
Randomized Data Allocation in Scalable

Streaming Architectures⋆

Kun Fu and Roger Zimmermann

Integrated Media Systems Center
University of Southern California

Los Angeles, California 90089
[kunfu, rzimmerm]@usc.edu

Abstract. IP-networked streaming media storage has been increasingly
used as a part of many applications. Random placement of data blocks
has been proven to be an effective approach to balance heterogeneous
workload in multi-disk steaming architectures. However, the main dis-
advantage of this technique is that statistical variation can still result
in short term load imbalances in disk utilization. We propose a packet
level randomization (PLR) technique to solve this challenge. We quantify
the exact performance trade-off between PLR approach and the tradi-
tional block level randomization (BLR) technique through both theoret-
ical analysis and extensive simulation. Our results show that the PLR
technique can achieve much better load balancing in scalable streaming
architectures by using more memory space.

1 Introduction
Large scale digital continuous media (CM) servers are currently being deployed
for a number of different applications. Magnetic disk drives are usually the stor-
age devices of choice for such streaming servers and they are generally aggregated
into arrays to enable support for many concurrent users. Multi-disk CM server
designs can largely be classified into two paradigms: (1) Data blocks are striped
in a round-robin manner [1] across the disks and retrieved in cycles or rounds

for all streams. (2) Data blocks are placed randomly [5] across all disks and the
data retrieval is based on a deadline for each block. The first paradigm attempts
to guarantee the retrieval or storage of all data. It is often referred to as deter-

ministic. With the second paradigm, a disk may briefly be overloaded, leading
to a few missed deadlines. This approach is often called statistical.

We focused on the statistical approach because of its many advantages. For
example, a much higher resource utilization can be achieved. Moreover, the sta-
tistical approach can be implemented on widely available platforms such as Win-
dows or Linux that do not provide hard real time guarantees. It can also naturally
support a variety of different media types that require different data rates (both
constant (CBR) or variable (VBR)) as well as interactive functions such as pause,
resume and fast-forward. Moreover, it has been shown that the performance of
a system based on the statistical method is on par with that of a deterministic

⋆ This research has been funded in part by NSF grants EEC-9529152 (IMSC ERC),
IIS-0082826 and CMS-0219463, and unrestricted cash/equipment gifts from Intel,
Hewlett-Packard, Raptor Networks Technology and the Lord Foundation.

system [6]. Finally, it can support on-line data reorganization more efficiently [3],
which is very crucial for scalable storage systems. Even though the statistical
approach is very resource efficient and ensures a balanced load across all disk
devices over the long term, short term load fluctuations may occur because oc-
casionally consecutive data blocks may be assigned to the same disk drive by the
random location generator. During the playback of such a media file, the block
retrieval request queue may temporarily hold too many requests such that not
all of them can be served by their required deadline.

In this paper we introduce a novel packet-level randomization (PLR) tech-
nique that significantly reduces the occurrence of deadline violations with ran-
dom data placement. PLR is the focus of the remainder of this paper which is
organized as follows. Section 2 reviews the related work. Section 3 presents our
proposed design. Performance analysis and evaluation are contained in Section 4
and 5, respectively. Finally, Section 6 outlines our future plans.

2 Related Work

Three techniques have been proposed to achieve load balancing in striped multi-
disk multimedia storage systems. One approach is to use large stripes that ac-
cess many consecutive blocks from all disks at a single request for each active
stream [8]. It provides perfect load balancing because the number of disk I/Os is
the same on all the devices. However, it results in extremely large data requests
with large number of disks. Furthermore, it does not efficiently support unpre-
dictable access patterns. The second approach uses small requests accessing just
one block on a single disk, with sequential requests cycling over all the disks [1].
This technique does not support unpredictable access patterns well. The third
technique randomly allocates data blocks to disks blocks [6, 7], and therefore
supports unpredictable workloads efficiently. To our knowledge, no prior work
has quantified the exact trade-off between the randomization at the packet and
block levels when fine-grained load balancing is desired or required.

3 Design Approach

We assume a multi-disk, multi-node streaming media server cluster design sim-
ilar to the one used in our previous research activities. Our first prototype
Yima [7], was a scalable streaming architecture to support applications such
as video-on-demand and distance learning on a large scale. Our current gener-
ation system, termed the High-performance Data Recording Architecture (HY-
DRA) [10] improves and extends Yima with real time recording capabilities. For
load-balancing purposes, without requiring data replication, a multimedia ob-
ject X is commonly striped into blocks , e.g., X0, X1, . . . , Xn−1, across the disk
drives that form the storage system [4, 8]. Because of its many advantages, we
consider randomly allocating data to the disk drives.

3.1 Packets versus Blocks

Packet-switched networks such as the Internet transmit relatively small quanta
of data per packet (for example 1400 bytes). On the other hand, magnetic disk
drives operate very inefficiently when data is accessed in small amounts. This is

Randomized Block
to Disk Mapping

Packet to Block
Aggregation

Packets

Blocks

1
2
3
4

1 2 3
4 5 6

Randomized Packet
to Disk Mapping

Packets

Blocks

Packet to
Block
Aggregation

Packet to
Block
Aggregation

Packet to
Block
Aggregation

1
2
3
4

2
3
9

1
5
6

4
7

8

2 3 9 1 5 6 4 7 8

Fig. 1(a): Block Level Random-
ization (BLR)

Fig. 1(b): Packet Level Random-
ization (PLR)

Fig. 1. Two different randomization schemes that can be applied in a Recording Sys-
tem, e.g. HYDRA [10]. Note that in this example, each block contains 3 packets.

due to the fact that disk drives are mechanical devices that require a transceiver
head to be positioned in the correct location over a spinning platter before any
data can be transferred. The seek time and rotational latency are wasteful [10].
Consequently, media packets need to be aggregated into larger data blocks for
efficient storage and retrieval. Traditionally this is accomplished as follows.

Block-Level Randomization (BLR): Media packets are aggregated in se-
quence into blocks (see Figure 1(a)). For example, if m packets fit into one block
then the data distribution algorithm will place the first m sequential packets into
block X0, the next m packets into block X1, and so on. As a result, each block
contains sequentially numbered packets. Blocks are then assigned randomly to
the available disk drives. During retrieval, the deadline of the first packet in each
block is essentially the retrieval deadline for the whole block. The advantage of
BLR is that only one buffer at a time per stream needs to be available in mem-
ory across all the storage nodes. In order to allow high disk utilization while still
reducing the probability of hot-spots we propose a novel technique as follows.

Packet-Level Randomization (PLR): Each media packet is randomly as-
signed to one of the storage nodes, where they are further collected into blocks
(Figure 1(b)). One advantage is that during playback data is retrieved randomly
from all storage nodes at the granularity of a packet. Therefore, load-balancing
is achieved at a very small data granularity. The disadvantage is that memory
buffers need to be allocated concurrently on all nodes per stream. In the next
section we quantify the load-balancing properties of both BLR and PLR.

4 Performance Analysis

We evaluate PLR and BLR with three metrics: (1) the uniformity of data dis-
tribution on each disk, (2) the disk I/O imbalance across every disk during a
streaming experiment, and (3) the memory size and potential caching effects.

4.1 Data Placement Imbalance Analysis

With PLR, let the random variable X denote the number of packets assigned to a
specific disk. As proposed in [3], uniformity of data distribution can be measured

Term Definition Units
ND Total number of disks
M Total data size MB
SP Packet size MB
SB Block size MB
MB Total data size in blocks
MP Total data size in packets
DP LR The amount of data assigned to a disk in PLR MB
DBLR The amount of data assigned to a disk in BLR MB
X The number of packets assigned to a disk in PLR

Y The number of blocks assigned to a disk in BLR

R Ratio of block size and packet size, i.e.,
SB
SP

NC The number of concurrent clients supported by the storage server
NS Total number of storage server nodes

Smem
blr Memory size required for BLR MB

Smem
plr Memory size required for PLR MB

α The number of disks attached to each server node 1, i.e. α =
ND
NS

Table 1. List of terms used repeatedly in this study and their respective definitions.

by the standard deviation and the coefficient of variation (CV) of X , represented
by σX and CV (X), respectively. CV (X) can be derived from dividing σX by the
mean value of X , µX . If we consider the random assignment of a packet to a disk
as a Bernoulli trial, which has probability p = 1

ND
to be successfully allocated

to a specific disk, then the total number of successful Bernoulli trials could be
naturally mapped to X . Intuitively, X follows a Binomial distribution, where
the number of Bernoulli trials is the total number of packets to be assigned, and
denoted as MP . Note that MP can be computed as MP = M

SP
, where M is the

total data size and SP is the packet size. Therefore, we can obtain

µX = M
SP ×ND

, σX =
√

M×(ND−1)
SP ×N2

D

, CV (X) =
√

(ND−1)×SP

M
× 100 (1)

With BLR, let Y denote the number of blocks assigned to a disk. Furthermore,
MB represents the total data size in blocks. MB can be calculated as MB = M

SB
,

where SB denotes the block size. Similar to PLR, we obtain

µY = M
SB×ND

, σY =
√

M×(ND−1)
SB×N2

D

, CV (Y) =
√

(ND−1)×SB

M
× 100 (2)

Let DPLR and DBLR denote the amount of data assigned to a disk with PLR

and BLR, respectively. Then, DPLR and DBLR can be calculated by

DPLR = XSP , DBLR = Y SB (3)

Using Equations 1 and 3, we obtain the mean, standard deviation and coefficient
of variation of DPLR as expressed in Equation 4.

µDP LR
= M

ND
, σDP LR

=

√

S3

P
M(ND−1)

N2

D

, CV (DPLR) =

√

(ND−1)×S3

P

M
× 100

(4)
Similarly, with Equation 3 and 2, we can obtain the mean, standard deviation
and coefficient of variation of DBLR as Equation 5.

µDBLR
= M

ND
, σDBLR

=

√

S3

B
M(ND−1)

N2

D

, CV (DBLR) =

√

(ND−1)×S3

B

M
× 100

(5)

Finally, from Equations 4 and 5, we obtain:

µDBLR
= µDP LR

,
σDBLR

σDP LR

= CV (DBLR)
CV (DP LR) = R

3

2 (6)

where R = SB

SP
. There are two important observations we obtain from Equation 6.

First, the mean values of DBLR and DPLR are the same, which confirms that
both the BLR and PLR schemes achieve the same level of load balancing in the
long run as expected. Second, with respect to short term load balancing, PLR

has a significant advantage over BLR.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

R
at

io
 o

f l
oa

d
im

bl
an

ce
 in

 B
LR

 a
nd

 P
LR

Number of packets in a disk block

Fig. 2. Load imbalance ratio
σDBLR

σDPLR

, with different block to packet size ratio R = SB

SP
.

Impact of Block to Packet Size Ratio R: Figure 2 shows the ratio of load
imbalance

σDBLR

σDP LR

as a function of the block to packet size ratio R. When R

increases from 1 to 2, 000,
σDBLR

σDP LR

increases sharply from 1 to approximately

90, 000. The figure clearly indicates the significant performance gain of PLR

over BLR. In fact, 2, 000 packets in one block is not unusual. For example, a
512 byte packet size and a 1 MB block size are a quite common configuration in
streaming servers [7].

Parameters Configurations

Test movie “Twister” MPEG-2 video, AC-3 audio
Average bandwidth 698,594 bytes/sec
Length 115 minutes
Throughput std. dev. 308,283.8
RTP packet size 512 bytes
Total number of RTP packets 10,740,000

Table 2. Parameters for movie “Twister” used in analysis.

Impact of the Number of Disks ND: Figure 3(a) shows the standard de-
viation of the amount of data assigned to a disk in BLR and PLR, i.e., σDBLR

and σDP LR
, respectively, as a function of the number of disks ND on a logarith-

mic scale. Note that the data assigned is from the DVD movie “Twister” (see
Table 2). As shown in the Figure 3(a), σDBLR

is larger than σDP LR
by several

orders of magnitude, which implies that PLR allocates the movie data much
more evenly across all the disks than BLR. Furthermore, when the total number
of disks ND increases from 2 to 200, σDBLR

decreases from 35 MB to 5 MB.

-5

-4

-3

-2

-1

 0

 1

 2

 3

 20 40 60 80 100 120 140 160 180 200lo
ad

 im
bl

an
ce

 in
 L

og
rit

hm
 b

as
e

10
 (

M
B

)

Number of disks

PLR

BLR

-4

-3

-2

-1

 0

 1

 2

 3

 0 20 40 60 80 100lo
ad

 im
bl

an
ce

 in
 L

og
rit

hm
 b

as
e

10
 (

M
B

)

Data size (GB)

PLR

BLR

Fig. 3(a): Impact of the number
of disks ND based on DVD movie
“Twister” (see Table 2).

Fig. 3(b): Impact of data size M ,
with ND = 4, SP = 512 bytes, and
R = 2, 000.

Fig. 3. Impact of the number of disks ND and data size M on the standard deviation
σDBLR

and σDP LR
. Note that the figures are logarithmic in scale.

Similarly, σDP LR
also follows this trend. In fact, we can formally prove that, if

ND ≥ 2 and as ND increases, σDBLR
and σDP LR

both decrease monotonically
as given in Lemma 42.

Lemma 41 Let A(n) =
√

n−1
n

,∀n ≥ 2, A(n + 1) < A(n).

Proof. ∀n ≥ 2, A(n) > 0, thus, we need to prove Equation 7,

A(n + 1)

A(n)
< 1 ⇐⇒

√

n3

(n + 1)2(n − 1)
< 1 (7)

To prove Equation 7, we need to show Equation 8.

n3 − (n + 1)2(n − 1) < 0 (8)

Equation 8 can be rewritten as −[(n − 1)2 + (n − 2)] < 0, which is always true
for all n > 2.

Lemma 42 ∀ND ≥ 2, if M , SP and SB are fixed, both σDP LR
and σDBLR

monotonically decrease as ND increases.

Proof. Because SP and M are constant, using Equation 4 and Lemma 41, it is
straightforward to prove that, as ND increases, σDP LR

monotonically decreases.
Similarly, since SB and M are fixed, and using Equation 5 and Lemma 41, we
can prove that, as ND increases, σDBLR

monotonically decreases.

Impact of the Data Size M : Figure 3(b) shows the load imbalance metric
for both schemes as a function of the data size M . In the analysis, the total
number of disks ND = 4, packet size SP = 512 bytes for PLR, and block to
packet ratio R = 2, 000 for BLR. As illustrated, as the data size M increases
from 0 to 100 GB, the load imbalance metric of BLR σDBLR

increases sharply
from 0 to more than 120 MB. Similarly, the load imbalance metric of PLR σDP LR

also increases, but because it is several orders of magnitude smaller than σDBLR
,

σDP LR
is still less than 2 Kbytes for M = 100 GB. This figure confirms that,

when more data are loaded or recorded into the storage system, the imbalance of
the amount of data assigned across all the disks will increase significantly, which
explicitly shows the great performance gain of PLR. Next, we compare the disk
load imbalance through the analysis of a streaming experiment.

Client movie playout duration

BLR

PLR

timeline

block consumption

F(B1) F(B3) F(B5) F(B7)
F(B4) F(B6)

disk I/O
(block fetching)

disk I/O
(block fetching)

block consumption

t1t0 t2 t3 t4 t5 t6 t7 t8 t9 t10

Block Placement

d1 d2
d2

d1
d3

d3

F(B1)

F(B3)

F(B2)
d1

d2

d3

F(B4)

F(B6)

F(B5)
d1

d2

d3

F(B7)

F(B9)

F(B8)
d1

d2

d3

Bi client consume block Bi

fetching block Bi from diskiF(Bi)

di

B10 B11 B12

t11 t12 t13

B1 B2 B3 B4 B5 B6 B7 B8 B9

d1 d2 d3

B12B8

B1 B5

B11B9

B3 B4

B10B7

B2 B6

d1 d2 d3

B10B7

B1 B4

B11B8

B2 B5

B12B9

B3 B6B10

B11

B12

B7

B8

B9

B4

B5

B6

B1

B2

B3

F(B2)

d3

F(B10)

F(B12)

F(B11)
d1

d2

d3

F(B8)

d1

F(B10)

d3

F(B9)

d2

F(B11)

d2 F(B12)

d1

movie
start playingstartup

latency

Fig. 4. Illustration of the disk I/O load imbalance during the playback of a CBR movie
with ND = 3 and MB = 12 for both the BLR and PLR schemes.

4.2 Disk I/O Imbalance Time Analysis

As suggested by [2], the disk load imbalance during a predefined measurement
period is characterized by the Global Standard Deviation σBdisk

, which is defined
as the utilized disk I/O bandwidth of all the ND disks 2, shown in Equations 9.

σBdisk
=

√

∑

ND

i=1
(Li−µBdisk

)2

ND

(9)

where Li denotes the utilized disk I/O bandwidth during the measurement pe-
riod for disk i, i ∈ [1, ND] and µBdisk

represents the mean value of the utilized
disk I/O bandwidth and can be computed as:

µBdisk
=

1

ND

ND
∑

i=1

Li (10)

Our experimental setup is as follows. Three disks (ND = 3) are attached
to a server. A client streams a constant bit rate (CBR) movie from the server,
and the movie contains 12 blocks (MB = 12) of size SB = 1 MB. The movie
consumption rate is 1 MB/s. Therefore, a block is consumed every second during
the movie playback, and the movie length is 12 seconds. The server employs
random data placement with deadline driven disk scheduling algorithm. Recall
that the deadline of each block is set to the first packet in each block. A simple
double buffering scheme is adopted for memory management.

Figure 4 shows a detailed analysis of all the disk I/O events during the
playback of the movie. During the movie startup period, which is between time

2 We believe that in the analysis of storage systems, the absolute values are intuitively
more understandable. Thus, we do not normalize the Global Standard Deviation by
the mean value.

t0 and t1, the server prefetches some blocks. Because of double buffering, in BLR

two blocks, B1 and B2, are prefetched, while in PLR six blocks are prefetched. A
client starts the movie playback at time t1. With BLR, after every second when
one block is consumed, the server fetches the next block. This process continues
until the end of the movie. In PLR, the process is similar to BLR except that
it takes 3 seconds from t1 to t4 for the client to consume blocks B1, B2 and
B3. Note that because the randomness granularity is at the packet level, these
three blocks are consumed almost at the same time. Subsequently, at time t4,
blocks B7, B8 and B9 are fetched in parallel. A similar procedure is repeated
at time t7 for blocks B10, B11 and B12. Note that PLR exploits the disk I/O
parallelism naturally in this multi-disk environment. Table 3 summarizes the

Parameters Time Slots
Scheme Statistics t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

(MB/s) -t1 -t2 -t3 -t4 -t5 -t6 -t7 -t8 -t9 -t10 -t11 -t12 -t13
L1 1 0 0 0 1 0 0 1 0 0 0 1 0
L2 0 0 1 1 0 0 0 0 1 0 1 0 0

BLR L3 1 0 0 0 0 1 1 0 0 1 0 0 0
µBdisk

0.67 0 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0
σBdisk

0.471 0 0.471 0.471 0.471 0.471 0.471 0.471 0.471 0.471 0.471 0.471 0

L1 2 0 0 0 1 0 0 1 0 0 0 0 0
L2 2 0 0 0 1 0 0 1 0 0 0 0 0

PLR L3 2 0 0 0 1 0 0 1 0 0 0 0 0
µBdisk

2 0 0 0 1 0 0 1 0 0 0 0 0
σBdisk

0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3. Disk I/O imbalance computation results during the playback of a 12 seconds CBR movie
for both BLR and PLR scheme.

computed load imbalance for BLR and PLR based on Equations 9 and 10 for
each second during the movie playback. Throughout the movie playback session,
PLR perfectly balances the load, while BLR suffers from load imbalance with
a global standard deviation value of 0.471 MB/s during more than 80% of the
playout time. Next, we compare the impact of the memory size and its usage.

4.3 Memory Usage Analysis

Memory Size Requirement. Assuming that the same number of disks are
attached to each storage server node and let NS denote the total number of server
nodes. Let us further assume that double buffering techniques are adopted in the
system. In the PLR, the blocks from multiple disks within one server node can be
accessed in parallel even for a single stream. Therefore, two buffers per disk are
necessary for each stream. However, in BLR, because the blocks from multiple
disks within one server node will be accessed sequentially for a single stream, only
two buffers per server node are required for each stream. Accordingly, Smem

blr

and Smem
plr, the memory size required for BLR and PLR, can be computed as

Smem
blr = 2 × SB × NC × NS , Smem

plr = 2 × SB × NC × ND (11)

where NC denotes the number of concurrent clients. We define α as the ratio
between the total number of disks ND and NS , i.e, α = ND

NS
. Therefore, we obtain

Splr
mem

Sblr
mem

= α, which means that PLR requires more memory resources than BLR

when more than one disk is attached to each server node.

Client movie playout duration

BLR

PLR

B1 B2 B3 B4 B5 B6 B7 B8 B9

B1

B2

B3

B4

B5

B6

B7

B8

B9

Blocks

B1

B5

B8

B3

B4

B9

B2

B6

B7

Block Placement

B1

B4

B7

B2

B5

B8

B3

B6

B9

duration

Fig. 5. Illustration of the memory access duration during the playback of a CBR (con-
stant bit rate) movie with ND = 3 and MB = 9 for both the BLR and PLR techniques.

Memory Access Duration. Figure 5 shows the memory access duration during
the playback of a CBR (constant bit rate) movie with ND = 3 and MB = 9 for
both the BLR and PLR techniques. It clearly shows that the access duration
for a block in PLR is ND times that of the BLR scheme. Intuitively, due to the
finer granularity of randomness, the buffered blocks from multiple disks are used
simultaneously, which naturally leads to much longer consumption time for each
memory buffer. Because the memory access duration is the minimum time that
the corresponding blocks must be kept in memory, we believe that PLR could
potentially result in greater caching effects in the server.

5 Performance Evaluation

Disk Access
Scheduler

... ...

λ

Movie Trace
Library

e.g. "Twister",
"Charlie’s Angels"

Measure &
Report

WorkLoad
Generator

CN

Multi-Disk Storage System
(Seagate Cheetah X15)

... ...

Fig. 6. Experimental system setup.

5.1 Experimental Setup

To evaluate the performance of PLR and BLR in a more practical environment,
we integrated both the BLR and PLR methods into a simulation system. Fig. 6
illustrates the structure of our experimental setup. Note that we did not inte-
grate a full fledged streaming server into our simulation system to reduce the
number of factors that would influence the results. The WorkLoad Generator

produces stream requests based on a Poisson process with a mean inter-arrival
time of λ = 2 seconds. Each stream retrieval produces data block requests based
on either the PLR or BLR schemes with associated disk I/O deadlines according
to movie traces from the Movie Trace Library. The movie blocks are allocated
to disks in BLR or PLR schemes. The block requests are forwarded to the cor-
responding disk by the Disk Access Scheduler at the set times. The Measure &
Report module generates the measured result. In a deadline driven streaming
system, one of the most important parameters is the probability of a disk I/O
request deadline miss, denoted piodisk. In the output report, both the number of
requests with missed deadlines and the total number of disk block requests are
collected. Furthermore, the ratio between these two numbers, which represents
the fraction of the missed deadline requests, is interpreted as the probability of
missed deadlines piodisk. The WorkLoad Generator has two configurable param-
eters: the mean inter-arrival time λ and the number of movie streams NC . In
the experiments, we used the DVD movie “Saving Private Ryan,” whose profile
is shown in Fig.1(a) in [9]. Our disk system simulates four independent Seagate
Cheetah X15 disk drives. Table 4 summarizes all the used parameters.

Parameters Configurations
Test movie “Saving Private Ryan” MPEG-2 video, AC-3 audio

Average bandwidth 757,258 bytes/sec
Length 50 minutes
Throughput std. dev. 169,743.6

Disk Model “Seagate Cheetah X15” Model ST336752LC
Capacity 37 GB
Spindle speed 15,000 rpm
Avg. rotational latency 2 msec
Worst case seek time ≈ 7 msec
Number of Zones 9
Transfer rate See Fig.1(b) in [9]

Mean inter-arrival time λ of streaming request 2 seconds
Data Packet size SP 0.5 KB
Disk block size SB 1.0 MB
Number of disks ND 4
Number of concurrent clients NC 1, 2, 3, . . ., 230

Table 4. Parameters used in the experiments.

5.2 Experimental Results

Comparison based on Global Standard Deviation σBdisk
: Figure 7 shows

the global standard deviation measured during streaming experiments with the
number of concurrent clients NC being 10, 20, 50, and 100, respectively. In all
these four scenarios, PLR significantly improves the load balancing over BLR in
the multi-disk system. For example, with 50 concurrent streams, PLR decreases
the global standard deviation from 1.0721 MB/s to 0.3263 MB/s with NC = 50
and from 1.4982 MB/s to 0.4593 MB/s with NC = 100.

Figure 8(a) compares the general trend of the average global standard devi-
ation during each experiment as a function of the number of concurrent streams
NC . As NC increases, the average global standard deviation increases, which
verifies our analysis results in Section 4.1. That is, as the data size M increases
the imbalance also increases. Note that in all these measurement, PLR reduces
the load imbalance significantly.

 0

 1

 2

 3

 4

 5

 1000 1200 1400 1600 1800 2000 2200 2400

G
lo

ba
l S

ta
nd

ar
d

D
ev

ia
tio

n
(M

B
/s

)

Movie Playout Time (Seconds)

BLR

PLR

 0

 1

 2

 3

 4

 5

 1000 1200 1400 1600 1800 2000 2200 2400

G
lo

ba
l S

ta
nd

ar
d

D
ev

ia
tio

n
(M

B
/s

)

Movie Playout Time (Seconds)

BLR

PLR

Fig. 7(a): NC = 10 streams. Fig. 7(b): NC = 20 streams.

 0

 1

 2

 3

 4

 5

 1000 1200 1400 1600 1800 2000 2200 2400

G
lo

ba
l S

ta
nd

ar
d

D
ev

ia
tio

n
(M

B
/s

)

Movie Playout Time (Seconds)

BLR

PLR

 0

 1

 2

 3

 4

 5

 1000 1200 1400 1600 1800 2000 2200 2400

G
lo

ba
l S

ta
nd

ar
d

D
ev

ia
tio

n
(M

B
/s

)

Movie Playout Time (Seconds)

BLR

PLR

Fig. 7(c): NC = 50 streams. Fig. 7(d): NC = 100 streams.

Fig. 7. Disk load imbalance across time for different number of concurrent DVD
streams (“Saving Private Ryan”), where NC = 10, 20, 50, and 100 respectively.

Comparison based on the Probability of a Disk I/O Request Missed
Deadline piodisk: To evaluate the performance impact of the two schemes BLR

and PLR at the system level, we compared the measured results based on the
probability of a disk I/O request missing its deadline. Figure 8(b) shows the
measured piodisk as a function of the number of concurrent streams NC for
both PLR and BLR. With PLR, the system always experiences fewer disk I/O
requests that missed their deadlines. For example, with 205 concurrent streams,
the system reported 0% of the total I/O requests that missed their deadlines
with PLR, compared to 37.91% with the BLR scheme. This implies that with
the PLR scheme, the system can support more concurrent streams than with
the BLR scheme. Assuming that the end user can tolerate up to 1% of disk I/O
request missed deadlines, then with PLR, the current experimental system setup
could support 206 streams, but it can only support 199 streams with the BLR

scheme, which is approximately a 3.5% improvement in terms of the number of
supportable streams.

6 Conclusions

Load balancing is important to ensure overall good performance in a scalable
multimedia storage system. This paper identifies and quantifies the performance
trade-off of the packet level randomization (PLR) scheme over the traditional
block level randomization (BLR) scheme. Both BLR and PLR ensures long term
load balancing. But PLR achieves much better short term load balancing over

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 20 40 60 80 100

G
lo

ba
l S

ta
nd

ar
d

D
ev

ia
tio

n
(M

B
/s

)

Number of streams

BLR

PLR

 0

 0.2

 0.4

 0.6

 0.8

 1

 180 185 190 195 200 205 210 215 220 225 230

P
ro

ba
bi

lit
y

of
 R

eq
ue

st
 M

is
se

d
D

ea
dl

in
e

Number of streams

BLR

PLR

Fig. 8(a): The average disk load im-
balance in terms of the global stan-
dard deviation with different number
of streams.

Fig. 8(b): Probability of a request
missed deadline with different number
of streams.

Fig. 8. Important experimental results.

BLR by utilizing more memory space. However, we believe the benefit of PLR

outweighs its disadvantage since the cost of memory is continually decreasing.
Therefore, PLR is a promising technique for high-performance media servers.
Furthermore, we plan to implement the PLR approach into our streaming pro-
totype, HYDRA, and evaluate its performance with real measurements.

References

1. S. Berson, S. Ghandeharizadeh, R. Muntz, and X. Ju. Staggered Striping in Mul-
timedia Information Systems. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, 1994.

2. Antonio Corradi, Letizia Leonardi, and Franco Zambonelli. Diffusive load-
balancing policies for dynamic applications. IEEE Concurrency, 7(1):22–31,
January-March 1999.

3. A. Goel, C. Shahabi, S.-Y. D. Yao, and R. Zimmermann. SCADDAR: An Efficient
Randomized Technique to Reorganize Continuous Media Blocks. In Proceedings of
the 18th International Conference on Data Engineering, pages 473–482, February
2002.

4. V.G. Polimenis. The Design of a File System that Supports Multimedia. Technical
Report TR-91-020, ICSI, 1991.

5. J. R. Santos and R. R. Muntz. Performance Analysis of the RIO Multimedia
Storage System with Heterogeneous Disk Configurations. In ACM Multimedia
Conference, Bristol, UK, 1998.

6. J. R. Santos, R. R. Muntz, and B. Ribeiro-Neto. Comparing Random Data Alloca-
tion and Data Striping in Multimedia Servers. In Proceedings of the SIGMETRICS
Conference, Santa Clara, California, June 17-21 2000.

7. C. Shahabi, R. Zimmermann, K. Fu, and S.-Y. D. Yao. Yima: A Second Generation
Continuous Media Server. IEEE Computer, 35(6):56–64, June 2002.

8. F.A. Tobagi, J. Pang, R. Baird, and M. Gang. Streaming RAID-A Disk Array
Management System for Video Files. In First ACM Conference on Multimedia,
August 1993.

9. Roger Zimmermann and Kun Fu. Comprehensive Statistical Admission Control
for Streaming Media Servers. In Proceedings of the 11th ACM International Mul-
timedia Conference, Berkeley, California, November 2-8, 2003.

10. Roger Zimmermann, Kun Fu, and Wei-Shinn Ku. Design of a large scale data
stream recorder. In The 5th International Conference on Enterprise Information
Systems (ICEIS 2003), Angers - France, April 23-26 2003.

