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Abstract—With the proliferation of mobile devices, an increasing number of urban users subscribe to location-based services. This

trend has led to significant research interest in techniques that address two fundamental requirements: road network-based distance

computation and the capability to process moving objects as points of interests. However, there exist few techniques that support both

requirements simultaneously. To address these challenges, we propose a novel approach to process continuous range queries. We

build on our previous work of an infrastructure that supports location-based snapshot queries on MOVing objects in road Networks

(MOVNet). We introduce several significant features to enable continuous queries. The dual index structure that we proposed for

MOVNet has been appropriately modified. We further appoint a number of connecting vertices in each cell and precompute the

distances among them to expedite query processing. Most importantly, to alleviate the effects of frequent object updates, we introduce

a Shortest-Distance-based Tree (SD-Tree). We illustrate that the network connectivity and distance information can be preserved and

reused by the SD-Tree when the query point location is updated; hence, reducing the continuous query update cost. Our experimental

results demonstrate that our method yields excellent performance with a very large number of moving objects.

Index Terms—Spatial databases and GIS, location-dependent and sensitive.

Ç

1 INTRODUCTION

RECENTLY, more and more mobile users are willing to
subscribe to location-based services, such as road-side

assistance, location-based games, and location-sharing social
networks, in many—especially urban—areas. This raised
enormous research interest in designing novel and scalable
location-based services in highly mobile environments.

A number of recently proposed techniques incorporate
Point of Interests (POI) mobility or network-distance
processing, but often not both. The main challenges when
supporting POI mobility on an underlying road network are
to 1) efficiently manage object location updates and
2) provide fast network-distance computations. To cope
with these challenges, we proposed a novel infrastructure
that supports location-based query processing on MOVing
objects in road Networks (MOVNet) [26]. MOVNet is a
centralized solution that combines an on-disk R�-tree [1]
structure to store the connectivity information of the road
network with an in-memory grid index to efficiently
process moving object position updates. The inherent
inspiration of using such a dual-index structure is based
on the fact that the R-tree structure has been widely studied
for efficiently handling large-size stationary spatial data sets
and the grid index has been verified for suitably managing

dynamic spatial data. A feature of MOVNet is the
bidirectional mapping between the two indices that enables
the retrieval of a minimal set of data for query processing.
Based on this dual-index structure, we proposed algorithms
to efficiently execute snapshot range queries as well as
snapshot kNN queries.

The continuous query is one of the most complicated
query types in location-based services due to its expensive
consumption of memory and computational resources.
However, it provides a prolonged perspective on the
change of object movements, and hence, it is well suited
for monitoring purposes. In this paper, we significantly
extend the functionality of MOVNet to support continuous
range query processing. Specifically, we introduce the
concept of connecting vertices in each grid cell. We demon-
strate that with a precomputing step a corresponding
distance table can be created in each grid cell to speed up
the network distance expansion during query processing.
We also present our design of a Shortest-Distance-based tree

(SD-tree, for short) that preserves the network connectivity
and distance information in continuous query processing.
We propose a novel algorithm that rotates, truncates, and
extends the edges of an SD-tree with regard to the query
point movements. This algorithm avoids recomputing
the network connectivity and distance information when
the query point moves to a new position. Based on these
supporting techniques, we propose an efficient method to
process continuous range queries. The contributions of our
work are as follows:

. We propose a precomputation step that uses our
design of connecting vertices to record the distance
information among these vertices to facilitate query
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processing. Our simulation results show that such a
technique works superbly when dealing with dense
networks.

. We introduce a novel data structure, the SD-tree, to
preserve the network connectivity and distance
information for the duration of a query. With the
SD-tree, we can often infer network connectivity and
distance information even when the query point
moves to a new position. We use this data structure
to monitor the space affected by a query, and update
the result space with regard to the query point
movements. We illustrate that such a technique
facilitates the continuous query processing.

. We propose a Continuous Mobile Network-Dis-
tance-based Range query algorithm (C-MNDR) and
we verify the performance of this algorithm in
MOVNet through vigorous experiments. We illus-
trate that C-MNDR is very efficient in supporting
continuous range query processing with a large
number of moving POIs in metro road networks.

The rest of this paper is organized as follows: The related
work is described in Section 2. In Section 3, we introduce
our design of connect vertex, precomputing component, the
structure of SD-tree, and the details of C-MNDR. The
experimental validation of our design is presented in
Section 4. Finally, we discuss the conclusions and future
work in Section 5.

2 RELATED WORK

The processing of spatial queries on stationary POIs with
network distances has been intensively studied in recent
years. Papadias et al. [19] first presented an architecture
with disk-based data storage that integrates network and
euclidean distance information in processing network-
based range and kNN queries. Specifically, their technique
is based on the ideas of euclidean restriction and network
expansion. The euclidean restriction stipulates that for two
arbitrary objects in a network, the network distance is equal
or greater than the euclidean distance between them. This
can be utilized as a lower bound in the distance computa-
tion. In contrast, the network expansion method performs
the queries incrementally from the query point by expand-
ing the nearby vertices in the order of their distances from
the query point. As an improvement, the VN3 approach [15]
was proposed that partitions a large network into a set of
small Voronoi regions. The goal was to avoid online
distance computation in processing kNN queries by
precomputing the distances within and across Voronoi
regions. Moreover, Huang et al. [11] addressed the same
problem by introducing the islands approach that estimates
the overhead of precomputation and the trade-off between
query and update performance for kNN queries with
varying densities of POIs and networks. Recently, Samet
et al. [22] proposed a novel technique that is based on
precomputing and distance encoding. Specifically, the
shortest paths between all possible vertices in the network
are collected and the query processing for kNN objects is
simplified to a search in encoded subspace.

To cope with Continuous kNN (C-kNN) queries over
stationary POIs in the network, Kolahdouzan and Shahabi
[14] proposed the Intersection Examination and Upper

Bound Algorithm (IE/UBA). This can be regarded as the
counterpart of VN3 in C-kNN query processing, to
compute the kNN objects of all nodes on the path and
the split points between adjacent nodes whose nearest
neighbors are different. Lately, Cho and Chung [3] solved
the same problem by introducing UNICONS that incorpo-
rates the precomputed kNN lists into Dijkstra’s algorithm.
The simulation results showed that it outperforms the IE/
UBA approach when dealing with dense networks.
Additionally, Hu et al. [8] proposed a tree-based structure
to record the graph topology of the road network. In Hu’s
approach, the traditional network expansion technique is
replaced by precomputed tree path exploration to reduce
the processing cost for kNN queries.

All these works hold the assumption that the POIs are
static. Therefore, the idea of precomputing distances
between POIs and vertices is widely used and proves to
be efficient. On the other hand, these methods cannot be
applied to a dynamic environment where the POIs are
constantly moving.

A large number of the spatial applications require the
capability to process moving POIs. This requirement raises
the issue of managing location updates of moving POIs in
an index structure. Although tree-based index structures
(e.g., R-tree and its variants [7], [1]) have been widely used
in managing stationary spatial data, they suffer from
expensive node reconstruction overhead when dealing with
location updates. To overcome this challenge, using the
trajectory of moving POIs to presume the movement of
objects has been used (e.g., the TPR-Tree and its variants
[25], [21] and the Bx tree [13]). In general, these methods
assume that the movement of POIs can be represented as a
linear function of time. Changing the velocity vector of
moving POIs consequently invokes an update of the
movement function. As an alternative, STRIPE [20] intro-
duces the idea of transforming the trajectories of objects in
D-dimensional space into points in 2D space. However, the
assumption of being able to predict the trajectories of
moving objects is not always realistic. If the prediction of
the object movements fails (e.g., pedestrian strolling in a
shopping mall), these approaches are inappropriate. Re-
cently, grid-based index structures have raised intensive
interest due to their simplicity and efficiency in managing
moving objects. For instance, Xiong et al. proposed LUGrid
[28], an update-tolerant on-disk grid index, that outper-
forms the LUR-tree in terms of update and query costs.
Based on this fact, most of the recent works leverage either
an in-memory grid index [4], [6], [17], [29] or an on-disk
grid index [27] for spatio-temporal processing. In similar
spirit, MOVNet utilizes an in-memory grid index to manage
the location updates of moving POIs.

There exist considerable research results addressing the
issue of spatial query processing on moving POIs with
euclidean distances. Most of these works rely on a grid
index for maintaining position updates. For instance, Chon
et al. [4] first presented an algorithm based on the trajectory
of moving POIs overlapping with the grid cells to solve
snapshot range and kNN queries. Hu et al. [9] proposed a
generic framework to handle continuous queries by intro-
ducing the concept of safe region through which the location
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updates from the mobile clients can be further reduced. In
contrast, SINA [16] and SEA-CNN [27] were introduced as
centralized solutions with the idea of shared execution to
process continuous range and kNN queries over moving
POIs. Yu et al. [29] proposed an algorithm for monitoring C-
kNN queries over moving objects by defining a search
region based on the maximum distance between the query
point and the current locations of previous kNNs. As an
enhancement, Mouratidis et al. [17] presented a solution
(CPM) for C-kNN queries that defines a conceptual partition-
ing of the space by organizing grid cells into rectangles.
Location updates are handled only when objects fall within
the vicinity of queries, such as to improve the system
throughput. However, the above techniques only consider
the euclidean distance computation, which makes them
unsuitable for applications where the network-based dis-
tance computation is required.

For environments where POIs are dynamic and distances
are based on network paths only, a few techniques exist.
Jensen et al. [12] addressed the challenge of query
processing on moving POIs in a network. Specifically, this
work described an abstract infrastructure for handling
location updates of moving POIs in a network and
proposed a kNN query algorithm. This work is fundamen-
tally different from MOVNet due to its system assumptions.
MOVNet adopts a centralized infrastructure with periodic
location updates from moving POIs, while Jensen’s method
assumes that the mobile client is willing to participate in the
kNN query processing. As a centralized alternative, S-GRID
[10] was introduced as a means to process snapshot kNN
queries. A precomputed structure is maintained with
regard to the spatial network data, such as to improve the
efficiency of query processing. Moreover, Mouratidis et al.
[18] addressed the issue of processing C-kNN queries in
road networks by proposing two algorithms (namely, IMA/
GMA) that handle arbitrary object and query movement
patterns in a road network. This work utilizes an in-
memory data structure to store the network connectivity;
therefore, it is undesirable to use it for large size networks
(e.g., metro cities) due to the memory requirements.
Instead, MOVNet uses an on-disk R-tree structure that
has a proven performance for large size 2D data usage.
Additionally, both S-GRID and IMA/GMA focus on kNN
type of queries only, which inherently uses different query
execution strategies. Recently, Stojanovic et al. [23] pro-
posed an approach that monitors continuous range queries
on both static and moving objects. However, the technique
assumes that the query point is willing to report its
destination in advance to the server; hence, the route that
the query point moves on is recorded on the server and the
POIs that move on the route become the candidate result
set. In contrast, our technique does not require the knowl-
edge of the query point’s destination during query
processing; hence, it can be applied to applications which
require more general mobility scenarios.

3 SYSTEM DESIGN

We start by presenting our design of the index structures
and precomputing components to support continuous

query processing. After that we present our continuous
range query algorithm (i.e., C-MNDR).

3.1 Data Structure Design

To cope with continuous query processing, we introduce a
dual-index structure, which leverages our index design of
MOVNet for snapshot query processing [26]. First, an on-
disk R�-tree [1] stores the stationary network data.
Specifically, the edges of the network are stored as MBRs
bounded by their vertices. During query processing, when
the edges are retrieved from disk, a corresponding directed
modeling graph is constructed in memory. Second, a
memory-based grid index is used to store the locations of
moving POIs. We partition the space into a regular grid of
l� l cells. We use cðcolumn; rowÞ to denote a specific cell in
the grid index (assuming the cells are ordered from the
bottom left corner of the space). At time t, a moving object
m is positioned at loctðmÞ ¼ ðxm; ymÞ; therefore, it overlaps
with cell cðbxml c; b

ym
l cÞ. Each cell maintains an object list

containing the identifiers of enclosed objects. The objects’
coordinates are stored in an object array, and the object
identifier is the index into this array. We assume that when
an object sends an updated position to MOVNet, the server
invokes a map-matching procedure to locate the object on a
road segment. For each element in the object array, we
record the coordinates of the moving object and the edge on
which the moving object is located (i.e., the starting and
ending vertices of the edge). We also create a queryPoint flag
indicating if the moving object belongs to a query point. A
query point q is a moving object 2 MM issuing a location-
based spatial query at any time. Currently, our design
focuses on continuous range query processing. Note that
these queries are processed with network distances. For
simplicity, we use the term distance to refer to the network
distance in the following sections unless explicitly denoted
as different metrics.

We observe that, for a dense network, most of its edges
are short. For each grid cell, there are only several edges
that cross the boundary of the cell. Thus, those vertices
connected by these edges act as the entrances and exits of
the cells in the network. Based on this observation, we
introduce the concept of connecting vertices to efficiently
support query processing in dense networks. A connecting
vertex has at least one outgoing edge that crosses the
boundary of its enclosing cell. For example, Fig. 1 shows a
dense network that overlaps with a 2� 2 grid index. There
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are four connecting vertices in cð0; 1Þ: v1, v2, v3, and v5. The
outgoing edge of a connecting vertex connects with its
paired connecting vertex. A connecting vertex has at least one
corresponding paired connecting vertex. For instance, the
connecting vertex v1 has two paired connecting vertices, v6

and v7. As we shall also see, there are three POIs in cð0; 1Þ:
m1, m2, and m5.

Fig. 2 shows an example of the data structures that are
used in continuous query processing for cð0; 1Þ of Fig. 1.
Specifically, an in-memory grid index is superimposed over
the service space. Each cell has an object list, which records
the identifiers of enclosed objects. The identifiers point to the
object array in memory that stores the coordinates of objects.
Additionally, when a cell overlaps with a query, the enclosed
edges are retrieved from the R�-tree by using a stationary
range query whose range is the area of the cell (e.g., cð0; 1Þ).
Correspondingly, a modeling graph is created on-the-fly and
stored in memory. Note that the modeling graph only
records the edges that are fully enclosed in the cell. For
instance, the edge list of v2 records eðv2; v1Þ and eðv2; v3Þ.
Moreover, for each cell in the grid index, we precompute the
following data set: First, we record the set of the connecting
vertices and their paired connecting vertices in the connect
vertex list. Second, we create a distance table of the connecting
vertices in each cell. It records the pair-wise distance
between all connecting vertices in the same cell. For example,
for connecting vertex v1 in cð0; 1Þ, the distances to other
connecting vertices in the same cell are distðv1; v2Þ ¼ 2:0,
distðv1; v3Þ ¼ 3:0, and distðv1; v5Þ ¼ 3:5, respectively.

The connecting vertex list together with the distance
table is able to provide a more precise estimation on the
edges and cells that are affected by a query. In the following
section, we describe how to use our data structures to
process continuous queries.

3.2 Continuous Range Query Algorithm

We now detail the efficient processing of continuous
network-distance-based range queries. We first define a
continuous network-distance-based range query: given a
query point q, a value d, a network G, and a set of moving
objects MM, a continuous network-distance-based range query
retrieves all POIs of MM that are within distance d along the
edges of the network from q during a time interval ½t1; t2�. The
query can be represented as continuousRangeQuerytðq; dÞ:
loctðqÞ � loctðMMÞ ! fmi; i ¼ 1; . . . ; ng; 8mi, disttðq;miÞ � d,

t 2 ½t1; t2�. In the following sections, we start by describing
our design of computing initial query results. More im-
portantly, we introduce the concept of SD-tree to monitor the
edges that are affected by a continuous query. When the
query point moves, we present a novel algorithm to rotate,
truncate, and expand the SD-tree to obtain the updated set of
affected cells and the distances of vertices with regard to the
query point movement. By using such a technique, contin-
uous query processing can be accomplished in an incre-
mental manner, which significantly reduces the query cost.
Finally, we outline a complete procedure for continuous
range query processing.

3.2.1 Initial Result Computation in C-MNDR

The first step to process a continuous range query is to
obtain the initial query result set. Later, we monitor the
change of POI locations to update the result set. Our design
of initial range query result processing is based on a cell-
based network expansion approach. Algorithm 1 details the
procedure. When a moving object q submits a continuous
range query request with a range constraint d, we first
locate the cell where q is located (Line 2) and retrieve the
edges in the cell to create a modeling graph (Line 4). After
that we insert the query point as the starting point into the
modeling graph (Line 5). Next, Dijkstra’s algorithm is
invoked to compute the distance of each vertex in the graph
from the query point (Line 6). We set the range constraint d
in the distance computation so that for any vertex whose
distance is larger than d, the algorithm stops to expand to
other vertices. We also maintain a minimum priority queue
CV ToExpand to store connecting vertices based on their
distance values from the query point (Lines 7-9). Note that if
the distance of a connecting vertex is out of the query range,
it will not be inserted into CV ToExpand. Moreover,
resultCellSet stores the set of cells that possibly have
objects in the query range.

Algorithm 1. Compute-init-cont-rangeQuery (q, d)

1: =�q is the query object �=
2: =�d is the range �=

3: resultObjs ¼ �, resultCellSet ¼ �
4: c ¼ Locate-cellðqÞ
5: resultCellSet ¼ resultCellSet [ c
6: G ¼ Create-graphðtree; cÞ
7: Add-vertex-into-graph(G, q)

8: S ¼ Compute-distanceðG; q; dÞ
9: for each connecting vertex v in S where distðq; vÞ < d do

10: CV ToExpand ¼ CV ToExpand [ v
11: end for

12: while CV ToExpand ! ¼ NULL do

13: v ¼ De-queueðCV ToExpandÞ
14: for each paired vertex v0 of v do

15: resultCellSet ¼ resultCellSet [
cellOverlappingðeðv; v0Þ; d� distðq; vÞÞ

16: if distðq; vÞ þ lengthðv; v0Þ < d AND distðq; vÞ þ
lengthðv; v0Þ < distðq; v0Þ then

17: c0 ¼ Locate-cell(v0)

18: if G0 in c0 == null then

19: G0 ¼ Create-graphðtree; c0Þ
20: end if
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21: distðq; v0Þ ¼ distðq; vÞ þ lengthðv; v0Þ
22: for each connecting vertex v00 in c0 do

23: if distðq; v00Þ < d AND the paired vertex of

v00 ! ¼ v then

24: CV ToExpand ¼ CV ToExpand [ v00
25: end if

26: end for

27: Compute-distance(G0, v0, d� distðq; v0Þ)
28: end if

29: end for

30: end while

31: resultObjs ¼ Retrieve-objectsðresultCellSet)
32: return resultObjs

Next, we start to expand the network into other cells via
connecting vertices. We start by extracting the first
connecting vertex v from CV ToExpand (Line 11). For each
outgoing edge of the connecting vertex, we compute the
overlapping cells (Line 13). After that the paired vertex v0 of
v is selected and the overlapping cell c0 for v0 is located.
Next, we use the distance table to determine the distances of
other connecting vertices in c0. When a connecting vertex is
in the query range, it will be appended to CV ToExpand

(Line 22).
The algorithm continues to expand the network and

compute the distances of vertices via connecting vertices
until CV ToExpand becomes empty (Line 10). At that
moment, we have discovered all the cells that are affected
by the range query. The next phase is to retrieve moving
objects in resultCellSet from the grid index to constitute the
result set (Line 29). Based on the distance information of
vertices that we collected in previous steps, we can compute
the distance of these objects and insert the ones that are
within the range d into resultObjs.

To illustrate the algorithm with an example, let us assume
that the system is processing a network as shown in Fig. 1. A
moving object m5 with distðm5; v2Þ ¼ 0:5 submits a contin-
uous range query where the range d ¼ 7:5. After we finish
executing Line 9 in Algorithm 1, the distance of each vertex in
cð0; 1Þ is shown in Fig. 3a. Additionally, CV ToExpand
contains hðv2 ¼ 0:5Þ; ðv1 ¼ 1:5Þ; ðv3 ¼ 1:5Þ; ðv5 ¼ 5Þi. Next, v2

is de-queued from CV ToExpand. It has a paired connecting
vertex v9, which is located in cð1; 1Þ. We insert cð1; 1Þ into
resultCellSet. With the distance information stored in the
connecting vertex list, we determine that distðq; v9Þ ¼ 3:5 < d.

Therefore, we retrieve the edges in cð1; 1Þ and create the
corresponding modeling graph in cð1; 1Þ. Additionally, the
connecting vertex list of cð1; 1Þ indicates that the connecting
vertices in cð1; 1Þ are v9, v10, and v12. Based on the values
stored in the distance table of cð1; 1Þ, we are able to conclude
that distðq; v10Þ ¼ 7:3 and distðq; v12Þ ¼ 7:7 (which is out of
range). We set the condition in Line 21 in Algorithm 1 to
avoid the expansion to loop; hence, our expansion on v9 will
not move back to v2. Additionally, v9 also connects with v14,
which is on a path that leads to cð1; 0Þ. Consequently, we
insert v9 and v10 into CV ToExpand. Now, CV ToExpand
enqueues the following items: hðv1 ¼ 1:5Þ; ðv3 ¼ 1:5Þ; ðv9 ¼
3:5Þ; ðv5 ¼ 5Þ; ðv10 ¼ 7:3Þi. The distance of each vertex within
the query range in cð1; 1Þ is shown in Fig. 3b.

Next, we de-queue v1 from CV ToExpand. The paired
connecting vertex v7 is out of range while v6 has distðq; v6Þ ¼
5:0. Therefore, we insert cð0; 0Þ into resultCellSet. On the
other side, other connecting vertices in cð0; 0Þ are out of
range based on the values in the distance table. Therefore,
no connecting vertex is inserted into CV ToExpand. When
the expansion finishes with cð0; 0Þ, the distance of each
vertex within the query range is shown in Fig. 3c.

Now, we de-queue v3 from CV ToExpand. The paired
connecting vertex is v10. Although v10 was expanded and we
recorded distðq; v10Þ ¼ 7:3, there exists a shorter route from q
via v3 where distðq; v10Þ ¼ 4:5. This case is recognized by our
algorithm in Line 14. We update the distance of v10.
Additionally, following the path from v10, other connecting
vertices in cð1; 1Þ have distðq; v9Þ ¼ 8:3 and distðq; v12Þ ¼ 12:0,
which are both out of range. Therefore, no connecting vertex
is inserted into CV ToExpand. Next, the distance of each
vertex in cð1; 1Þ is computed again. However, when the
distance computation finishes, no other vertex distances in
cð1; 1Þ are shortened. The distance of vertices in cð1; 1Þ is
presented in Fig. 3d.

At this moment, there are three connecting vertices left in
CV ToExpand : hðv9 ¼ 3:5Þ; ðv10 ¼ 4:5Þ; ðv5 ¼ 5Þi. W e d e -
queue v9 first. It has two paired vertices, v2 and v14. Since
distðq; v2Þ ¼ 0:5 is already recorded and it is shorter than the
path via v9, we do not expand on v9 at this moment.
Additionally, v14 is out of range. We only insert cð1; 0Þ into
resultCellSet. Next, v10 is de-queued and its paired vertex is
v3. However, distðq; v3Þ ¼ 1:5 is already recorded, which
indicates that we have already found a shorter route. Finally,
we de-queue v5. The paired vertex is v7 and it is out of range;
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hence, there is no expansion needed. Since there is no vertex
left in CV ToExpand, we finish searching the affected cells
with resultCellSet ¼ hcð0; 1Þ; cð1; 1Þ; cð0; 0Þ; cð1; 0Þi.

Finally, the moving objects in resultCellSet are retrieved
and the distance from q is computed based on the distances
of the starting and ending vertices of the edge where the
object is located (Line 29) to constitute the result set. In this
example, resultObjs contains three objects when the
algorithm terminates: m1, m2, and m3.

3.2.2 Monitoring Object Updates in C-MNDR

The initial query result is only valid for the first update
cycle. We need to continuously monitor the change of the
query result. However, the initial query result processing
creates several data sets that are useful for subsequent
processing steps. First, resultCellSet represents a snapshot
of the area in the service space that is affected by the query.
Second, the cell-based network expansion procedure
computes the distances of vertices that are within the query
range. Based on this information, we introduce the concept
of a SD-tree to facilitate the query update processing.

Definition 1. A Shortest-Distance-based Tree is a tree structure
that consists of a set of vertices that are within the query range d
from the location of the current query point q. The query point is
the root element in the tree. Branches from the query point to a
specific vertex represent the shortest path between them.

For instance, after we finish computing the distances of
vertices in Fig. 3d, we construct a SD-tree for the query as
shown in Fig. 4. Specifically, starting from the query point,
we record every vertex that is within the query range in the
SD-tree. As we can see from the SD-tree, distðq; v10Þ ¼ 4:5,
and the shortest path is q! v2 ! v3 ! v10. Note that the
SD-tree does not record every edge as a branch whose
starting and ending vertices fall both within the range, such
as eðv9; v10Þ, because these edges do not belong to any
shortest path. Additionally, we define two types of vertices
in the SD-tree.

Definition 2. A complete vertex in the SD-tree indicates that
each edge in the network starting from the vertex is recorded in
the SD-tree. In contrast, a vertex is called partial in an SD-tree
if some of the edges starting from the vertex are not recorded.

For example, v2 is a complete vertex, which is shown in
black in Fig. 4. On the other hand, v5 is connected with v1,
v4, and v7. Since v7 is out of range, it is not recorded in the
SD-tree. Additionally, v5 and v4 are not connected by a
branch in the SD-tree because each of them follows a
different shortest path from q. Therefore, v5 is a partial
vertex, which is shown in gray (red) in Fig. 4.

Furthermore, for an object m that is located on an edge
eðv1; v2Þ, if either v1 or v2 is a vertex in the SD-tree, then m
may be in the result set. In other words, the set of partial
vertices, complete vertices, and the SD-tree branches
constitute a monitoring area centered at the query point.
During each query update cycle, moving objects that either
enter or leave this area should be updated in the result set.
Since MOVNet uses periodic sampling on moving object
positions, there are a number of object updates received and
stored in an object update buffer during each cycle. At the
beginning of each new cycle, MOVNet invokes a procedure
to process these object updates. Specifically, we distinguish
two types of the objects updates: query point updates and
nonquery-point updates.

Let us assume that the query point experiences no
update during a cycle. In this case, the monitoring area of
the SD-tree remains the same. Hence, our goal is to observe
how the objects in resultCellSet change. Specifically, there
are two cases that affect the result set: First, an object m
moves onto an edge whose starting or ending vertex is in
the SD-tree, and hence, m might be in the result set. We
need to compute the distance of m to the query point to
confirm whether its distance is within the range. Second, if
an object m 2 resultObjs moves to an edge whose starting
and ending vertices are not in the SD-tree, m will be
removed from the result set.

We now consider the case when the query point updates
its location during a cycle. If the query point moves to a
position that is still within the monitoring area of the SD-
tree, we are able to update the connectivity and distance
information of some vertices based on the SD-tree. On the
other hand, if the query point moves out of the SD-tree
monitoring area, we will have to invoke Algorithm 1 again
to obtain the query result. For instance, if the query point in
Fig. 3d moves to eðv11; v12Þ within one update interval, there
is no information we can use directly from the SD-tree.
Hence, a new range query will be issued. Note that this is
unlikely to happen, unless the query object moves very fast.

If the query point moves to a new position that is within
the range from the original location, there are two cases:
First, the query point moves to an edge that is recorded as a
branch in the SD-tree. Second, the query point moves to an
edge that is not recorded as a branch in the SD-tree;
however, both the starting and ending vertices of the edge
are recorded in the SD-tree. We will show in detail that the
second case only requires a few more steps than the first
case to update the distance information of vertices.

Specifically, when the query point moves to an edge that
is recorded in the SD-tree, there are three steps in updating
the SD-tree.

. Step 1. Tree rotation and distance update. We move
the query point to the branch where it is now
located. We rotate the tree to place the query point to
be the root element in the SD-tree. After that we
update the distances of vertices in the SD-tree based
on the updated branch structure.

. Step 2. Tree truncation. We remove vertices and
their children that become out-of-range after the
distance updates. We mark their parent vertices as
partial vertices.
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Fig. 4. An example of the SD-tree.



. Step 3. Tree expansion. For a partial vertex, if its
updated distance is shortened, some of its child
vertices might be able to find a shorter path.
Therefore, we need to expand on these shortened-
distance partial vertices. Moreover, if the updated
distance for a partial vertex becomes longer, we do
not need to expand the network from the vertex.
This is because that during the processing in
previous steps (e.g., the initial query result proces-
sing), we have already ensured that the routes that
are not recorded from the partial vertex are either
out of range or nonoptimal. Additionally, a complete
vertex does not require any expansion because its
connectivity is completely recorded in the SD-tree.

Let us assume that q in Fig. 4 moves to eðv5; v1Þ where
distðv5; qÞ ¼ 0:5 as shown in Fig. 5a. We first process Step 1
to place q to be the root element again. We also recompute
the distance for each vertex correspondingly as displayed
in Fig. 5b. Next, we execute Step 2 and remove v9, v4, and
v10 that are out of range. Their parent vertices also become
partial vertices (Fig. 5c). Note that when a vertex is
removed, the overlapping cells of its outgoing edges will
be removed from resultCellSet, except for the one that
connects with its parent vertex in the SD-tree. Finally, we
execute Step 3. Only the distance of the partial vertex v5 is
shortened from 5.0 to 0.5 when we compare the distance
information to earlier data as shown in Fig. 4. Therefore, we
need to invoke the network expansion from v5 with an
initial distance of 0.5. In case v5 has any children, we
remove these child vertices before the expansion. This step
can be regarded as a similar expansion algorithm as we
described in Section 3.2.1. Once the expansion finishes, the
SD-tree has been transformed into the one shown in Fig. 5d.
Specifically, we found a shortest path q! v5 ! v4 where
distðq; v4Þ ¼ 4:0. Additionally, resultCellSet ¼ hcð0; 1Þ;
cð1; 1Þ; cð0; 0Þi. This example shows that the SD-tree helps
to reconstruct most of the connectivity and distance
information when the query point moves; hence, it
significantly improves the query processing efficiency.

Lemma 1. Let m be a moving object on an edge whose starting
vertex is recorded in the SD-tree. After SD-tree update,

distðq;mÞ in the SD-tree still records the shortest path from q
to m.

Proof. Assume that q is updated to be on an edge eðv1; v2Þ.
From the SD-tree update procedure, we know that if
there is a partial vertex v on the path of q! v1 ! � � � v!
� � � ! m and distðq; vÞ gets shortened, then a tree
expansion will be invoked on v. Let v be the first partial
vertex that gets shortened on the path of q! v1 !
� � � v! � � � ! m (i.e., distðq; v1Þ becomes longer), the
updated path from v to m can be guaranteed to be the
shortest in the tree expansion. Based on triangle inequal-
ity, if there exists a shorter path of from q to m, it implies
that either there exists a shorter path of q! v2 ! � � � !
m or a shorter path from q to v. For the first case, we
know that distðq; v2Þ becomes shorter during an update;
hence, a network expansion will be invoked on v2, which
is guaranteed to find such a shortest path. For the second
case, it implies that there is a partial vertex whose
distance becomes shorter during an update. However,
this contradicts the fact that v is the first partial vertex
gets shortened on the path of q! v1 ! � � � v! � � � ! m,
hence such a path does not exist. tu

If the query point moves to an edge that is not recorded
as a branch in the SD-tree (e.g., q moves to eðv9; v10Þ where
distðv10; qÞ ¼ 0:1), we are not able to execute Step 1 directly.
Recall that a dense network is highly connected. From our
experiments, we found that, for example, the SD-tree
records about 50 percent of the edges that are within the
range for the data set of networks in Los Angeles County
(LA). It is highly desirable to have an algorithm to support
processing query point updates in this case.

We observe that for a query point q located on eðv9; v10Þ,
the shortest path of a vertex is via either v9 or v10. Therefore,
we first use v9 as the root element to rotate the SD-tree.
Next, we insert the updated SD-tree as a child node of q
connected by eðq; v9Þ (i.e., the subtree starting from the left
child of q in Fig. 6). After that we use v10 as the root element
to rotate the original SD-tree. The rotated SD-tree is added
as another subtree starting as the right child node of q
connected by eðq; v10Þ in Fig. 6.

Fig. 6 shows that, for each vertex, there are two updated
paths from q via the starting and ending vertex of the edge
on which q is located, respectively. To obtain the shorter
path for each vertex, we invoke a breadth first tree traversal.
Let us start with v9 in this example. There are two paths,
q! v9 and q! v10 ! v3 ! v2 ! v9, that are recorded in the
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Fig. 5. The update of SD-tree when the query point moves to an edge
that is recorded in the original SD-tree.

Fig. 6. The transformation of the SD-tree when q moves to an edge that
is not recorded in the original SD-tree.



transformed SD-tree. Since the first path is shorter, we
delete v9 as the child of v2. Additionally, we set v2 to be a
partial vertex. Next, v10 is examined. As we shall see, the
path q! v10 has a shorter distance than the one of
q! v9 ! v2 ! v3 ! v10. Therefore, we keep the first path.
When we examine v2, we find that the path q! v10 ! v3 !
v2 is shorter than the one of q! v9 ! v2. Consequently, we
remove v2 as the child of v9 as well as all children of v2. The
result of the removal operation is shown in Fig. 7a. As
we shall see, the advantage of using a breadth first tree
traversal is that we are able to find a duplicate vertex that
has a longer distance at a higher tree level. By deleting the
vertex and its children, we avoid exploring more vertices
during the remaining tree traversal.

The traversal continues to process other vertices in the
SD-tree. Since each vertex has only one instance in Fig. 7a,
there is no operation during the remaining tree traversal.
After that we can directly execute Steps 2 and 3, and the
result is shown in Fig. 7b.

Algorithm 2 summarizes the procedure of maintaining
the SD-tree with regard to query point updates.

Algorithm 2. Update-SD-tree(q, d)

1: if q moves to an edge eðv1; v2Þthat is not recorded

SD-tree then

2: subTree1 ¼ Rotate-tree(SD-tree, v1)

3: subTree2 ¼ Rotate-tree(SD-tree, v2)

4: SD-tree ¼ �
5: SD-tree ¼ Add-child(subTree1)

6: SD-tree ¼ Add-child(subTree2)
7: Determine-shortest-paths(SD-tree)

8: else

9: SD-tree ¼ Rotate-tree(SD-tree, q)

10: end if

11: Remove-out-of-range-vertices(SD-tree)

12: for each vertex v whose distance is shortened do

13: Delete-child-vertices(v)

14: Expand-vertex(v, d)
15: end for

From an analytical perspective, the SD-tree is an
unbalanced binary tree structure. When the query point
requires no updates during the update cycle, then there is
no cost associated with the SD-tree maintenance. Moreover,
if the query point moves to a new location outside of the
SD-tree monitoring area, then the SD-tree will have to be
reconstructed at an additional cost of Oðn lognÞ. However,

if the query point moves to a new location that is within
range from the original location—in both cases, when the
point moves to an edge that is recorded as a branch in
the SD-tree and when it is not recorded—then the costs are
the same. This is because in the latter case, MOVNet
performs two tree rotations and a tree traversal before
executing Steps 2 and 3. The complexity of the tree rotations
is OðlognÞ. Next, we update the distances of vertices in the
rotated SD-tree, which requires OðnÞ operations [24]. The
following tree traversal step also costs O(n). In contrast, if
the query point moves to an edge that is recorded as a
branch in the SD-tree, we only perform one tree rotation
operation and update the distances of vertices afterward.
This results in a total cost of also OðnÞ. At this point, both
cases execute Steps 2 and 3 in our algorithm, which are
eventually bounded by the cost of tree expansion (i.e.,
Dijkstra’s algorithm).

3.2.3 Overview of the Continuous Range Query

Processing

So far we presented the issues and solutions for initial query
result processing, creating the SD-tree, dealing with object
updates, and maintaining the SD-tree with regard to query
point updates. In this section, we combine all the
components and describe the complete procedure of C-
MNDR to process a continuous network-distance-based
range query (shown in Algorithm 3).

Algorithm 3. C-MNDR(q, d)

1: =�q is the query object �=

2: =�d is the range �=

3: Compute-init-cont-rangeQuery (q, d)

4: Build-SD-tree(q)

5: for each update cycle do

6: if query point position is updated then

7: if query point moves out of SD-tree then

8: Compute-init-cont-rangeQuery (q, d)

9: Build-SD-tree(q)

10: continue

11: else

12: resultObjs ¼ �, resultCellSet ¼ �
13: Update-SD-tree(q, d)
14: resultObjs ¼ Retrieve-objectsðresultCellSetÞ
15: end if

16: else

17: Update-CRange-resultSet()

18: end if

19: end for

When MOVNet receives a request from q for a contin-
uous range query, it launches the initial query result
processing (Line 3) as described in Section 3.2.1. Once the
processing is finished, the corresponding SD-tree is created
based on the connectivity and distance data (Line 4). Next,
at the beginning of each update cycle, MOVNet first
examines if the query point submits an update. If the query
point moves to a position that is out of the SD-tree
monitoring area, MOVNet again invokes the initial query
result processing and constructs a new SD-tree afterward
(Lines 7-11). On the other hand, if the query point moves to
a position that is in the area enclosed by the SD-tree, we
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Fig. 7. The update of SD-tree when the query point moves to an edge
that is not recorded in the original SD-tree. (a) Tree traversal to obtain
the shortest path for vertices in the SD-tree. (b) The updated SD-tree
with valid shortest distances on the vertices.



utilize the current SD-tree to expedite the query processing
(Lines 12-14). In case that the query point has no update, C-
MNDR only monitors the change of objects in resultCellSet
to keep the result set current.

In summary, MOVNet processes continuous queries by
using the connecting vertices to determine the set of cells
and vertices that overlap with the query. MOVNet also uses
the SD-tree to monitor the changes of the query along the
time dimension. We have presented the algorithm to rotate,
truncate, and extend the edges in the SD-tree with regard to
object updates. Our simulation results indicate that the
system performance of C-MNDR is much more efficient
than executing the snapshot-based query processing at the
beginning of each update cycle. Extensive results will be
presented in Section 4.2.

4 EXPERIMENTAL EVALUATION

In Section 4.1, we start by describing the data set used in our
simulation and our simulator implementation. After that we
discuss the performance of continuous query processing
with MOVNet in Section 4.2.

4.1 Simulator Implementation

We obtained a real data set from TIGER/Line.1 The LA
County data set has 304,162 road segments distributed
over an area of 4,752 square miles. The average length of
road segments is 0.1066 miles. For simplicity, we assume
that each road segment is bidirectional. Additionally, we
used a network simulator [2] to generate the positions of
100,000 moving objects in the road network. The simulator
assumes uniform distribution of the objects at initial time.
After that each object follows the random walk model [5]
with a maximum speed limit to move in the service space.
With the random walk model, a node’s movement is
divided into a sequence of intervals called mobility
epochs. Each epoch is a random variable representing a
duration which is exponentially distributed. During each
mobility epoch, a node moves with a constant speed and
direction. When a node arrives at its destination, a new
speed and direction are chosen. A node’s velocity is a
random variable uniformly distributed between [0; vmax]
and the direction is uniformly distributed over [0; 2�]. At
each time stamp, a user-defined number of moving
objects report their updated locations.

In our study of continuous range query processing, we
adopted two algorithms to compare with C-MNDR. First,
we leveraged our design of MNDR in [26]. Since MNDR
mainly focuses on snapshot query processing, a repeated
snapshot processing method (RS-MNDR) was used to
accommodate the continuous query processing: at the
beginning of each update cycle, we invoked MNDR from
the query point as if to process a new snapshot range query.
Second, we designed a baseline continuous range query
processing algorithm (C-MNDR-BASE). It utilizes the same
data structures as C-MNDR. At the beginning of each
update cycle, if the query point moved to a new location,
the baseline algorithm invoked a new initial query result
processing step. Thus, the baseline algorithm did not use

the SD-tree to manage the network connectivity with regard
to the updated query point location. We studied the
simulation results between the baseline algorithm and C-
MNDR to obtain the performance improvement produced
by the SD-tree during query processing.

We implemented a simulator in Java. The LA county
data set was arranged into an R�-tree index file in which we
set the page size to 4 KB. The high-level functionality of our
simulator is as follows: For each test case, our simulator
creates a service space with the area equal to the LA county
size. It then opens the R�-tree index file and uses a buffer for
caching the disk pages read by MOVNet with a size of
10 pages. Next, a grid index is created in memory. At the
beginning of each test, our simulator acquires the positions
of objects from a text file that records the coordinates. It also
reads from another file that contains the records of object
updates of each cycle and stores them in a list in memory.
The simulator then executes object updates at the beginning
of each time stamp.

4.2 Continuous Query Processing Simulation
Results

In this section, we present and discuss the simulation
results of continuous query processing. Table 1 summarizes
the parameters used in our simulations. For each experi-
mental setting, we varied a single parameter and kept the
remaining ones at their default values. We assume that
objects are moving in the area of the LA county. The
average speed for a moving object during each update cycle
is 0.4 kilometers. For each continuous query, the simulator
randomly picks a moving object and launches a query from
its location. We monitored the change of objects for
20 update cycles. The simulator output the initial query
result as well as the updated result set after each time
stamp. The experiments measured the CPU time and the
number of disk page accesses as the performance metrics of
the query processing. For each experimental configuration,
the simulator executed 50 iterations and reported the
average result. The simulation was executed on a Linux
server with 16 GB memory and a 3.0 GHz Xeon processor.

For a continuous query, the total cost consists of the
object update cost (i.e., updating the locations of objects in
the grid index), the initial query result processing cost, and
the query update cost. Note that the CPU time for MOVNet
to process all continuous queries should be less than one
update cycle to ensure the correctness of the query results.
Otherwise, the query result would become invalid before
the system finishes processing during each update cycle.
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TABLE 1
Continuous Query Processing Simulation Parameters

1. http://www.census.gov/geo/www/tiger/.



4.2.1 Object Update Cost in MOVNet

We first verified the object update costs in MOVNet
compared to S-GRID [10]. To achieve a fair comparison,
we implemented the Vertex-Edge component of S-GRID as
an on-disk module. Edges of the network are indexed by an
R�-tree. Additionally, the precomputed results (e.g., the
Cell-Border and Vertex-Border components) in S-GRID are
stored in memory. We assume that at the beginning of each
update period, 10 percent of the POIs submit their new
positions. Fig. 8 shows that when there are 10,000 updates
messages in one period, MOVNet is able to record these
changes in about 4.5 seconds. Furthermore, MOVNet
requires slightly less CPU time than that of S-GRID.
Although both techniques include the map-matching
procedure in the object update to record the edge where
the object is located, S-GRID records an object in a cell if its
nearest vertex on edge e belongs to this cell. Therefore,
distance computation is performed during an object update
in S-GRID. In contrast, MOVNet directly inserts the object
into the cell which encloses it and hence simplifies the
update procedure.

4.2.2 Connecting Vertex Distribution in MOVNet

Next, we focus our interests on studying the relationship
between the number of connecting vertices and the cell size.
Fig. 9a illustrates the statistics of the connecting vertex
distribution. First, the number of connecting vertices grows
with an increasing number of cells. Additionally, when
MOVNet utilizes 500� 500 cells, there are over 100K
connecting vertices, which is more than three times the

number when using 100� 100 cells. In contrast, the number
of connecting vertices is about 130K when MOVNet has
1;000� 1;000 cells. This demonstrates that for relatively
small cell sizes, the growth rate of the number of connecting
vertices levels off. As we shall see in the following section, a
very large number of connecting vertices can become the
bottleneck in the system performance. In Fig. 9b, we
illustrate the density of connecting vertices in MOVNet,
which refers to the average number of connecting vertices
in a cell. The results indicate that the density of the
connecting vertices becomes less as the number of cells in
the system increases.

4.2.3 Performance Study of C-MNDR

Initial query result processing. We verified the perfor-
mance of the initial query result processing. Fig. 10a
illustrates the effect of the number of cells. The results
show that C-MNDR requires about half of the CPU time
compared with the RS-MNDR algorithm. This is because
with the help of distance tables, C-MNDR improves the
efficiency in finding the set of network data in the range
before retrieving objects from the grid index. Additionally,
the CPU cost of C-MNDR increases with the increase of the
number of cells. This suggests that with a larger number of
cells, the number of connecting vertices becomes larger,
which also increases the system cost. In contrast, Fig. 10b
illustrates the page accesses of both algorithms. As we can
see, the C-MNDR algorithm consumes more pages than RS-
MNDR with various cell sizes. This can be explained by the
fact that RS-MNDR uses the euclidean distance restriction
as the first step when retrieving network data. Although
this is a preliminary estimation in terms of the network that
is within the range, it minimizes the I/O cost by performing
just one range query. On the other hand, C-MNDR uses cell-
based network retrieval, which results in a significant
number of I/O operations, especially when there are a large
number of cells in MOVNet.

Next, Fig. 11a illustrates the effect of the number of POIs.
As we can see, C-MNDR consumes less than 50 percent of the
CPU time compared with RS-MNDR with various numbers
of POIs. Additionally, the output shows that the CPU time
increases linearly with the number of POIs. The very small
gradients of the C-MNDR as well as RS-MNDR output
suggest that MOVNet is very scalable to support a very large
number of POIs. Fig. 11b plots the disk accesses of both
algorithms. The I/O cost of C-MNDR is about three times
that of the RS-MNDR algorithm. Moreover, the I/O cost
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Fig. 9. The distribution of connecting vertices as a function of the
number of cells. (a) Number of CVs in MOVNet. (b) Density of CVs in
MOVNet.

Fig. 10. The performance of initial query result processing in C-MNDR
as a function of the number of cells. (a) CPU cost. (b) I/O cost.

Fig. 8. The CPU time of the object update cost in MOVNet.



remains stable when varying the number of POIs in
MOVNet. This is because POIs are managed by the in-
memory grid index; hence, it has no effect on I/O operations.

Fig. 12a plots the CPU time of C-MNDR while changing
the range. The CPU time quadratically increases with a
larger range. When the range is 4 miles, C-MNDR costs
0.025 seconds. Processing a range of 10 miles requires
0.095 seconds by using C-MNDR compared with 0.257
seconds when using the RS-MNDR algorithm. Additionally,
when the range is small, the CPU cost of C-MNDR and RS-
MNDR is almost the same. With a larger range, C-MNDR
becomes much faster than RS-MNDR, which indicates the
advantage of using the connecting vertices and correspond-
ing distance tables. Fig. 12b plots the corresponding page
accesses. In contrast to the CPU output, C-MNDR requires
more I/O operations than RS-MNDR. For instance, when
the range is 10 miles, RS-MNDR consumes less than 1,100
page accesses while C-MNDR needs more than 2,200 page
accesses. Moreover, the I/O cost grows quadratically in
both algorithms, which shows the same characteristics as
the CPU time.

In summary, we conclude that with the help of
connecting vertices, the CPU cost of C-MNDR in initial
query result processing is lower than that of RS-MNDR. On
the other hand, RS-MNDR has the advantage of using the
euclidean distance restriction to minimize the I/O cost.

Continuous query result processing. We now study the
query update cost of C-MNDR. Figs. 13a and 13b show that
the CPU and I/O costs of C-MNDR with regard to the
number of cells, respectively. C-MNDR and the baseline
algorithm consume as about 10 percent of the CPU time of

RS-MNDR. Moreover, C-MNDR consistently requires only
about 70 percent CPU time compared with the baseline
algorithm. For 2,000 continuous queries in a service space
covered by 400� 400 cells, the query update cost is less than
3.5 seconds with C-MNDR. Finally, the savings in I/O cost
are tremendous as C-MNDR only requires about 5 percent
the cost of RS-MNDR. Although RS-MNDR consumes much
fewer page accesses during the initial query result proces-
sing, the update cost is much higher than with C-MNDR.
As a continuous query runs longer and longer, we shall see
that the cumulative I/O cost of C-MNDR will become much
lower than that of RS-MNDR.

Next, Fig. 14a demonstrates the CPU cost of C-MNDR
compared with RS-MNDR as a function of the number of
POIs. All algorithms incur larger costs as the number of POIs
increases, which is caused by the retrieval of more objects
from the grid index. The small gradient of these curves
shows that MOVNet scales very well with regards to the
growth of POIs. We attribute this feature to our design of
using an in-memory grid index to manage the POIs.
Additionally, C-MNDR consumes less than 10 percent of
the CPU time of RS-MNDR. Compared with the baseline
algorithm, C-MNDR on average saves 33 percent of the CPU
time, which shows the benefits of using the SD-tree during
query processing. Finally, the I/O costs of C-MNDR and the
baseline algorithm are both only about 5 percent of that of
RS-MNDR (Fig. 14b), which indicates a significantly im-
proved system throughput when an incremental approach
is used to process continuous queries.

Fig. 15 illustrates the effect of the range on query update
processing. With a range of 5 miles, RS-MNDR requires over
100 seconds to process 2,000 queries in each update cycle.
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Fig. 12. The performance of initial query result processing in C-MNDR
as a function of query range. (a) CPU cost. (b) I/O cost.

Fig. 13. The cost of query updates in C-MNDR as a function of the
number of cells. (a) CPU cost. (b) I/O cost.

Fig. 14. The performance of query updates in C-MNDR as a function of
the number of POIs. (a) CPU cost. (b) I/O cost.

Fig. 11. The performance of initial query result processing in C-MNDR
as a function of POIs. (a) CPU cost. (b) I/O cost.



This might be unacceptable in many application scenarios.
In contrast, C-MNDR necessitates only 6.7 seconds and the
baseline algorithm consumes 10 seconds. Correspondingly,
the I/O cost of C-MNDR is about 5 percent of that of RS-
MNDR with a 5 mile range. The results demonstrate that our
design is well suited for large range queries. Additionally,
C-MNDR saves about 25 percent of the CPU time and
40 percent of the page accesses as compared with C-MNDR-
BASE. Clearly, such an improvement reflects the benefits of
adopting the SD-tree in query processing.

Fig. 16 plots the effect of the number of queries on the
query updates of continuous range query processing. The
CPU cost and the I/O cost grow proportionally with an
increasing number of queries in MOVNet. The small
gradient of C-MNDR compared with RS-MNDR for both
CPU and I/O costs indicates that C-MNDR is able to
support a very large number of queries at the same time.
The more queries exist in MOVNet, the higher a perfor-
mance improvement can be achieved by using C-MNDR to
process continuous queries. Specifically, C-MNDR can
support 3,000 queries in 3.6 seconds and 19K page accesses
during each cycle when processing the object updates to
obtain the updated result set. In contrast, RS-MNDR
requires 69 seconds and over 400K page accesses. Addi-
tionally, C-MNDR saves about 35 percent of the CPU time
as well as 45 percent of the page accesses compared with
the baseline algorithm with 3,000 queries.

We also demonstrate the system performance with
various update rates (from 10 percent up to 100 percent)
of the moving objects in Figs. 17a and 17b. In RS-MNDR,
every query needs to refresh the query result by invoking
the complete procedure of MNDR. Therefore, the update

rate of the moving objects does not affect the performance.
On the other hand, with more objects reporting their
location updates in one update cycle, C-MNDR requires
more CPU time and page accesses. Specifically, the relation-
ship between these two factors is linear. As is shown, when
the object updates in the system reach 100 percent, the CPU
cost of the MNDR baseline algorithm is even greater than
that of RS-MNDR. This is because under such a setting, the
baseline algorithm requires not only the initial query
processing step, but also the SD-tree creation step. Hence,
the baseline algorithm consumes more CPU time than RS-
MNDR. Moreover, the CPU time of C-MNDR is only about
70 percent of the value of the baseline algorithm.

In Figs. 18a and 18b, we study the impact of object speed
and observe the system throughput. We changed the
average object speed in the service space from 0.4 miles
per time stamp to 2 miles per time stamp. As shown, both
the CPU and I/O costs increase gradually as the average
speed steps up. Additionally, when the average speed of
moving objects reaches 2 miles per time stamp, C-MNDR
only consumes about 10 percent of the CPU time and disk
accesses of RS-MNDR.

To summarize the performance of C-MNDR, we exe-
cuted an sample set of 2,000 continuous range queries
running over 10 update cycles in Fig. 19. The CPU and I/O
costs at time stamp 0 in Fig. 19 represent the initial query
result processing. As we can see, C-MNDR requires less
CPU time but more page accesses during this step.
However, after one update cycle, the total cost of CPU time
and page accesses of C-MNDR becomes less than that of RS-
MNDR. This is due to our incremental approach for
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Fig. 17. The performance of query updates in C-MNDR as a function of
the percentage of object updates. (a) CPU cost. (b) I/O cost.

Fig. 18. The performance of query updates in C-MNDR as a function of
the object speed. (a) CPU cost. (b) I/O cost.

Fig. 15. The performance of query updates in C-MNDR as a function of
range. (a) CPU cost. (b) I/O cost.

Fig. 16. The performance of query updates in C-MNDR as a function of
number of queries. (a) CPU cost. (b) I/O cost.



continuous query processing, which saves a significant

fraction of the recomputations required to update network
connectivity and distance information, as well as the page
accesses to retrieve road segments from the underlying R-

tree. As time progresses and the queries continue to
execute, C-MNDR increasingly and significantly outper-
forms RS-MNDR. Therefore, we conclude that C-MNDR
achieves its objectives and provides a very efficient means

of processing continuous range queries.

5 CONCLUSIONS

Location-based services have generated growing interest in
both the academia and commercial enterprizes. Specifically,

supporting mobile location-based queries in highly dy-
namic environments remains a big challenge. In this study,
we addressed the problem of supporting continuous

queries on moving objects in dense networks. Specifically,
we designed a dual-index structure with a precomputing
component for fast distance computation on moving

objects. We also introduced the SD-tree structure that
assists query update processing over time. Our experi-
mental results demonstrate that our design is very efficient

and scalable in coping with various numbers of moving
objects in dense networks.

In the future, we plan to extend our work in several
directions. First, we would like to study the distribution of

moving objects in metro areas, which would provides us a
more realistic simulation environment. Second, at its
current stage, MOVNet assumes a stationary network. It

would be preferable to also study traffic conditions and
incorporate traffic events into the network data so that the
system will be well suited for use in metro areas.
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