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Abstract—Applications that stream multiple video/audio or
video+audio clips are being implemented in embedded devices.
A Picture-in-Picture (PiP) application is one such application
scenario, where two videos are played simultaneously. Although
the PiP application is very efficiently handled in televisions and
personal computers by providing maximum quality of service
to the multiple streams, it is a difficult task in devices with
resource constraints. In order to efficiently utilize the resources,
it is essential to derive the necessary processor cycles for multiple
video streams such that they are displayed with some prespecified
quality constraint. Therefore, we propose a network calculus
based formal framework to help schedule multiple media streams
in the presence of buffer contraints. Further, our framework
also presents a schedulability analysis condition to check if the
multimedia streams can be scheduled such that a prespecified
quality constraint is satisfied with the available service. We
present this framework in the context of a PiP application, but it
is applicable in general for multiple media streams. The results
obtained using the formal framework were further verified using
experiments involving system simulation.

I. INTRODUCTION

Simultaneous viewing of multiple video streams has re-
cently become a very common feature in televisions (TVs)
and personal computers (PCs). These multiple video streams
are either displayed adjacent to each other (as in the display of
programs from multiple channels simultaneously on a TV or
PC) or as a Picture-in-Picture (PiP) where one video stream is
displayed on the full screen while the other is displayed in an
inset window. In order to process these multiple streams with
maximum quality, adequate number of processor cycles need to
be provided. There are several works in literature that analyze
multimedia stream processing ( [1]- [2]) with the objective of
achieving maximum quality, i.e., without frame drops.

Mobile devices are currently providing the PiP applica-
tion [3] to allow users to watch two videos simultaneously.
Recently, a multi-tasking video playback application [4] was
introduced in the Android app store. This supports a pop up
video playback while the user executes other tasks on the
mobile such as web browsing, etc. This also gives rise to a
scenario where multiple media streams could be played back
simultaneously. However, in contrast to TVs and PCs, these
mobile devices have acute resource constraints, which makes
it difficult to process multiple video streams with maximum
quality when other applications run simultaneously. Although
the processors in current mobile devices run at high speeds,
it will not be always possible to run the processors at the
maximum speed due to power and temperature constraints. In
addition to that it is highly likely that the buffer space allocated
to the media player applications are sometimes not sufficient
to playback the video streams without frame drops. Therefore,
it is essential to have a framework that enables the system
designer to compute the adequate service requirements such
that a target media quality requirement is satisfied.

In this work, we propose a formal framework to design
an appropriate scheduler that services the multiple incom-
ing streams in a PiP application such that certain quality
constraints are satisfied. This framework will be useful for
scheduling multiple multimedia streams in a mobile device,
where some frame drops can be tolerated without significant
deterioration in the quality of the streams. Our framework
also provides a schedulability analysis condition to quickly
determine if the available processor service is sufficient to
schedule the streams, while adhering to their required quality
constraints.

A. Related Work

Processor bandwidth allocation is integral to the desired
functioning of the multimedia applications on MPSoC plat-
forms especially due to the intensive computations required for
certain multimedia tasks. Therefore, an appropriate processor
scheduling algorithm is important for efficiently handling
multiple tasks. These algorithms are designed with various
design objectives in mind. In [5], scheduling algorithms were
discussed to minimize the buffer requirements for multimedia
applications. The authors proposed a static priority based
scheduling algorithm, which demonstrated the need for smaller
buffer size than the other existing scheduling algorithms. Nieh
and Lam [6] discussed an integrated scheduling framework to
handle both real-time and conventional applications including
multimedia with adequate fairness. Hence, in overloaded sce-
nario, the real-time tasks degraded gracefully.

Yuan and Nahrstedt [7] presented a scheduler that acco-
modates the objective of energy efficiency while scheduling
multimedia tasks on mobile devices by integrating dynamic
voltage scaling along with soft real-time scheduling policy.
There are few works that attempt to reserve some bandwidth
for the soft-real time applications like multimedia in the
presence of hard real-time tasks and map these tasks on a
heterogenous mutliprocessor platform so that the hard real-
time tasks are schedulable and the quality of service (QoS)
for soft-real time tasks are maximized [8], [9]. However, to
the best of our knowledge, the problem of allocating processor
bandwidth in the presence of resource constraints such that
media quality degradations measured using an objective quality
metric such as Peak Signal to Noise Ratio (PSNR) are bounded
and measurable, has not been sufficiently studied.

Our Contributions: In this work, we derive mathematical
bounds for the processor service requirements to process mul-
timedia streams in a quality-aware manner. Once the bounds
on processor service requirements are computed, it can be
used to derive the parameters of any specific scheduler. Most
other works that consider media quality while deriving the
service requirements do not ensure a bounded loss in quality,
whereas our framework derives service bounds under bounded
quality degradation, which is measured in terms of PSNR. The
framework is flexible enough to accomodate other objective978-3-9815370-0-0/DATE13/ c⃝ 2013 EDAA



quality metrics. In [10], the authors present a mathematical
framework to compute the reduced buffer requirements for a
MPSoC platform running multimedia decoder under bounded
quality constraint and a given processor service allocation for
a single multimedia stream. However, in order to compute the
mathematical bounds for the required processor service under
a bounded quality and buffer constraints, we cannot use the
inverse of the mathematical framework presented in [10] for
a processor servicing multiple incoming multimedia streams.
Therefore, we propose a framework that presents a solution to
this problem.

II. FRAMEWORK OVERVIEW

This section presents an overview of our mathematical frame-
work to derive the appropriate processor service requirement
(in terms of service bounds) such that the multiple incoming
multimedia streams adhere to their individual target quality
constraints (in terms of PSNR). Our framework uses the arrival
and service curve concepts from Network Calculus [11] to
model the data arrival and service given by the resources, re-
spectively. These arrival and service curves efficiently capture
the variability in the data arrival and the processing required
for the arrived data.

Platform Description: In this work, we analytically derive the
scheduler parameters necessary to schedule multiple incoming
streams on a resource constrained MPSoC architecture as
shown in Fig. 1 with acceptable quality deterioration. The
architecture consists of two processing elements (PEs) denoted
by PE1 and PE2. Each PE services two individual incoming
streams a1(t) and a2(t), which are cumulative functions that
denote the total number of stream objects (such as macroblocks
or frames in a video stream) that arrive over the time interval
[0, t]. Moreover, here we assume that the PEs execute tasks
from a video decoder application like MPEG-2. The buffers
used by stream a1(t) have sizes B1, B3 and Ba1 (in number
of frames) at the input, intermediate and playout stages of
the setup, respectively. Similarly, the buffers used by stream
a2(t) have sizes B2, B4 and Ba2 (in number of frames)
at the input, intermediate and playout stages of the setup,
respectively. y1(t) and y2(t) are the processed stream outputs
from PE1 corresponding to inputs a1(t) and a2(t), respectively.
Similarly, z1(t) and z2(t) are the processed stream outputs from
PE2 corresponding to inputs y1(t) and y2(t), respectively. In
our setup, y1(t), y2(t), z1(t) and z2(t) are also cumulative
functions. The playout consumption functions for the two
streams are denoted as C1(t) and C2(t), respectively, which
are also cumulative functions.

Definition 1: (Frame Interval). For a given video clip, a
frame interval F is defined as a window of any F consecutive
frames.

Definition 2: (Arrival Curve). For a video clip, let a(t)
denote the number of frames that arrive in time interval [0, t).
Then, the video clip is said to be bounded by the arrival curve
α = [αu,α l ] iff for all arrival patterns a(t):

α l(∆)≤ a(t +∆)−a(t)≤ αu(∆) (1)

for all ∆ ≥ 0. In other words, αu(∆) and α l(∆) give the
maximum and minimum number of frames that can arrive over
any interval of length ∆ across the length of the video clip.
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Fig. 1. MPSoC platform setup for a PiP-like application with frame drops
showing two streams with separate buffers, but sharing processing resources.

Definition 3: (Service Curve). Let c(t) denote the number
of frames processed by a task mapped onto a processor in time
interval [0, t). Then, the service curve β = [β u,β l ] is a service
curve of the processor iff for all service patterns c(t):

β l(∆)≤ c(t +∆)− c(t)≤ β u(∆) (2)

for all ∆ ≥ 0. In other words, β u(∆) and β l(∆) denote the
upper and lower bounds on the number of frames processed
over any interval of time ∆ across the length of the clip.

In our setup, α1 = [αu
1 ,α

l
1] and α2 = [αu

2 ,α
l
2] are the arrival

curves for the two streams at the input stage of the architecture
as shown in Fig. 1, while β1 = [β u

1 ,β
l
1] and β2 = [β u

2 ,β
l
2] are

the service curves offered to the two streams by PE1.

Problem Definition: Given the arrival curves α1 and α2,
corresponding to the two video streams (a1(t) and a2(t),
respectively) in a PiP-like application that are required to
be decoded on a resource-constrained MPSoC platform, the
sizes of input buffers (B1 and B2), the sizes of intermediate
buffers (B3 and B4), the sizes of playout buffers (Ba1 and
Ba2) and the playout consumption functions (C1(t) and C2(t)),
we analytically derive the mathematical bounds on scheduler
service of PE1, such that the two video streams individually
satisfy their respective target quality constraints, Qtarget

1 and
Qtarget

2 (in PSNR). Consequently, the scheduler parameters can
be derived from the service bounds.

The first stage encounters frame drops as shown in Fig. 1,
where the number of frame drops in any time interval ∆ is
bounded by αu

drop(∆) called Drop Bound. The drop bounds
for the two incoming streams are denoted by αu

drop1(∆) and
αu

drop2(∆). In order to analyze the MPSoC platform shown
in Fig. 1, where there are frame drops, we cannot directly
follow the analysis method presented in earlier works (e.g.,
[1]), which ensure that no buffer overflows and playout buffer
does not underflow. In our analysis with frame drops (or buffer
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Fig. 2. System model for the shaded portion representing data path for stream
a1(t) in Fig. 1.



overflows), we use the system model shown in Fig. 2 for the
shaded portion in Fig. 1. The analysis of the other half is
similar to that of the shaded portion.

The incoming video stream is divided into two parts - a
significant part denoted by aip1(t) (no frame drops) and a less
significant part denoted by ab1(t) (with frame drops) in Fig. 2.
These two parts combine to form the original stream a1(t), i.e.,
a1(t) = aip1(t)+ ab1(t),∀t ≥ 0. The partitioned arrival curves
corresponding to the two parts are shown as αip1 = [αu

ip1,α
l
ip1]

and αb1 = [αu
b1,α

l
b1], respectively, while the partitioned service

curves are βip1 = [β u
ip1,β

l
ip1] and βb1 = [β u

b1,β
l
b1], respectively.

As shown in Fig. 2, the buffer sizes for the two parts
at the three stages of the architecture are [Bip1,Bip3,Baip1]
and [Bb1,Bb3,Bab1], respectively, such that B1 = Bip1 + Bb1,
B3 =Bip3+Bb3 and Ba1 =Baip1+Bab1. The partitioned outputs
from PE1 are yip1(t) and yb1(t), while the partitioned outputs
from PE2 are zip1(t) and zb1(t) as shown in Fig. 2.

Partitioned Consumption: If the display rate or consumption
function at the playout stage for stream a1(t) is C1(t), then the
consumption functions for the partitioned streams are n×C1(t)
and (1 − n)×C1(t) (as shown in Fig. 2), where n is the
fraction corresponding to significant part. For example, for a
frame sequence of IBBPBBPBBPBBI..., n = 1

3 . If the display
rate is 30 frames/second, then the partitioned consumption
functions are 10 frames/second and 20 frames/second for I/P
frames (significant part) and B frames (less significant part),
respectively.

III. COMPUTING QUALITY-DRIVEN SERVICE CURVES

The main objective is to find the bounds for the original
service curves β1 = [β u

1 ,β
l
1], which is quality driven. In order to

compute these bounds, we first need to find the bounds on the
partitioned service curves βip1 = [β u

ip1,β
l
ip1] (significant part)

and βb1 = [β u
b1,β

l
b1] (less significant part). For two functions f

and g belonging to the set of monotonic functions:
The (min,+) convolution ⊗ and deconvolution ⊘ operators
are defined as

(
f ⊗ g

)
(t) = inf

{
f (s) + g(t − s) | 0 ≤ s ≤ t

}
and

(
f ⊘ g

)
(t) = sup

{
f (t + u)− g(u) | u ≥ 0

}
, respectively.

Similarly, the (max,+) convolution ⊗ and deconvolution ⊘
operators are defined as

(
f⊗g

)
(t) = sup

{
f (s) + g(t − s) |

0 ≤ s ≤ t
}

and
(

f⊘g
)
(t) = inf

{
f (t + u)− g(u) | u ≥ 0

}
,

respectively.

The computation of service curve for the significant part fol-
lows the method presented in [1]. The β l

ip1 bound is therefore
obtained by ensuring that buffer Bip1 does not overflow, i.e.,

aip1(t)−Bip1 ≤ yip1(t),∀t ≥ 0

⇔ β l
ip1(t)⊗aip1(t)≥ aip1(t)−Bip1,∀t ≥ 0

⇔ β l
ip1(t)≥ (aip1(t)−Bip1)⊘aip1(t),∀t ≥ 0. (3)

We can compute the β u
ip1 bound by ensuring that buffer Bip3

does not overflow, i.e.,

yip1(t)≤ zip1(t)+Bip3,∀t ≥ 0 (4)

In order to ensure that buffer Baip1 does not underflow, we
have

zip1(t)≥ n×C1(t),∀t ≥ 0 (5)

From Eq. 4 and Eq. 5, in order to strictly ensure that Bip3 does
not overflow, we can deduce that

yip1(t)≤ n×C1(t)+Bip3,∀t ≥ 0
⇔ β u

ip1(t)⊗aip1(t)≤ n×C1(t)+Bip3,∀t ≥ 0
⇔ β u

ip1(t)≤ (n×C1(t)+Bip3)⊘aip1(t),∀t ≥ 0. (6)

Before we compute βb1 = [β u
b1,β

l
b1], let us define some quan-

tities that will be used hereafter in this chapter.

Definition 4: Worst-case quality metric (Qu). For any
frame interval F , the worst-case quality metric Qu( f ,F), for all
0 ≤ f ≤ Fb, is the worst-case quality of the video if f frames
are dropped in any window of F consecutive frames. Here,
Fb is the total number of less significant frames that can be
dropped and Fb < F .

All dropped frames are replaced by immediately preceding
and successfully processed frames called concealment frames.
The amount of quality loss depends on the mean square error
(MSE) between the dropped and concealment frames. The
MSE and the corresponding PSNR quality are computed as
explained in Section V-B in [12].

Definition 5: Frame interval based time bound (δ u(F)).
Given the original arrival curve before partitioning α1, the
upper bound on time required for arrival of F frames is given
by

δ u(F) = min{∆ ≥ 0 | α l
1(∆)≥ F}

Lemma 3.1: Given the target quality constraint Qtarget
1 , the

worst-case quality surface Qu( f ,F) and the frame interval
based time bound δ u(F), the upper bound on number of frames
that can be dropped in any time interval ∆ is given by

f u(∆) = fmax(F)

where fmax(F) is the maximum number of frames that can
be dropped in a frame interval F such that Qu( fmax(F),F)≥
Qtarget

1 and δ u(F)≤ ∆ < δ u(F +1).

Proof: This lemma can be proved by considering two
instances of time intervals.
Case I: Let us first consider the straightforward case with
time intervals given by ∆ = δ u(F). These are the lowest time
interval values where α l

b1 ≥ F . If fmax(F) is the maximum
possible number of frames that can be dropped in a frame
interval F such that the quality constraint is satisfied, i.e.,
Qu( fmax(F),F)≥Qtarget

1 , then for ∆= δ u(F), we have f u(∆)=
fmax(F).
Case II: Now let us consider the time intervals given by
δ u(F) < ∆ < δ u(F + 1). These are the time intervals when
α l

1(∆) > F and α l
1(∆) < F + 1. In these time intervals, the

maximum number of frames that can be dropped should be
at most fmax(F) so that the quality constraint is satisfied. If
the number of frame drops exceeds fmax(F), then the quality
constraint is violated because α l

1(∆)< F +1 and therefore any
frame drop fd > fmax(F) will result in Qu( fd ,F) < Qtarget

1 .
Then, for δ u(F)< ∆ < δ u(F +1), we have f u(∆) = fmax(F).
Hence, it is proved that f u(∆) = fmax(F),∀∆ ≥ 0.

Lemma 3.2: Suppose αb1 = (αu
b1,α

l
b1) are the arrival

curves of the less significant stream as shown in Fig. 2,
βb1 = (β u

b1,β
l
b1) are the service curves for the less significant



stream on PE1, and B is the size of the input buffer. Then, the
number of input frames that can be dropped over any interval
of length ∆ ≥ 0 is upper bounded by αu

drop1(∆), defined by
(Lemma 4.3 in [10])

αu
drop1 = (αu

b1 −β l
v1)⊗ 0

where β l
v1

def
= (α l

b1 ⊗β l
b1 +Bb1)

∗⊗αu
b1.

Lemma 3.3: Define αb1, βb1 and αu
drop1 as in Lemma 3.2.

Also define f u as in Lemma 3.1. Then, for any given time
interval ∆ ≥ 0, in order to satisfy the quality constraint, the
lower service curve (β l

b1) is given by

β l
b1(∆)≥ ((((((αu

b1 − f u)⊗ 0)⊘αu
b1)−Bb1)⊗ 0)⊘α l

b1)(∆)

Proof: Let us start from the expression for drop bound
given in Lemma 3.2. In order to satisfy the quality constraint,
the following relation needs to be maintained:

αu
drop1(∆)≤ f u(∆)

⇔ ((αu
b1 −β l

v1)⊗ 0)(∆)≤ f u(∆)
⇔ ((αu

b1 − (α l
b1 ⊗β l

b1 +Bb1)
∗⊗αu

b1)⊗ 0)(∆)≤ f u(∆)
⇔ (αu

b1 − (α l
b1 ⊗β l

b1 +Bb1)⊗αu
b1)(∆)≤ f u(∆)

(As g ⊗ 0 ≤ h ⇒ g ≤ h)

⇔ ((αu
b1 − f u)⊗ 0)(∆)≤ ((α l

b1 ⊗β l
b1 +Bb1)⊗αu

b1)(∆) (7)

The network calculus based transformations can be applied to
Eq. 7 to derive the lower bound on β l

b1 given by

β l
b1(∆)≥ ((((((αu

b1 − f u)⊗ 0)⊘αu
b1)−Bb1)⊗ 0)⊘α l

b1)(∆)

Hence, the lemma is proved.

We can compute the β u
b1 bound by ensuring that buffer Bb3

does not overflow, i.e.,

yb1(t)≤ zb1(t)+Bb3 − f u(t),∀t ≥ 0 (8)

In order to ensure that buffer Bab1 does not underflow, we have

zb1(t)≥ (1−n)×C1(t),∀t ≥ 0 (9)

From Eq. 8 and Eq. 9, in order to strictly ensure that Bb3 does
not overflow, we can deduce that

yb1(t)≤ (1−n)×C1(t)+Bb3 − f u(t),∀t ≥ 0
⇔ β u

b1(t)⊗ab1(t)≤ (1−n)×C1(t)+Bb3 − f u(t),∀t ≥ 0
⇔ β u

b1(t)≤ ((1−n)×C1(t)+Bb3 − f u(t))⊘ab1(t),∀t ≥ 0.
(10)

Lemma 3.4: From Eq. 3, Eq. 6, Eq. 10 and Lemma 3.3,
the aggregate service curve [β u

1 ,β
l
1] for the PE allowing drops

can be computed as

β u
1 ≤ min{β u

nd1,max{(β l
ip1 +β u

b1),(β
u
ip1 +β l

b1)}}

β l
1 ≥ min{β l

nd1,(β
u
ip1 +β l

b1)}

where β l
nd1 is the lower bound on aggregate service curve with

no frame drops.

Proof: Let us first consider the lower bound of the
aggregate service curve represented by the tuple [β u

1 ,β
l
1] for the

PE allowing frame drops (the first PE in our case from Fig. 1).

The lower bound β l
1 should at least service a minimum number

of less significant frames such that the number of such frames
dropped do not violate the quality constraints. This condition
can be satisfied if at least β l

b1 less significant frames are
serviced. In order to ensure that none of the significant frames
are dropped, it is necessary that an additional β u

ip1 service is
provided. This gives the lower bound on the aggregate service
required given by {β u

ip1 + β l
b1}. However, in order to ensure

that β l
1 does not exceed the lower bound with no frame drops,

the appropriate lower bound on aggregate service curve with
frame drops is β l

1 ≥ min{β l
nd1,(β

u
ip1 +β l

b1)}.

Now let us consider the upper bound of the aggregate service
curve for the PE allowing frame drops. The upper bound of β u

1
can be a straightforward sum of the upper bounds of individual
service for both significant and less significant frames given
by β u

ip1+β u
b1. However, this is a pessimistic estimate. In order

to not result in buffer overflow at B3, the upper bound can be
such that β u

1 ≤{β l
ip1+β u

b1} or β u
1 ≤{β u

ip1+β l
b1}. But we need

to ensure that β u
1 ≥ β l

1. Therefore, the appropriate β u
1 required

is β u
1 ≤ max{(β l

ip1 +β u
b1),(β

u
ip1 +β l

b1)}. However, in order to
guarantee that β u

1 ≤ β u
nd1, we take the minimum of the right

hand side expressions in the above two inequalities.

Hence, the lemma is proved.

However the aggregate service curve can be tuned more accu-
rately if there is an integral relationship between the number
of I/P frames and number of B frames. This is demonstrated
in the next lemma.

Lemma 3.5: Considering the quantities in Lemma 3.4
and Lemma 3.1, if there is an integral relationship be-
tween the number of significant frames and the number
of insignificant frames in the stream, i.e., if the ratio
Number o f less signi f icant f rames

Number o f signi f icant f rames = N, where N is a positive in-
teger, the aggregate service curve [β u

1 ,β
l
1] can be computed

as
β u

1 ≤ {β u
b1 +

β u
b1 + f u

N
}

β l
1 ≥ min{β l

nd1,(β
l
b1 +

β l
b1 + f u

N
)}

where β l
nd1 is as defined in Lemma 3.4.

Proof: As in Lemma 3.4, the lower bound of the aggregate
service curve β l

1 has to process at least β l
b1 frames to satisfy

quality constraints. As the ratio Number o f less signi f icant f rames
Number o f signi f icant f rames =

N, where N is an integer, the maximum number of significant
frames that need to be processed in the same time interval

are
β l

b1+ f u

N . This is because β l
b1 is the minimum number of

less significant frames to be processed which does not include
those less significant frames that are dropped. So, in order
to find the maximum number of significant frames, we need
to add the upper bound on number of frames dropped to
β l

b1 so as to find the total number of less significant frames
(Dropped + Processed). The total when divided by N gives
the maximum number of significant frames processed, given

by
β l

b1+ f u

N . The sum of β l
b1 and the previous quantity gives

one part of the lower bound. In order to ensure that the lower
bound with frame drops does not exceed the lower bound
without frame drops (β l

nd1), we derive the lower bound as



β l
1 ≥ min{β l

nd1,(β
l
b1 +

β l
b1+ f u

N )}. The same explanation holds
for the upper bound when β l

b1 is substituted with β u
b1.

The service is currently in terms of the number of frames
processed in any time interval. This has to be converted into
bounds on the number of processor cycles provided in any time
interval. Let us now define the tuple [σu,σ l ], which denotes
the upper and lower bound on the number of processor cycles
provided in a specific time interval ∆. If the maximum number
of cycles required to process k frames is denoted by cmax(k),
then the bounds on the required processor cycles such that
an input stream is processed with target quality constraints is
given by

σu(∆)≤ cmax(β u
1 (∆)),

σ l(∆)≥ cmax(β l
1(∆)). (11)

Deriving Scheduler Parameters: Any scheduler that provides
service which are bounded by the service bounds [σu,σ l ] that
our framework computes is the appropriate scheduler that will
process the incoming multimedia stream satisfying a target
quality constraint. For example, we illustrate how the scheduler
parameters can be derived for a scheduling technique such as
Time Division Multiple Access (TDMA). If the total processor
cycles available at the PE is c cycles per unit time, then the
total processor cycles available is σu(∆) = σ l(∆) = c∆. Let
the TDMA scheduler period be P. It allocates f1 ×P time to
stream 1 and f2 ×P time to stream 2 in a period P such that
f1+ f2 ≤ 1. If P is infinitesimally small, then the service curve
bounds for stream 1 and stream 2 are σu

1 (∆) = σ l
1(∆) = f1c∆

and σu
2 (∆) = σ l

2(∆) = f2c∆, respectively. For a finite P, the
service curve bounds become a staircase function. The values
of f1, f2 and P can be appropriately selected such that Eqn. 11
is satisfied. We could analyze a specific video or a class of
video clips.

IV. EXPERIMENTAL RESULTS

In this section, we validate the formal framework presented in
the previous section. The two main results presented here are:

1) Verification of the service bounds obtained by check-
ing if the quality constraints are met in a scenario
where multiple streams are processed such that each
stream is serviced with the processor cycle bounds
derived using the formal framework.

2) Reduction in the processor cycle requirements ob-
tained as a result of the trade-off with quality.

In our experiments, we consider frame drops only in front of
PE1. Therefore, we compute the service required on PE1 for
two multimedia streams decoded simultaneously on a MPSoC
platform with buffer and processor resource constraints. In
particular, we first find the processor cycle bounds in accor-
dance to the formal framework presented in Section III so that
target quality constraints for both the multimedia streams are
met. Then, we allocate processor cycles to the two streams
such that the processor cycle bounds are not violated. The
processor cycles required for the multimedia streams on PE2
(without frame drops) can be computed without partitioning
the processed stream at the output of PE1. The procedure
is similar to the computation of processor bounds for I/P
frames at PE1. The cycle requirement for each MPEG-2
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Fig. 3. Simulation results for quality in a multiple stream decoding scenario
for (a) cact 080 and (b) susi 080.

and H.264 task is obtained using SimpleScalar sim-profile
simulator for a MIPS-like architecture. The results that take
advanced microarchitectural features such as pipelining, caches
or out-of-order execution into account can be obtained by
modifying the SimpleScalar simulator. The MPEG-2 videos
(with frame pattern IBBPBBPBBPBBI. . .) used are cact 080
and susi 080 (from [13]) and the H.264 videos (with frame
pattern IPPPPPPPPP. . .) used are nasa (a clip from NASA)
and bourne ultimatum (a movie clip). For MPEG-2 videos
(8 Mbps videos), B is the less significant frame and for the
H.264 videos (3.25 Mbps videos), the last P frame is the less
significant frame. The buffer sizes are fixed at Bip1 =Bip2 = 50,
Bb1 = Bb2 = 100, Bip3 = Bip4 = 45 and Bb3 = Bb4 = 90 for
the MPEG-2 clips and at Bip1 = Bip2 = 410, Bb1 = Bb2 = 40,
Bip3 = Bip4 = 415 and Bb3 = Bb4 = 45.

A. Verification of the Computed Service Bounds

The processor cycle requirement curves with frame drops
([σu

1 ,σ
l
1]) obtained in the previous section for both the clips is

used in this section to run simulations in a multiple video
clip decoding scenario, which is one of the scenarios that
can use this framework. PE1 is assigned a frequency of 500
MHz. The processing cycles are allocated to the video clips in
accordance to the cycle requirement bounds [σu

1 ,σ
l
1] obtained

in the previous section. The processor cycles are also allocated
in an as late as possible (ALAP) manner such that the video
clips are processed at the end of every time interval. This is
done in order to ensure that buffer occupancy is the maximum
and does not result in quality reduction below the target
worst-case quality of 30 dB. It is observed from Fig. 3 that
the obtained quality for both the videos using the processor
cycle bounds does not fall below 30 dB, which is the target
for the experiment. On the other hand, it is also seen that
susi 080 achieves a quality much closer to the target worst-
case quality of 30 dB, while cact 080 is a little above 30 dB.
This is because the variation in video is much higher for
cact 080 and so the cycle requirements obtained for it are
more pessimistic in comparison to those obtained for susi 080.
The same result was also observed with the H.264 videos for
a quality constraint of 32 dB.

B. Processor Cycle vs Quality trade-off

We explore this trade-off on PE1 with buffer and processor
bandwidth constraints. In order to compute the processor cycle
bounds with no frame drops, we use the method given in [1].
First, we present the result for the aggregate service curve
[β u

1 ,β
l
1] with frame drops and compare it with the aggregate
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Fig. 4. Aggregate service curves with and without frame drops for the clips
(a) cact 080 and (b) susi 080.
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Fig. 5. Processor cycle requirements with and without frame drops for the
clips (a) cact 080 and (b) susi 080.

service curve [β u
nd1,β

l
nd1] without frame drops (for cact 080

and susi 080) in Fig. 4. In this experiment, frames are dropped
such that a worst-case quality of 30dB is not violated. It is
observed from the graph that the lower service curves with
(β l

1) or without (β l
nd1) frame drops start processing only after

an initial latency during which the buffer is not full and there is
no frame drop and therefore no loss in quality. After that initial
latency, both the curves increase at different rates because with
a tolerable loss constraint, β l

1 need not process all the frames
and some frames can be dropped. The reduction in the upper
service curve is also observed for the frame drop case (β u

1 )
because even though β u

nd1 will not cause buffer overflows in
the intermediate stage, due to frame drops in the first stage,
the upper aggregate service curve β u

1 decreases as shown in
Fig. 4. The observations listed above are seen for all the video
clips used to conduct experiments. However, it is evident from
Fig. 4(b) that the reduction in service is more for susi 080
in comparison to cact 080 because the adjacent frames in
susi 080 are more similar in comparison to the adjacent frames
in cact 080, which allows more frames to be dropped for
susi 080 with the same target worst-case quality constraint.

We also plot the curves for the processor cycle requirements for
each video clip with a worst-case quality constraint of 30 dB
(shown as the tuple [σu

1 ,σ
l
1]) and compare it with the processor

cycle requirements without any quality loss (no frame drops)
(shown as the tuple [σu

nd1,σ
l
nd1]) in Fig. 5 and Fig. 6. The

characteristics of the aggregate service curves is reflected in
these curves also as the processor cycle requirements increase
with the increase in service requirements. The processor cy-
cle savings for MPEG-2 videos at 30 dB were 40.8% (for
susi 080) and 6.6% (for cact 080), while the same for H.264
videos at 32 dB were 74.63% (for nasa) and 34.25% (for
bourne ultimatum).
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Fig. 6. Processor cycle requirements with (≥ 32 dB) and without frame
drops for the clips (a) nasa and (b) bourne ultimatum.

V. CONCLUDING REMARKS

In this paper, we present a mathematical framework that
derives the service bounds required to process a video clip such
that a target quality constraint is adhered to. In our framework,
we determine service bounds under bounded quality degrada-
tion measured using the objective quality metric PSNR. The
framework was verified in a multiple video processing setup
like a PiP application where the analytically obtained processor
service bounds processed the videos, while meeting the target
quality constraints.
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