presented in Fig. 11. The POIs detected

are identified by different color. The gray circles correspond to

noise which was separated from the POIs by DBSCAN. Com-

pared with the results from grid-based method (see Fig. 10),

there is only some small offset on the location of the POIs,

while the size of some POIs do change a lot. Currently we

have not investigated the problem of how to get a precise size

of POI, and for these videos with events as their content, we

can not simply decide which method is better than the other

by the shape of POI. Therefore further efforts are still needed

to provide a reasonable benchmark to measure the accuracy

of POI detected.

c) Comparison between two POI detection methods: We

executed the algorithms on a PC with 1 dual-core 3GHz CPU

and 4GB of main memory. Table III provides the statistics

about the POI detection results. For the Singapore dataset, it

Fig. 11. POI detection results of the cluster-based method (Chicago).

costs 28.83 s to process the metadata from the 71 videos and
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TABLE III
COMPARISON BETWEEN TWO POI DETECTION METHODS.

Singapore dataset Chicago dataset

Run time # of POIs Run time # of POIs

Cluster-based method 28.83 s 5 41.48 s 8

Grid-based method 4.33 s 8 8.80 s 9

Average R difference 29.85 m 33.33 m

get 5 POIs for the cluster-based method while it costs 4.33 s

to obtain 8 POIs with the grid-based method. For the Chicago

dataset, it costs 8.8 s to process the metadata from the 228

videos and get 9 POIs for the grid-based method, and it costs

41.48 s to obtain 8 POIs with the cluster-based method. For

both datasets, the grid-based method are much more efficient

than the cluster-based method. This is due to the large amount

of FOVs. To find out when the cluster-based method can run

faster, we randomly discarded FOVs from Chicago dataset and

ran the algorithms with the left FOVs again. As shown in

Fig. 12, after the number of FOVs is reduced from 9,634 to

98, the cluster-based method can be more efficient than the

grid-based method.
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Fig. 12. Computation time of two methods with varying number of FOVs.

To compare the obtained POIs from the two methods,

we compute “Average Distance Difference” between Cluster-

based and Grid-based method. First, for each method, we cal-

culated the center of each POI by using Method C introduced

from [36]. Second, we found the corresponding POI pairs from

the two sets of POIs and computed the distance difference

between the center of the POIs. Obtained all the distance

differences, the average number was calculated to reflect the

difference between the two methods. From the last row of

Table III, we can see that for the two datasets, the average

distance differences are both within 35 m, which means that

the results from two methods are quite similar.

However, for the cluster-based method, due to the limitation

of the clustering algorithm, some of the POIs detected by

the grid-based method are not selected as POIs (i.e., A, G in

Fig. 9(d)). Despite this, the cluster-based method still has its

own strength – detecting the shape of a POI more accurately

(i.e., e in Fig. 8 compared to H in Fig. 9(d), e represents a

better shape for the Marina Bay Sands building).

2) Effective Visual Distance Evaluation: To evaluate our

estimation of the effective visual distance R we manually

collected ground truth data. For each video frame represented

by a corresponding FOV, we found the most important object

in the frame based on human perception, located the object

on Google Earth, and then obtained its latitude and longitude.

After that, the distance between the camera location and the

object was calculated as the ground truth of the effective visual

distance. The frames in transition or containing ambiguous

content (i.e., when even users could not identify the most

important object) were discarded.

Fig. 13. Center line vector sequences for videos V8636 and V1477.

For the R estimation we present the detailed results for

two videos from Singapore dataset, V8636 (length 00:05:07)

and V1477 (00:08:44). Both were captured along a trajectory

near the Merlion statue. We found the content of videos

V8636 and V1477 to be representative as they include most

of the landmarks in the Marina Bay region. The center line

vector sequences for the two videos are shown in Fig. 13.

The trajectory of V8636 is presented in red, while V1477 is

presented in blue. The sensor data sampling rate here is 1 per

5 seconds. Note that the actual visual distance is much larger

than the length of the trajectory, hence we set the length of

the vectors to 20 m.

Fig. 14 shows the comparison between the ground truth and

the estimated effective visual distance for video V8636. We

can see that the estimated distances match excellently with the

ground truth data. For instance, the estimated distance R is 712

m for frame 40. Correspondingly, we observe from the actual

image that the focus of the frame is Marina Bay Sands, which

is very far away. The actual distance from the camera location

to Marina Bay Sands is 720 m. For frame 120, the focus is

on the Merlion, which is nearby (the actual distance is 9 m).

Accordingly, the estimated distance R is 20 m. However, as

seen in other frames, there sometimes exists quite a substantial

difference between the ground truth and the estimated R. This

may be due to the fact that we selected only one object as

the ground truth from each frame and hence sometimes our

estimated R cannot completely match the ground truth well

when there are multiple POI candidates within one image.

With frame 65, for example, the ground truth is the distance to

the Merlion while the estimated R is very different because it

is based on a different POI (Fig. 9(d) G). The average distance

error (|Estimated R - Ground truth R|) in Fig. 14 is 77.7 m.

Fig. 15 shows similar results as Fig. 14, with the average

distance error Fig. 15 being 69.6 m. However, some interesting

details are revealed. In Fig. 15, frame 1 captures the front
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Fig. 14. Comparison between the ground truth and the estimated visual distance R for video V8636 (the frame sequence number is labeled on top of the
selected frames).
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Fig. 15. Comparison between the ground truth and the estimated visual distance R for video V1477 (the frame sequence number is labeled on the selected
frames).

side of the Esplanade theater, where the estimated distance

R does not match with the ground truth. This is due to the

failure of our method to accurately describe the shape of the

Esplanade POI (Fig. 9(d) D and E), which reinforces the notion

that more precise POI detection results lead to better visual

estimations. In frame 260, the user was pointing the camera up

and recording a flag waving in the sky. This operation caused

an erroneous R estimation because our method is currently

limited to 2D space and therefore unaware of the altitude and

elevation angle of the camera. The estimation process always

tries to find POIs on the ground plane. A future solution to

this problem is to construct a field-of-view model in 3D space

so that the height of a POI can be considered.

To understand the accuracy of the estimated distance R, we

collected ground truth data from 1,000 video frames, which

were randomly selected from our video dataset. In Table IV,

the first column shows the error range calculated from the

difference between the estimated visual distance R and the

ground truth data. The second column shows the percentage

of the corresponding error range. We note that more than 70%

of the errors in the estimated distance are below 100 m and

errors above 300 m occur very rarely. Columns three and four

list the relative error values. We used the following error metric

e to calculate the relative error:

e =

∣

∣

∣

∣

Estimated R - Ground Truth R

Ground Truth R

∣

∣

∣

∣

(4)

The table demonstrates that R values with a relative error

of 30% or less represent the majority. The above two error

distribution trends clearly indicate the usability of our visual

distance estimation method.

TABLE IV
ABSOLUTE AND RELATIVE ERROR DISTRIBUTION OF THE ESTIMATED

VISUAL DISTANCE R.

Absolute Percentage of Relative Percentage of
Error Occurance Error Occurance

0 m ∼ 100 m 73.0% 0 ∼ 10% 38.1%
100 m ∼ 200 m 12.8% 10 ∼ 20% 18.9%
200 m ∼ 300 m 11.9% 20 ∼ 30% 7.9%
300 m ∼ 400 m 0.8% 30 ∼ 40% 10.1%
400 m ∼ 500 m 0.3% 40 ∼ 50% 6.5%
500 m ∼ 600 m 0.2% 50 ∼ 60% 5.9%
600 m ∼ 700 m 0.7% 60 ∼ 70% 0.9%
700 m ∼ 800 m 0.1% 70 ∼ 80% 2.0%
800 m ∼ 900 m 0.2% 80 ∼ 90% 2.4%

900 m ∼ 1,000 m 0% 90 ∼ 100% 0.3%
>100% 7.0%

3) Experiments with Synthetic Dataset: Due to the diffi-

culties of collecting a very large set of real-world videos, a

synthetic dataset of moving cameras with positions inside a 75

km × 75 km region was used to test the performance of our
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algorithm with large-scale data. We generated metadata using

the Georeferenced Synthetic Metadata Generator [37]. We

predefined 1000 POIs which are randomly distributed inside

the target region, and generated 5,500 moving cameras with

trajectories near these POIs. The POIs can be in arbitrary shape

and the size is not fixed. Each camera was traced for 1,000

seconds, with a sampling rate of 1/s for the GPS and compass.

Thus, the resulting dataset contained about 5.4 million FOVs.

In the original generator, the camera rotation can be set at a

fixed speed. To simulate a real-world case, we modified the

generator in order to make the cameras record the nearby POI

areas more frequently.

We applied the grid-based POI detection to this synthetic

dataset, and 1,183 POIs were detected. Then we matched the

detected POIs to the predefined POIs. We found 942 matching

pairs. Hence the precision and recall of the grid-based POI

detection is 94.2% (942/1000) and 79.6% (942/1183), respec-

tively, and the number of phantom POIs is 241 (1183-942).

To evaluate our phantom POI elimination algorithm, we

applied Algorithm 1 to the detected POI set. The algorithm

was able to eliminate 221 POIs. Then we matched the elimi-

nated POIs to the 241 phantom POIs. We found 216 matching

pairs. Hence the precision and recall of Algorithm 1 is 97.7%

(216/221) and 89.6% (216/241), respectively.

C. Discussion

1) Robustness of Approach: In our experiments we did

not make any specific assumptions about the users’ video

recording style. The robustness of our approach with respect

to various anomalies is of course of significant importance.

We have some preliminary indication that our method is quite

robust and can be further enhanced with existing approaches

(e.g., GPS stabilization, content-based processing, etc.). How-

ever, we will have a clearer understanding of these issues once

we collect a much larger repository of data. Acquiring sensor-

rich videos is becoming increasingly easy. Thus, we expect

there will be a growing trend for users to capture more videos.

We currently have smartphone apps publicly available and are

collecting more user-generated content. We plan to do an in-

depth analysis of a very large set of data in the future.

With any grid-based algorithm the size of the cells can

influence performance. For our grid-based POI detection we

have tested different grid sizes from 5× 5 m2 to 30× 30 m2,

and we found that the resulting POI distributions are similar

across these different settings.

2) Comparison with Alternative Approaches: Our method

is complementary to other approaches while it also has some

specific strengths. Methods that use content-based analysis,

such as Google Goggles [38], require distinctive features of

known landmarks (i.e., structures). For example, Goggles may

not be able to recognize a famous lake because of a lack

of unique features. Our approach crowd-sources “interesting”

spots automatically. It is of course possible to enhance our

approach by combining it with content-based analysis and thus

achieving the best of both worlds. This will require careful

study and we plan to explore such an integration in the future.

Our POI estimation is not solely designed to be a stan-

dalone method. We take advantage of using existing landmark

databases if available. There exists considerable research lit-

erature on detecting landmark places from photos. The main

difference of our method from existing approaches is that we

identify the location of interesting places that appear in users’

videos, rather than the location where the user was standing,

holding the camera.

V. CONCLUSIONS AND FUTURE WORK

Capturing video in conjunction with descriptive sensor

meta-data provides a comprehensive foundation to model the

scene that a camera is acquiring. There exists a growing corpus

of videos that are annotated with comprehensive geographic

sensor information, aided by the convenient availability of

smartphone recording apps.

In our study we presented an approach to detect POIs and

their distances from the camera location in a fully automated

way. We provided two algorithms for POI identification and

also a method to estimate the effective visual distance without

examining the actual video content, purely based on asso-

ciated sensor information. In addition, we designed a cross-

intersection elimination method to remove non-existing phan-

tom POIs. The experimental results show that our technique

is very effective in detecting POIs and estimating their visual

distance from the camera location. In our future work we plan

to extend our approach in the following aspects:

(i) For the POI detection our two proposed methods each

have their own benefits. When targeting large scale ap-

plications, we may consider a hybrid strategy to combine

the two methods to achieve overall better performance.

(ii) Currently, our visual distance R estimation algorithm

only works when there exists one or more than one

POIs within the field-of-view. For frames with ambiguous

content a user feedback mechanism may be able to help

improve the R estimation results.

(iii) Given the estimated distance R, we may use it to adjust

the center vector length of the stored field-of-view slices

and hence obtain a continuous stream of precise viewable

scene descriptions corresponding to the video frames. We

plan to utilize such data to facilitate many types of video

applications such as video search and presentation.
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