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ABSTRACT

Geo-tagging is becoming increasingly common as location
information is associated with various data that is collected
from a variety of sources. In the field of media, images and
most recently videos, can be automatically tagged with the
geographic position of the camera. Geographic location pro-
vides an interesting means of browsing through, and“drilling
into,” large video repositories. At the same time comple-
mentary efforts are underway to create so-called mirror-
worlds – large-scale environments that are essentially de-
tailed computer-models of our three-dimensional real world.
However, these mirror worlds are for the most part static
(for example they include buildings and trees). Here we de-
scribe our efforts to bring together these two paradigms by
enabling Google Earth (and similar tools) to come to life
with videos that are geographically and perspectively cor-
rectly placed as “viewports” inside the world. In essence
this reflects the next step in the evolution of mirror worlds
and maps with (panoramic) still images towards a three-
dimensional, dynamic environment.

Categories and Subject Descriptors

D.2.2 [Software]: Design Tools and Techniques—User in-
terfaces; H.5.2 [Information Interfaces and Presenta-
tion]: User Interfaces—Graphical user interfaces (GUI)

General Terms

Design, Experimentation
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1. INTRODUCTION
Technological advances have lead to interesting develop-

ments in the following three areas:
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• Location and direction information can now be afford-
ably collected through GPS and compass sensors. By
combining location data to with other information in-
teresting new applications can be developed. Location
data also gives rise to a natural organization of in-
formation by superimposing it on maps that can be
browsed and queried.

• While maps are two-dimensional, three-dimensional mir-
ror worlds have started to appear. In these networked
virtual environments, the real world is “mirrored”with
digital models of buildings, trees, mountains, etc. Mir-
ror worlds allow a user to explore, for example, a city
from the comfort of their home in a very realistic way.

• High quality video camcorders are now quite inexpen-
sive and the amount of user collected video data is
growing at an astounding rate.

Our goal with the presented project is to harness the con-
fluence of the above developments. Specifically, we envision
a detailed mirror world that is augmented with (possibly
user-collected) videos that are correctly positioned in such a
way that they overlay the 3D structures behind them, hence
bringing the mostly static mirror world to live and providing
a more dynamic experience to the user who is exploring such
a world. To test the feasibility of this idea we have collected
a number of videos that were augmented with compass and
GPS sensor information. We then used Google Earth as a
backdrop to overlay the acquired video clips in the correct
locations.

The rest of this paper is organized as follows. Section 2 de-
scribes work related to our research. In Section 3 we present
the methods used in the proposed system and in details.
Challenges and open questions that require future consider-
ations are discussed in Section 5. Finally, Section 6 provides
the conclusions.

2. RELATED WORK
There exist only a few systems that explore the use of

geo-located videos. Some earlier work has investigated 2D
geo-referenced video acquisition, search and presentation.
Here we specifically expand on this into three dimensions.
Navarrete and Blat [6] defined a method of indexing and re-
trieving geo-referenced video sequences based on their geo-
graphic content. Although they proposed a valuable method
for indexing and retrieving video sequences based on geo-
referenced information, our work is based on the viewable
direction in 3D which requires extension of the prior work.



Simon et al. [11] presented a local visibility model with a
suitable XML-based prototype implementation. Using an
XML-based description is notable and desirable, as it can
by applied to many applications. Inspired by this idea, we
use KML since KML can be automatically parsed by Google
Earth, which is our current implementation environment [8].

Several groups are actively researching videos in 3D en-
vironments. First, Google groups have achieved the em-
bedding of photos and videos in Google Maps and Google
Earth. These photos and videos are both based on their geo-
locations, which had to be uploaded manually. GPicSync is
a Google project that aims to automatically insert locations
into users’ photos. Thus, such photos can also be used with
any geocode-aware application like Google Earth [10]. In
addition, Google Earth supports the simple embedding of
videos. However these videos are specified via URLs from
YouTube which does not represent a user defined video in-
sertion. As a result, we are interested in a more flexible
approach to present videos such that they can be overlaid
on a variety of applications. To this end we are currently
using an IFRAME shim [5] which can create an IFRAME
and a video object overlay dynamically, after – for exam-
ple – Google Earth is loaded. This method can be applied
in various environments because it requires limited integra-
tion with the underlying application. As a second example,
Ni el at. [7] embedded video streaming into the Second Life
virtual world. They used a fixed screen to study the video
quality, which represents quite a different focus compared
with our research direction. In other words, they investi-
gated the different quality levels experienced by users, and
hence their work is orthogonal to ours and could be applied
to our techniques. Third, some existing systems explore the
merging of real and virtual worlds [12]. Their major con-
tribution is to investigate a spectrum from completely real
environments to a completely virtual ones with augmented
reality and mixed reality falling in between. However, these
techniques are not based on geo-referenced information.

3. APPROACH
Our objective is to find geo-referenced video segments

within a relevant area and then to present them as augmen-
tations in a virtual, three-dimensional environment such as
Google Earth. Figure 1 illustrates the overall architecture of
our system. The main components are a browser-based web
client, a web server with an associated database, a stream-
ing media server, and remote access to Google’s Earth and
Maps servers.

We require the acquisition of videos that are fused with
detailed geo-reference information. In our prior work we
proposed a video scene model in which videos are continu-
ously augmented with detailed sensor data such as the cur-
rent GPS location and camera viewing direction (obtained
through a compass heading) [2]. In order to collect geo-
referenced videos with the necessary sensor meta-data we
have built several acquisition prototypes and software ap-
plications. Section 4 describes one of our implementations
designed for the Apple iPhone. Figure 2 shows an excerpt
from the XML-encoded geo-data that is collected by the
iPhone application and uploaded to a suitable search en-
gine that provides the backend functionalities [1]. One of
the challenges in virtual environments is that it may not be
very easy to specify the user’s region of interest (i.e., the
query area). For example, currently Google Earth does not
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Figure 1: Architecture of the proposed system.

support the specification of a spatial query rectangle to de-
lineate a search area. For this reason – and because a query
area is more naturally expressed in 2D – we use Google Maps
to let a user select a query window. The search results are
then shown properly placed in Google Earth.

Our development environment is based on open source
tools and software such as XAMPP (Apache, MySQL, PHP),
the Wowza Media Server and the Flowplayer (a video player
to render Flash-encoded and other content) and with tech-
nologies such as Ajax, IFRAME shim and KML. The Wowza
Media Server allows the streaming of video content, similar
to the Adobe’s Flash media server. Using this combina-
tion of media server and player, any segment within a video,
specified by start and end timecodes, can be played. We use
this feature to extract the most relevant clips from videos
which may potentially be very long and cover a large geo-
graphical area. The client implementation is browser-based,
and hence it is convenient to access from almost anywhere.
There are three important components in our system. First,
meta-data collection part which is the previous work in our
research. Second, the database implementation which con-
tains our 3D meta-data. Third, the Web interface which
is the main component in this system. In this part, users
can not only search videos through entering a location based
rectangle, but also get the query results in the same page.

3.1 Meta-data Management
The meta-data is stored in a MySQL database to allow

for efficient access and search. Our design can accommo-



<?xml version="1.0" encoding="UTF-8"?>

<array>

<array>

<date>2010-05-28T08:23:22Z</date>

<real>1.3001484800000001</real>

<real>103.76716863999999</real>

</array>

<array>

<date>2010-05-28T08:23:59Z</date>

<real>1.3001484800000001</real>

<real>103.76716863999999</real>

</array>

</array>

<?xml version="1.0" encoding="UTF-8"?>

<array>

<array>

<date>2010-05-28T08:23:22Z</date>

<real>167.23540386557579</real>

</array>

<array>

<date>2010-05-28T08:23:23Z</date>

<real>167.23515872657299</real>

</array>

</array>

Figure 2: Sensor meta-data collected together with
geo-referenced video streams by our iPhone applica-
tion. The XML encoded data includes timestamps,
GPS coordinates (top fragment) and compass head-
ings (bottom fragment).

date a variety of sensor meta-data information as is shown
in Table 1. Figure 2 illustrates the data that we collect on
with the iPhone application, however, some other implemen-
tations can provide additional information (e.g., altitude,
viewable distance). The most significant 3D meta-data in
our current system is the heading (in the database, it is the
theta attribute), latitude and longitude. The collected 3D
data basically represent the camera direction and location
as a vector which describes a 3D field-of-view (FOV ). Based
on this model, we are able to show videos in the correct po-
sitions within the 3D scene view of Google Earth.

filename Uploaded video file
〈Plat, P lng〉 <Latitude, longitude> coordinate for camera

location (read from GPS)
altitude The altitude of view point (read from GPS)
theta Camera heading relative with the ground

(read from compass)
R Viewable distance
alpha Angular extent for camera field-of-view
tilt Camera pitch relative with the ground (read

from compass)
roll Camera roll relative with the ground (read

from compass)
ltime Local time for the FOV
timecode Timecode for the FOV in video (extracted

from video)

Table 1: Schema for 3D field-of-view (FOV ) repre-
sentation.

In MySQL, we provide the proper functionality through
User Defined Functions (UDF) to perform FOV-matching as
part of the query execution. The use of UDFs allows us to
perform operations on data types that are not natively sup-
ported in MySQL. An UDF is executed within the engine
of the database, hence being able to take advantage of the
execution environment. The UDF was developed and im-
plemented as part of our prior work. One current limitation
is that only searches in 2D space are supported. Because of
this, the altitude parameter is not implemented. In other
words, the search is still performed on the 2D data and the
results shown in Google Earth are then displayed as 3D sen-
sor data.

3.2 Web User Interface
Perspective video, i.e., transforming video from a 2D plane

into a projected plane in a 3D virtual space in accordance
with the user’s viewpoint, is one of the major tasks for web-
based video overlapping applications. In this domain, there
exist several viable solutions:

• Existing plug-in-based Rich Internet Application (RIA)
technologies such as Adobe Flash and Microsoft Sil-
verlight support 3D video rendering capabilities. While
available for rapid prototyping, these environments re-
quire overlapped web services to provide corresponding
RIA-compatible APIs.

• Pixel-level image transformation is also a feasible so-
lution, but it requires significant client-side processing
power.

• A Cascaded Style Sheets (CSS) 3D transform has been
proposed by Apple Inc., and it is now under develop-
ment by the W3C CSS level 3 [9]. This method trans-
forms the coordinate space of a video element through
a simple change of its transform properties.

• An IFRAME shim can establish a layer on top of the
Google Earth web browser plug-in (or other web pages).
The IFRAME can aid in the process of rendering videos,
and is flexible in any environment. Without this tech-
nology, we cannot see the videos with an appropriate
view point.

Considering both practicality and feasibility, we chose the
IFRAME shim approach as our main technique to overlay
3D perspective video. Hence, when the viewing direction
changes by a certain angle, the video also changes accord-
ingly. With this notion, the users will get a more intuitive
and immersive experience. Additionally, the meta-data will
be stored in a KML file which allows to automatically in-
voke an animated tour through Google Earth. This is a
relatively new capability of Google Earth which can help us
automatically traverse the environment. Furthermore, the
camera trajectory will also be shown in the 3D world. With
the presentation of the trajectory, the users will explicitly
follow the camera movement associated with the video.

In Google Earth, the number of modeled 3D buildings
varies among different cities, but overall the number is steadily
increasing. When 3D building structures exist, we can more
convincingly overlay the captured video with the virtual
world. When viewing these buildings we see whether the
scene in a video matches the same position in the virtual



world. We can also observe how accurate the these 3D build-
ings have been modeled. Note that due to the current limi-
tation of Google Earth, which does not allow the drawing of
dynamic rectangles, we use Google Maps to enter the query
region by applying the Google API. Therefore, our query
mode is currently 2D, which may be extended in the future.

There are also a number of other technologies used for our
web interface. To embed Google Earth and Google Maps in
the same web page, we use Ajax. To achieve the interaction
between Google Earth and Google Maps interfaces, we used
are the google.earth namespace, the GEView interface, and
the Maps API GPolygon [4]. The specific details of each
technology are given below.

• The google.earth namespace contains global functions
to support to the use of the Earth API interfaces.
We attach a listener to Google Earth for a specific
event, which means that if Google Earth moves, the
program will be aware of the movement and simulta-
neously move Google Maps.

• The GEView interface checks the view behavior of the
observer camera in Google Earth. There is a function
that can return the global view region that is visible.
It is noteworthy that the returned region may not be
very accurate because it will be larger than what is
strictly visible.

• Maps API GPolygon is an interface to create a polygon
in Google Maps. Through this the users will directly
get a view of the query region.

Figure 3 shows the video results using our example Geo-
Referenced Video Search engine [1]. As can be seen, the web
browser interface embeds Google Earth and Google Maps on
the same page. Superimposed on top of Google Earth are
our video results, while in the lower left bottom is the tour
progress bar. The indicator on the progress bar points out
the corresponding position within the time interval.

3.3 Client and Server Communication
In our system we need to exchange data between the

clients and server corresponding to the query and result
data. The overall architecture is shown in Figure 1. The
numbers (1) through (5) indicate the sequence of interac-
tions between a client and the server. Initially the user
sends a query window to the server. There, the data will be
processed by means of using PHP to invoke the UDF then
returning the query results to the PHP code. The query
results contain a KML file and video clip information which
is used to play back the video clips from the media server.
Finally, the results will be sent to the client where they are
shown in Google Earth.

The main functionality in this client-server interaction is
coded with Ajax. With this technology, web applications can
retrieve data from the server asynchronously without inter-
fering with the display and behavior of the existing page.
At the same time, because of the properties of Ajax, we can
establish an dynamic interfaces the web page [12].

4. PROTOTYPE
We have been implementing the proposed system as part

of our ongoing project work. We designed and implemented
a prototype geo-referenced video acquisition module on an

Apple iPhone 3GS handset, which provides the necessary
built-in GPS receiver and compass functionality. Below we
describe our current application implementation. Please
note that we have started to collect real-world data with
this platform for further studies in the future.

4.1 iPhone Geo-Video Acquisition Application
Our Geo-Video App was developed with Apple’s Xcode de-

velopment environment for iPhone OS version 3.1.2 or later.
Most parts were written in Objective-C, with a few funda-
mental sections in C. The Geo-Video App is composed of
six functional modules: (1) video stream recorder, (2) loca-
tion receiver, (3) orientation receiver, (4) data storage and
synchronization control, (5) data uploader and (6) battery
status monitor. Below we will describe each module in more
detail.

Video Stream Recorder. This module employs the
UIKit Framework of the iPhone OS Cocoa Touch Layer to
invoke the built-in camera. Among the three video formats
that the iPhone supports, we decided to use the medium
quality profile. However, this could be changed based on
user needs. Table 2 summarizes the audio and video acqui-
sition parameters.

Parameter Description
Format MPEG-4
Format profile QuickTime
Overall bit rate 861 Kbps

Video Audio
Format AVC AAC
Format profile Baseline@L3.0 LC
Bit rate mode Variable Constant
Bit rate 794 Kbps 64.0 Kbps
Resolution 24 bits 16 bits
Resolution (pixels) 640 × 480
Aspect ratio 4:3
Frame rate 30 fps
Frame rate mode Variable
Colorimetry 4:2:0
Scan type Progressive
Channel(s) 2 channels
Sampling rate 44.1 KHz

Table 2: iPhone audio/video capture parameters.

Location and Orientation Receiver. To engage and
control the built-in GPS receiver and magnetometer, we
make use of the Core Location Framework in iPhone OS
Core Services Layer. Location data consists of longitude and
latitude and we can regard the position of the mobile phone
exactly as the position of the camera. For the orientation in-
formation, however, we discovered an interesting difference
between the true pointing direction and the device heading.
Therefore, our system also fetches the accelerometer data
from the UIKit Framework to determine an adjustment and
ensure that the data that is recorded represents the camera’s
direction, even when the phone is held vertically.

An interesting aspect in sensor data acquisition is the sam-
pling frequency. In our application we set the update fre-
quency based on a distance filter for the location data and
a fixed sample rate for the orientation information. A loca-
tion update is triggered whenever a distance movement of
more than 10 meters is detected. The sampling rate for the



Figure 3: Geo-Referenced Video Search Results in Google Earth.

compass is set to 30 per second. Experimentally, with these
settings we can discover viewable scene changes well while
saving battery energy as much as possible. Furthermore, we
set an expiration deadline for every data item obtained. If
the location coordinates were obtained longer than 5 seconds
ago, we consider this data as stale. For orientation data, we
set its lifetime to 2 seconds because of its higher variability.

Data Storage and Synchronization Control. This
module manages the storage of the sensor data on the de-
vice’s flash disk. The goal is to utilize a flexible data format
that can be easily ingested at a server. In this situation we
choose a Property List in the Core Data Framework as our
structured data representation. The Property List provides
an XML-based abstraction for expressing simple hierarchies
of data.

To provide synchronization, we extract the duration, en-
coded date and time from the video via the MOV multime-
dia framework. We then add timestamp information to ev-
ery sensor data record to establish the relationship between
a video clip and its corresponding geo-sensor information.
Time is represented in Greenwich Mean Time (GMT), to
avoid time zone issues. Files include the timestamp as part
of their filename to allow for easy disambiguation.

Data Uploader. This module employs an open source
wrapper around the CFNetwork API in iPhone OS Core
OS Layer, named ASIHTTPRequest. This third-party class
makes some of the more tedious aspects of communicating
with a web servers easier and it is suitable for perform-
ing basic HTTP requests and interacting with REST-based
services (GET/POST/PUT/DELETE). The Data Uploader
transparently utilizes Wi-Fi, 3G or 2G cellular networks to
transmit data files. Importantly, this module implements

our two different strategies: (1) both video and sensor files
are uploaded concurrently and (2) only the sensor files are
uploaded first, while the video files may be transmitted later.
Video files on the flash disk are tagged whether they still
need to be uploaded.

4.2 User Interface
Figure 4 shows two screenshots of our Geo-Video App.

When the user launches the software, he or she will first see a
welcome view (left side of Figure 4). A user can either choose
to start capturing a new video, or continue to upload video
clips whose sensor data was previously uploaded. If the user
touches the START button, a camera viewfinder will be dis-
played (Figure 4 right) and the user can then record, stop,
cancel or edit a video clip via this interface just like they
usually do in the iPhone’s default camera view. However,
our system additionally starts to record geo-referenced infor-
mation from the GPS and the digital compass. The sensor
data is stored to the device at the time when the video is
saved to the camera roll and flash disk. Next, an uploading
screen guides the user through the next step. A destination
URL is displayed (which can be changed) and either the
sensor information only or both the sensor and video files
can be uploaded. As mentioned earlier, saved videos can be
uploaded at a later point in time directly from the welcome
screen.

5. CHALLENGES
Our study presents a novel approach to automatically po-

sitioning and displaying videos in 3D environments. While
the results are very encouraging, we also found a number of
challenges that will need to be addressed in our future work.



Figure 4: Geo-Video iPhone application prototype.

Below we provide a description of four specific issues that
we faced and that require further investigation.

First, the acquired sensor data in our case was not us-
ing the same coordinate system as Google Earth or Google
Maps. Therefore, the data needs to be converted so that it is
compatible with systems such as Google Earth. Our exper-
imental GPS sensor data information is based on a format
of degrees, minutes, and seconds. However, the longitude
and latitude in Google Earth uses a decimal degree format
as represented by the WGS84 coordinate system [3]. The
broader issue here is that multiple coordinate systems need
to be supported and data needs to be correctly identified
and converted to support large-scale video acquisition and
applications.

Second, sensor values by their very nature are sometimes
noisy and errors and drop-outs may occur in practice at
times. This problem of data quality will require further
study, for example, to investigate interpolation and error
correction methods. Another issue may be the accurate reg-
istration of 3D buildings in Google Earth (or other virtual
worlds). Furthermore, the 3D datasets are far from com-
plete and only a few cities have extensive 3D structures in
Google Earth. When buildings are missing then naturally
there will be a visual mismatch between any video and the
3D world in that area. This may disrupt a user’s naviga-
tional experience. However, we expect that in time most 3D
buildings will be modeled.

Third, as mentioned earlier, current display technology is
mostly 2D and this makes it difficult for the user to specify
a 3D query region through, for example, mouse interactions.
In our prototype we use Google Maps to aid in the query
area definition, but eventually a full 3D query input would
be desirable.

Finally, there is the practical challenge of overlaying videos
on an application such as Google Earth. Some interfaces
exist to deal with images and videos. Although they have
rudimentary support for geo-location information, they are
still not suitable for our research. For example, existing ap-
plications in Google Earth only show YouTube videos which
are specified by some URL information. We require more

flexibility which led us to the selection of the IFRAME shim
method instead using the Google API. In addition, we use
our own media server which can manipulate the source video
clips by extracting segments, or perform other operations.
A current limitation is related to 3D perspectives. With the
technology of IFRAME shim under Mac OSX, we may be
able to implement 3D perspectives in Google Earth with the
latest webKit.

6. RESULTS AND CONCLUSIONS
In our prototype system we are able to demonstrate the

automatic placement of videos into the three-dimensional
coordinate system of Google Earth and the result is very
promising. There exist some challenges that still need to
be overcome, such as the sensor accuracy of our collected
dataset because of weather conditions and other environ-
mental effects. However – very significantly – most of the
data can be placed well and fully automatically in our ex-
periments. For large-scale datasets such an automatic pro-
cessing is of critical importance.
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