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Abstract

Video sensors are becoming ubiquitous and the volume of captured video material is very
large. Therefore, tools for searching video databases are indispensable. Current techniques that
extract features purely based on the visual signals of a video are struggling to achieve good
results. By considering video related meta-information, more relevant and precisely delimited
search results can be obtained. In this study we propose a novel approach for querying videos
based on the notion that the geographical location of the captured scene in addition to the
location of a camera can provide valuable information and may be used as a search criterion
in many applications. This study provides an estimation model of the viewable area of a scene
for indexing and searching and reports on a prototype implementation. Among our objectives
is to stimulate a discussion of these topics in the research community as information fusion of
different georeferenced data sources is becoming increasingly important. Initial results illustrate
the feasibility of the proposed approach.

1 Introduction

Due to technological advances, an increasing number of video clips are being collected from var-
ious devices and stored for a variety of purposes such as surveillance, monitoring, reporting, or
entertainment. These acquired video clips contain a tremendous amount of visual and contextual
information that makes them unlike any other media type. However, even now, there are no ef-
fective ways to index and search video data at the high semantic level preferred by humans. Text
annotations of video can be utilized for search, but high-level concepts must often be added by
hand and hence this manual task is laborious and cumbersome for large video collections. Content
based video retrieval is in its infancy, very challenging and still not always satisfactory.

Some types of video data are naturally tied to geographical locations. For example, video data
from traffic monitoring may not have any meaning without its associated position information.
Thus, in such applications, one needs a specific location to retrieve the traffic video at that point or
in that region. Hence, combining video data with its location coordinates can provide an effective
way to index and search videos, especially when a database handles an extensive amount of video
data. Note that location information can be collected by various small devices attached to a camera,
such as a global positioning system (GPS) sensor (see Figure 1). A preliminary example of this

1



Pharos iGPS-500 Receiver

OceanServer OS5000-US Compass

JVC JY-HD10U camera

Figure 1: Experimental hardware and software to acquire georeferenced video.

type of work is Google Earth, which implements such a concept with panoramic images, but only
from a high elevation (sky view). A user can find a top view of a point or region given a query
point. The current implementation is innovative but has some limitations.

We believe that georeferenced video search will play a prominent role in many future applications.
However, there are still many open, fundamental research questions in this field. Most videos
captured are not panoramic and as a result the viewing direction becomes very important. GPS
data only identifies object locations and therefore it is imperative to investigate the natural concepts
of a viewing direction and a view point. For example, we may be interested to view a building
only from a specific angle. The question arises whether a video database search can accommodate
such human friendly views. The collection and fusion of multiple sensor streams such as the camera
location, field-of-view, direction, etc., can provide a comprehensive model of the viewable scene. The
objective then is to index the video data based on the human viewable space and therefore to enable
the retrieval of more meaningful and recognizable scene results for user queries. Cameras may also
be mobile and thus the concept of a camera location is extended to a trajectory. Consequently,
finding relevant video segments becomes very challenging. In this study we propose a general
methodology to address these and related issues.

One example application that would benefit from our georeferenced video search framework is
geospatial decision making. The recent rapid increase in the amount of geospatial data available
has motivated efforts to integrate multiple geospatial data sets for the purpose of extracting useful
information and assisting decision makers. Event extraction – while difficult in the visual signal
domain – shows promising results from geospatial information integration and data fusion. Our
study provides the following contributions.

• Automatic annotation of video clips with the camera viewing direction. While the
concept of meta-data annotation has been investigated before, we believe our method is the
first to consider the viewing direction.

• Modeling of the viewable scene. We propose a viewable scene model that strikes a
balance between the complexity of its analytical description and the efficiency with which it
can be used for fast searches.

• Prototype feasibility study. We have implemented a prototype to demonstrate the feasi-
bility of acquiring, storing, searching, and retrieving video based on our approach.

• Demonstration of benefits. From our implementation results we are able to illustrate the
benefits of our approach in retrieving the most relevant video segments for a given query.

Before elaborating on our approach in detail, Section ?? contains a brief discussion and survey
of related work. We describe the proposed approach for georeferenced video search in Section ??.
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This is followed by a presentation of results based on a real-world data set in Section ??. Finally,
Section ?? discusses open issues and future research directions.

2 Related Work

Associating GPS coordinates with digital media (images and videos) has become an active area
of research [20]. In this section, we review the existing work related to search techniques in
georeferenced media retrieval and ranking. We will start our survey with methods that specifically
consider still images and then move on to videos. We will also briefly describe some prior work in
the area of indexing and storage. Lastly, we will mention a few commercial GPS-enabled cameras
that produce georeferenced images.

Techniques for Images. There has been significant research on organizing and browsing per-
sonal photos according to location and time. Toyama et al. [25] introduced a meta-data powered
image search and built a database, also known as World Wide Media eXchange (WWMX), which
indexes photographs using location coordinates (latitude/longitude) and time. A number of addi-
tional techniques in this direction have been proposed [18, 19]. There are also several commercial
web sites [2, 3, 4] that allow the upload and navigation of geo-refenced photos. All these techniques
use only the camera geo-coordinates as the reference location in describing images. We instead rely
on the field-of-view of the camera to describe the scene. More related to our work, Ephstein et
al. [6] proposed to relate images with their view frustum (viewable scene) and used a scene-centric
ranking to generate a hierarchical organization of images. Several additional methods are proposed
for organizing [21, 13] and browsing [7, 24] images based on camera location, direction and addi-
tional meta-data. Although these research work is similar to ours in using the camera field-of-view
to describe the viewable scene, their main contribution is on image browsing and grouping of sim-
ilar images together. [24, 14] use location and other metadata, as well as tags associated with
images, and the images visual features to generate representative images within image clusters.
Geo-location is often used as a filtering step. [6, 21] solely use location and orientation of camera in
retrieving the “typical views” of important object. However their contribution is on segmentation
of image scenes and organizing photos based on the image scene similarity. Our work describes a
more broad scenario that considers mobile cameras capturing geo-tagged videos and the associated
view frustum, which is dynamically changing over time. And our ranking technique do not target
any specific application domain, therefore can easily be applied to any specific application.

Techniques for Video. There exist only a few systems that associate videos with their
corresponding geo-location. Hwang et al. and Kim et al. propose a mapping between the 3D
world and the videos by linking the objects to the video frames in which they appear [11, 15].
However, their work neglects to provide any details on how to use camera location and direction
to build links between video frames and world objects. More closely related to our work, Liu et
al. [17] presented a sensor enhanced video annotation system (referred to as SEVA) which enables
searching videos for the appearance of particular objects. SEVA serves as a good example to show
how a sensor rich, controlled environment can support interesting applications, however it does not
propose a broadly applicable approach to geo-spatially annotate videos for effective video search.
All three studies mentioned above present ideas about how to search georeferenced video collections
but do not provide any solutions for analyzing the relevance of search results. To our knowledge,
our technique is the first in addressing video ranking based on the “viewable scene” cues. We
believe that our approach, when enhanced with an efficient spatio-temporal storage and indexing
mechanism, will serve as a general purpose and flexible video search and ranking mechanism that
is applicable to any types of video with associated location and direction tags. Consequently it can
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be the basis for a tremendous number of multimedia applications.
Beyond georeferenced video ranking, the topic of content based video retrieval and ranking has

been studied extensively. The TREC Video Retrieval Evaluation (TRECVID) [22] benchmarking
activity has been promoting progress in content-based retrieval of digital video since 2001. Each
year, various feature detection methods from dozens of research groups are tested on hundreds of
hours of video [23]. Unlike the research activities within the TRECVID benchmark, our focus is
solely on high-level descriptions of videos using georeferenced meta-data rather than visual features.

Geospatial Search and Ranking Methods. Although ranking videos based on geospatial
properties has not been well studied, there have been several ranking techniques developed for the
Geographic Information Retrieval (GIR) systems. Most of these studies compute spatial similarity
measures based on the overlap between query region and spatial description of documents using
the associated meta-data. Some earlier work [5] studied the basic spatial and temporal relevance
calculation methods. More recently, [16], provided a comprehensive summary of geospatial ranking
techniques and [8] proposed a global ranking algorithm based on spatial, temporal and thematic
parameters. To quantify the relevance of a videos viewable scene to a given query we applied some
of the fundamental spatial ranking techniques described in [5] and [8] in our work. Although
similar ranking schemes studied before, our work is novel in applying these techniques to rank
video data based on viewable scene descriptions.

Indexing and Storage. In our work we propose to use a histogram to accumulate the
relevance scores for the camera viewable scenes. Data summarization using histograms is a well-
studied research problem in the database community. A comprehensive survey of histogram creation
techniques can be found in [12]. In [6] authors use a grid of voting cells to discover the important
parts of an image. Their technique use only the spatial attributes to discover the relevant segments
of the image scene whereas our ranking methods incorporates both spatial and temporal attributes
in calculating relevance.

Commercial products. There exist several GPS-enabled digital cameras which can save the
location information with the digital image file as a picture is taken (e.g., Sony GPS-CS1, Ricoh
500SE, Jobo Photo GPS). Very recent models additionally record the current heading (e.g., Ricoh
SE-3, Solmeta DP-GPS N2). All current cameras support geotagging for still images only. We
believe that, as the use of these cameras increases, more location and direction tagged videos will
be produced and there will be a strong need to perform efficient and effective search on those video
data.

3 Georeferenced Video Search (or Searching Georeferenced Videos)

In this study our focus is on describing the video content based on the geospatial properties of
the region it covers, so that large video collections can be indexed and searched effectively. We
refer to this space as the the viewable space of the video scene. In this section, we describe how
to quantify, store and query the viewable scene of captured videos. And in Section-4 we introduce
several methods to discover the most relevant videos based on the video scene’s similarity to the
user query.

We model the viewable space of a scene with parameters such as the camera location, the angle of
the view, and the camera direction. The camera’s viewable scene changes when the camera moves
or rotates. This dynamic scene information has to be acquired from sensor-equipped cameras,
stored within an appropriate catalog or schema and indexed for efficient querying and retrieval.
Our proposed approach consists of four components: 1) modeling of the viewable scene, 2) data
acquisition, 3) indexing and querying, and 4) ranking search results. We will now describe first
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Figure 2: Illustration of FOVScene model (a) in 2D (b) in 3D.

three components in turn. Ranking retrieved videos will be discussed extensively in Section-4.

3.1 Georeferenced Video Annotations through Viewable Scene Modeling

We define the scene that a camera captures as the viewable scene of the camera. In the field of
computer graphics, this area is referred to as camera field-of-view (FOV for short). We will use the
terms ‘viewable scene’ and ‘field of view (FOV)’ interchangeably throughout this manuscript. We
describe a camera’s viewable scene in 2D space by using the following four parameters, i.e.,

FOV Scene(P, ~d, θ, R) (1)
where, (1) the camera position P is the 〈latitude, longitude〉 coordinates read from a positioning

device (e.g., GPS). (2) the camera direction vector
−→
d is obtained based on the orientation angle

provided by a digital compass. (3) the camera viewable angle θ describes the angular extent of the
scene imaged by the camera [9]. (4) the far visible distance R is the maximum distance at which a
large object within the camera’s field-of-view can be recognized. The full field-of-view is obtained
with the maximum visual angle, which depends on the lens/image sensor combination used in the
camera [10]. Smaller image sensors have smaller field-of-view than larger image sensors (when used
with the same lens). Alternatively, shorter focal-length lenses have a larger field-of-view than longer
focal-length lenses (when used with the same image sensor). The viewable angle θ can be obtained
via the following formula (Eqn. 2) [10]:

θ = 2tan−1 y

2f
(2)

where y is the size of the image sensor and f is the focal length of the lens. The relationship
between the visible distance R and the viewable angle θ is given in Eqn. 3 [10]. As the camera view
is zoomed in or out, the θ and R values will be adjusted accordingly.

θ = 2 arctan

(

y(R cos( θ
2) − f)

2fR cos( θ
2)

)

(3)

Our approach in this paper utilizes the set of georeferenced video content captured from a sensor-
equipped camera (see Figure 1), which can accurately estimate its current location P , orientation ~d
and visual angle θ. In 2D space, the field-of-view of the camera at time t, (FOV Scene(P, ~d, θ, R, t))
forms a pie-slice-shaped area as illustrated in Figure 2a. Figure 2b shows an example camera
FOVScene volume in 3D space. For a 3D FOVScene representation we would need the altitude
of the camera location point and the pitch and roll values to describe the camera heading on the
zx and zy planes (i.e., whether camera is directed upwards or downwards). We believe that the
extension to 3D is straightforward, especially since we already acquire the altitude level from the
GPS device and the pitch and roll values from the compass. For our initial setup we will represent
FOVScene in 2D space only. We plan to work on the 3D extension in our future work.
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3.2 Georeferenced Meta-data Acquisition

A camera’s viewable scene changes as it moves or changes its orientation in geo-space. In order
to keep track of what the camera sees over time, we need to record the FOV Scene descriptions
with a certain frequency and produce time stamped meta-data together with time stamped video
streams. Our meta-data streams are analogous to sequences of 〈P, ~d, θ, R, t〉 quintuples, where t is
the time instant at which FOVScene information is recorded. Ideally each camera will store the
FOV Scene coverage for each individual video frame. However, in large scale applications there
may be thousands of moving cameras with different sensing capabilities. We do not make any
assumptions about how frequently a camera should record its FOVScene coverage.

Recording georeferenced video streams. Our sensor rich video recording system in-
corporates three devices: a video camera, a 3D digital compass, and a Global Positioning System
(GPS) device. We assume that the optical properties of the camera are known. The digital com-
pass, mounted on the camera, periodically reports the direction in which the camera is pointing.
The camera location is read from the GPS device as a 〈latitude, longitude〉 pair. Video can be
captured with various camera models – we use a high-resolution (HD) camera. Our custom-written
recording software receives direction and location updates from the GPS and compass devices as
soon as new values are available and records the updates along with the current computer time and
coordinated universal (UTC) time. Video data is received from the camera as data packet blocks.
Each video data packet is processed in real time to extract frame timecodes and these extracted
timecodes are recorded along with the local computer time when the frame was received. Creating
a frame level time index for the video stream minimizes the synchronization errors that might occur
due to clock skew between the camera clock and the computer clock. In addition, such a temporal
video index, whose timing is compatible with other datasets, enables easy and accurate integration
with the GPS and compass data.

Calculating viewable angle (θ) and visible distance (R). Assuming that the optical
focal length f and the size of the camera image sensor y are known, the camera viewable angle θ
can be calculated through Eqn. 2. The default focal length for the camera lens is obtained from
the camera specifications. However, when there is a change in the camera zoom level, the focal
length f and consequently the viewable angle θ will change. To capture the change in θ, the
camera should be equipped with a special unit that will measure the focal length for different zoom
levels. Such functionality is not commonly available in today’s off-the-shelf digital cameras and
camcorders. To simulate the changes in the viewable angle, we have manually recorded the exact
video timecodes along with the change in the zoom level. Using the Camera Calibration Toolbox [1]
we have measured the f value for five different zoom levels (from the minimal to the maximal zoom
level). For all other zoom levels, the focal length f is estimated through interpolation.

The visible distance R can be obtained based on the equation,

R =
fh

y
(4)

where f is the lens focal length, y is the image sensor height and h is the height of the target object
that will be fully captured within a frame. With regard to the visibility of an object from the
current camera position, the size of the object also affects the maximum camera-to-object viewing
distance. For large objects (e.g., mountains, high buildings) the visibility distance will be large
whereas for small objects of interest the visibility distance will be small. For simplicity in our
initial setup we assume R to be the maximum visible distance for a fairly large object. As an
example, consider the buildings A and B shown in Fig.-3(a). Both buildings are approximately
8.5m-tall and both are located within the viewable angle of the camera. The distances from the
buildings A and B to the camera location are measured as 150m and 300m respectively. The frame
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snapshot for the FOVScene in Fig.-3(a) is shown in Fig.-3(b). We assume that, with good lighting
conditions and no obstructions, an object can be considered visible within a captured frame if it
occupies at least 5% of the full image height. For our JVC JY-HD10U camera, focal length is
f = 5.2mm and the CCD image sensor height is y = 3.6mm. Therefore using Eqn.-4 the height of
building A is calculated as 8% of the video frame, therefore is considered visible. (Fig.-3) However
building B is not visible since it covers only 4% of image frame. Based on the above discussion,
the threshold for the far visible distance R for our visible scene model is estimated around 250m.
We currently target a mid-range far visible distance of 200-300m. We believe that this range best
fits with typical applications that would most benefit from our georeferenced video search (e.g.,
traffic monitoring, surveillance). Close-up and far-distance will be considered as a part of our future
research.

(a) (b)

Figure 3:

Timing and Synchronization. The meta-data entries for compass updates and video frame
timecodes have millisecond-granular timing. However GPS location updates are available every
second. In order to calculate the camera FOVscenes, all three meta-data streams need to be
combined and stored as a single stream with an associated common time index. In a sensor-rich
system with several attached devices, one challenge is how to synchronize the sensor data read
from the attached devices which have different data output rates. Our recording software creates
separate data streams for each device, where each meta-data entry is timestamped with the time
when the update was received from the device. Later these data streams are combined with a 2-
pass algorithm. Such an algorithm processes data in a sliding time window centered at the current
time. It will always match the data entries that have the closest timestamps (past or future). In
our setup the meta-data output rate for GPS, compass and video are is 1, 40, and 30 samples/sec
respectively. Therefore, we match each GPS entry with the temporally closest video frame timecode
and compass direction.

For each meta-data entry, in addition to the local time we record the satellite time (in UTC)
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that is received along with the GPS location update. The use of the recorded satellite time can be
twofold: (1) it enables synchronizing the current computer time with the satellite time (2) it may
be used as the time base when executing temporal queries, i.e., by applying the temporal condition
of the query to the satellite time. Timestamping the FOV Scene entries with the satellite time
ensures a global temporal consistency among all georeferenced video collections.

Measurement Errors. The accuracy of the FOV Scene calculation is somewhat dependent
on the precision of the location and heading measurements obtained from GPS and compass devices.
A typical GPS device is accurate approximately within 10 meters. In our proposed viewable scene
model, the area of the region that a typical HD camera captures (FOV Scene) is on order of tens
of thousands of square meters (e.g., at full zoom-out approx. 33,000m2). Therefore, a difference of
10m is not very significant compared to the size of the viewable scene we consider. Additionally,
missing GPS locations – due to various reasons such as a tunnel traversal – can be recovered
through estimation such as interpolation. There exists extensive prior work on estimating moving
object trajectories in the presence of missing GPS locations. An error in the compass heading
may be more significant. Many digital compasses ensure azimuth accuracy of better than 1◦ (e.g.,
about 0.6◦ for the OS5000 digital compass in our system), which will have a minor effect on the
viewable scene calculation. However, when mounted on real platforms the accuracy of a digital
compass might be affected by local magnetic fields or materials. For our experiments the compass
was calibrated within the setup environment to minimize any distortion in compass heading. It
is also worth mentioning that multimedia applications often tolerate some minor errors. When a
small object is at the edge of viewable scene but is not included in the modeled area, it might not
be recognized by a human observer.

3.3 Querying Georeferenced Videos

The next task after collecting georeferenced meta-data is to semantically describe them so that
accurate and efficient analysis on the camera viewable scenes is possible. An intuitive way is to store
a separate FOVScene quintuple including the camera id, video id, frame timecode, camera location,
visual angle and camera heading for each video frame. The FOVScene coverage of a moving camera
over time is analogous to a moving region in the geo-spatial domain, therefore traditional spatio-
temporal query types, such as range queries, k nearest neighbor (kNN) queries or spatial joins, can
be applied to the FOVScene data. In our initial work, we limit our discussion to range queries. The
typical task we would like to accomplish is to extract the video segments that capture a given area
of interest. As explained in Section 3.2, we can construct the FOVScene(t,P,~d,θ,R) description for
every second. Hence, for a given area of interest Q, we can extract the sequence of video frames
whose viewable scene overlap with Q. Going from most specific to most general, the query region Q
can be a point, a line (e.g., a road), a poly-line (e.g., a trajectory between two points), a circular area
(e.g., neighborhood of a point of interest), a rectangular area (e.g., the space delimited with roads)
or a polygon area (e.g., the space delimited by certain buildings, roads and other structures). Details
of range query processing can be found in our prior work[]. One problem with such a representation
on top of a relational model is the computational overhead. In a typical query all frames that belong
to the query time interval has to be checked for overlaps. Computational efficiency can be improved
by adopting an index structure to store and query FOVScene descriptions.

In this study we restrict our example queries to simple spatiotemporal range searches. However,
using the camera view direction (~d) in addition to the camera location (P ) to describe the camera
viewable scene provides a rich information base for answering more complex geospatial queries.
For example, if the query asks for the views of an area from a particular angle, more meaningful
scene results can be returned to the user. Alternatively, the query result set can be presented
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Term Description

Vk a video clip k

V F
k

a video clip k represented by a set of
FOV Scenes

V F
k

(ti) a polygon shape FOV Scene at time ti, a set
of corner points

Q a polygon query region represented by a set of
corner points

O(V F
k

(ti), Q) overlap region between V F
k

and Q at ti, a set
of corner points

RTA relevance score with TotalOveralpArea

RD relevance score with OverlapDuration

RSA relevance score with
SummedAreaofOverlapRegions

Grid M × N cells covering the universe

V G
k

(ti) a FOV Scene at time ti represented by a set
of overlap grid cells between Grid and V F

k
(ti)

V G
k

a video clip k represented by a set of V G
k

(ti)

QG a polygon query region represented by a set of
grid cells

OG(V G
k

(ti), Q) overlap region between V G
k

and Q at ti, a set
of grid cells

RG
TA relevance score using grid, extend of RTA

RG
D relevance score using grid, extend of RD

RG
SA relevance score using grid, extend of RSA

Table 1: Summary of terms

to user as distinct groups of resulting video sections such that videos in each group will capture
the query region from a different view point. Some further aspects of a complete system to query
georeferenced videos – such as indexing and query optimization – will be explored as part of our
future work.

4 Ranking Georeferenced Video Search Results

In video search, when results are returned to user, it is critical to present the most related videos first
since human verification (viewing videos) can be very time-consuming. This can be accomplished by
creating an order which will rank the videos from the most relevant to the least relevant. Otherwise,
although a video clip completely captures the region user is interested in, it may be listed last within
query results. It is essential to question the relevance of each video with respect to the user query
and to provide an ordering based on estimated relevance.

Analyzing how the FOVScene (FS) descriptions of a video overlap with a query region gives
clues on calculating its relevance with respect to the given query. A common metric used to measure
spatial relevance is the extend of overlap region. The greater the overlap between FS and the query
region, the greater the video relevance. Fig.-7 demonstrates two extreme overlap cases, where the
first video covers only a small percentage of the query region and the second one covers almost
all of it. It is also useful to differentiate between the videos which overlap with the query region
for intervals of different length. A video which captures the query region for a longer period will
probably include more details about the region of interest and therefore can be more interesting to
the user. Note that during the overlap period the amount of overlap at each time instant changes
dynamically for each video. Among two videos whose total overlap amounts are comparable, one
can cover a small portion of the query region for a long time and rest of the overlap area only for
a short time, whereas another video may cover a large portion of the query region for a longer
time period. In Fig.-4, although both videos V46 and V108 have similar overlap amounts, video V46

includes more details for the query region since it covers a larger region for a longer period of time.
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(a) (b)

Figure 4: Visualization of the overlap between query Q207 and videos (a) V46 (b) V108

In the following sections, we will explain how we define the overlap between video FS and
queries and propose three basic metrics for ranking video search results.

4.1 Preliminaries

Let Q be a polygon shaped query region given by an ordered list of its polygon corners:

Q = {(lonj , latj), 1 ≤ j ≤ m}

where (lonj , latj) is the longitude and latitude coordinates of jth corner point of Q and m is the
number of corners in Q. Suppose that a video clip Vk consists of n FOV Scenes and ts and te is
the start time and end time for video Vk, respectively. The set of FS descriptions for Vk is given
by,

V F
k =

{

FOV SceneVk(ti, P, ~d, θ, R) | 1 ≤ i ≤ n
}

. Similarly, a FS at time ti can be denoted as

V F
k (ti).

If Q is viewable by Vk then, the set of FS that capture Q is given by,

SceneOverlap(V F
k , Q) =

{

V F
k (ti) | for all i (1 ≤ i ≤ n) when V F

k (ti) overlaps with Q
}

The overlap between V F
k and Q at time ti, forms a polygon shaped region, as shown in Fig.-5.

Let O(V F
k (ti), Q) denote the overlapping region between video V F

k and query Q at time ti. We
define it as an ordered list of corner points that form the overlap polygon. Therefore,

O(V F
k (ti), Q) = OverlapBoundary(V F

k (ti), Q)

=
{

(lonti
j , lattij ), 1 ≤ j ≤ m

}

(5)

where m is the number of corner points in O(V F
k (ti), Q). The function OverlapBoundary returns

the overlap polygon which enclose the overlap region. In Fig.-5, these corner points are shown
with labels P1 through P9. Practically, when a pie-shaped FS and polygon shaped query region
intersect, the formed overlap region does not always form a polygon. If the arc of FS resides inside
Q, part of the overlap region will be enclosed by an arc rather than a line. Handling such irregular
shapes is usually unpractical. Therefore we estimate the part of the arc that reside within the
query region Q with a series of points on the arc which have 5o of angular distance between the
previous and next point with respect to the camera location point. The implementation of the
function OverlapBoundary is given in Alg.-??. Note that OverlapBoundary computes the corner
points that enclose the overlap polygon where:
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Figure 5: The overlap between a video FOV Scene and a polygon query

• a side of the query polygon Q crosses the arc or the sides of the FS

• a corner of the query polygon Q is enclosed within FS

• a corner point of the FS (i.e, camera location point or starting or ending points of the arc)
is enclosed within Q

• part of the FS arc is enclosed within Q (the intersecting section of the arc is estimated with
a series of points)

4.2 Three Metrics to Describe the Relevance of a Video

We propose three fundamental metrics to describe the relevance (R) of a video Vk with respect to
a user query Q based on the followings:

1. Total Overlap Area (RTA). Area of the region formed by the intersection of Q and V F
k . This

quantifies how much portion of Q is covered by V F
k , emphasizing spatial relevance.

2. Overlap Duration (RD). Time duration of overlap between Q and V F
k in seconds. This

quantifies how long V F
k overlaps with Q, emphasizing temporal relevance.

3. Summed Area of Overlap Regions (RSA). Summation of the overlap areas for the intersecting
FS during the overlap interval. This balances the spatial and temporal relevance.

4.2.1 Total Overlap Area (RTA)

Total overlap area of O(V F
k , Q) is given by the smallest convex polygon which covers all overlap

regions formed between V F
k and Q. This boundary polygon can be obtained by constructing the

convex envelope enclosing all corner points of the overlap regions. Eq.-6 formulates the computation
of total overlap coverage. Function ConvexHull constructs the convex hull of the polygon corner
points, where each point is represented as a (longitude,latitude) pair. Fig.-4 shows examples of the
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total overlap coverage between the query Q207 and videos V46 and V108.

O
(

V F
k , Q

)

= ConvexHull

(

n
⋃

i=1

{

O
(

V F
k (ti), Q

)}

)

= ConvexHull





n
⋃

i=1

|O(V F

k
(ti),Q)|

⋃

j=1

{(

lont
j , lattj

)}





(6)

And the Relevance using Total Overlap Area (RTA) is given by the area of the overlap boundary
polygon O(V F

k , Q). (Eq.-7)

RTA(V F
k , Q) = Area

(

O(V F
k , Q)

)

(7)

where function Area returns the area of the overlap polygon O(V F
k , Q). A higher RTA value implies

that a video captures a larger portion of the query region Q and therefore its relevance with Q can
be higher.

4.2.2 Overlap Duration (RD)

Relevance using Overlap duration (RD) is given by the total time in seconds that V F
k overlaps with

query Q. Eq.-8 formulates the computation of RD.

RD =

n−1
∑

i=1

(ti+1 − ti) for i when O
(

V F
k (ti), Q

)

6= ∅ (8)

RD is obtained by summing the overlap time for each FS in V F
k with Q. We estimate the

overlap time for each FS as the difference between two timestamps of sequential FS. If sampling
rate for FS is low, (i.e., if the difference between the timestamps of two consecutive FS is large)
then RD might overestimate overlap duration. Although O(V F

k (ti), Q) is nonempty, V F
k might not

be overlapping with Q during the whole [ti+1, ti] interval. When the duration of overlap is long,
the video will capture more of the query region and therefore its relevance can be higher.

4.2.3 Summed Area of Overlap Regions (RSA)

Total Overlap Area and Overlap Duration give the spatial and temporal extend of the overlap
respectively. However both relevance metrics express only the properties of overall overlap and do
not describe how individual FS overlap with the query region. For example, In Fig.-4, for videos
V46 and V108, although RTA(V F

46 , Q207) = RTA(V F
108, Q207) and RD(V F

46 , Q207) = RD(V F
108, Q207),

V F
46 overlaps around 80% of the query region Q207 during the whole overlap interval, whereas V F

108

overlaps only 25% of Q207 for most of its overlap interval and overlaps 80% of Q207 only for the last
a few FS. In order to differentiate between such videos, we propose the Relevance using Summed
Overlap Area (RSA) as the summation of areas of all overlap regions during the overlap interval.
Eq.-9 formalizes the computation of RSA for video V F

k and query Q.

RSA

(

V F
k , Q

)

=

n
∑

i=1

Area
(

O(V F
k (ti), Q)

)

(9)

where function Area returns the area of the overlap polygon O(V F
k (ti), Q).
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4.3 Ranking Videos Based on Relevance Scores

The proposed metrics describe the most basic relevance criteria that a typical user will be interested
in. RTA defines the relevance based on the area of the covered region in query Q whereas RD define
relevance based on the length of the video section that captures Q. RSA includes both area and
duration of the overlap in relevance calculation i.e, the larger is the overlap, the bigger the RSA

score will be. Similarly, the longer is the overlap duration, the more overlap polygons will be
included in the summation.

Since each metric bases its relevance definition on a different criteria, we may not expect to
obtain a unique ranking for all three metrics. And without feedback from users it is hard to argue
whether one of them is superior to the others. But, we can claim that a certain metric gives
the best ranking when the query is specific in describing the properties of videos that the user is
looking for. For example, if the user seeks for the videos that give the maximum coverage extend
within the query region, the metric RTA will give the most accurate ranking. Based on the query
specification either a single metric or a combination of the three can be used to obtain the video
ranking. Calculating the weighted sum of several relevance metrics (Eq.-10) is a common technique
to obtain an ensemble ranking scheme.

Relevance
(

V F
k , Q

)

= w1RTA

(

V F
k , Q

)

+ w2RSA

(

V F
k , Q

)

+ w1RD

(

V F
k , Q

)

(10)

To obtain the optimal values for weights w1, w2 and w3 we need a training data set which provides
an optimized ranking based on several metrics. However constructing a reliable training data for
georeferenced videos is not trivial and requires careful and tedious manual work. There is extensive
research on content based classification and ranking of videos using Support Vector Machines
(SVM) and other classifiers, which train their classifiers using publicly available evaluation data (for
example TRECVID benchmark dataset). There is a need for a similar effort to create public training
data for georeferenced videos. In Section-5 we will present results obtained through applying
individual metrics to calculate the relevance score of a video. We plan to elaborate on customized
multi-level ranking schemes for georeferenced video data as part of our future research work.

4.4 A Histogram Approach for Calculating Relevance Scores

Although we have the exact shape of the overlap region for each individual FS in the previous
sections, the computed relevance scores do not tell us much about the distribution of the overlap
throughout the query region, i.e, which parts of the query region are more frequently captured
in the video and which parts are captured only in a few frames. The distribution of the density
of overlap can be meaningful in questioning a video’s relevance with respect to a query and in
answering user customized queries, therefore should be stored.

We present a histogram based algorithm to extract and store overlap distribution by building
an overlap histogram (OH ). We first partition the whole geospace into disjoint grid cells such that
their union covers the entire universe. Let Grid = {ci,j : 1 ≤ i ≤ M and 1 ≤ j ≤ N} be the set of
cells for the M ×N grid covering the universe. Given the FS descriptions V F

k of video Vk, the set
of grid cells that intersect with a particular V F

k (ti) can be identified as,

V G
k (ti) =GridFOV Overlap

(

V F
k (ti)

)

=
{

cm,n : cm,n overlaps with V F
k (ti) and cm,n ∈ Grid

} (11)

V G
k (ti) is the set of overlapping grid cells with V F

k (ti) at time ti, i.e., a grid representation of a FS.
Then, V G

k is a grid representation of V F
k which is a collection of V G

k (ti), 1 ≤ i ≤ n. Histogram for
V G

k , denoted as OHk, consists of grid cells Ck =
⋃n

i=1 V G
k (ti). Function GridFOVOverlap given in
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Alg.-?? determines these overlapping cells. In Alg.-??, we first locate the cell cmp,np which contains
the camera location point P for V F

k (ti), then greedily search through the neighboring cells towards
the direction vector R. Initially we only check for the cells that overlap with the borderline of
V F

k (ti), then include all other cells enclosed between the border cells. (see Fig.-6)

Figure 6: Grid representation of overlap polygon

For each cell cj in Ck, OverlapHist counts the number of FS samples cj overlaps with. In other
words it calculates the appearance frequency (fj) of cj in V G

k (Eq.-12).

fj = OverlapHist
(

cj , V
G
k

)

= Count
(

cj ,
{

V G
k (ti) : for all i, 1 ≤ i ≤ n

})

(12)

Function Count calculates the number of V G
k (ti) that cell cj appears in. Note that OverlapHist

describes only the spatial overlap between the Grid and the video FOV Scenes. However, in order
to calculate the time based relevance scores we also need to create the histogram that summarizes
the overlap durations. OverlapHistTime constructs a set of time intervals when cj overlaps with
V G

k . A set Ij holds overlap intervals with cell cj and V G
k such as pairs of <starting time, overlap

duration>. Then, the histogram for V F
k , i.e., OHk, consists of grid cells each attached with a

appearance frequency value and a set of overlapping intervals.
E
¯
xample 1:

Histogram of video clip Vk is constructed as follows:
OHk = {< c1, f1, I1 >, < c2, f2, I2 >, < c3, f3, I3 >}
= {< (2, 3), 3, {< 2, 10 >, < 20, 5 >} >, < (3, 3), 1, {< 10, 7 >} >, < (4, 3), 1, {< 8, 3 >} >}.
This histogram consists of three grid cells c1, c2, and c3 appearing 3, 1, and 1 times in V G

k ,
respectively. c1 appears in two disjoint video segments. One starts at 2 and lasts for 10 seconds.
The other starts at 20 and lasts for 5 seconds. c2 appears once starting at 10 and lasts for 7 seconds.
c3 appears once starting at 8 and lasts for 3 seconds.

Fig.-8 demonstrates an example histogram, where different frequency values within the his-
togram are visualized with varying color intensities. Note that the greedy algorithm in Alg.-??
enables us to differentiate between the cells that are fully contained and the calls that are partially
contained within the FOV Scene region. Such a distinction is useful for more accurate estimation
of the overlap region. Such an improvement is out of the scope of this paper and will be elaborated
as part of our future work.
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4.4.1 Running Geospatial Range Queries Using Histogram

Given a polygon shaped query region Q, we first represent Q as a group of grid cells in geospace:

QG = { all grid cells that overlap with Q} (13)

We refine the definition of overlap region as a set of overlapping grid cells (OG) between V G
k and

QG. Using the histogram of V G
k (OHk), the overlapping grid cell set can be defined as:

OG(V G
k , QG) =

{

(Ck of OHk)
⋂

QG
}

(14)

Note that the grid cells in OG inherit corresponding frequencies and intervals from OHk.
Assuming that a query region QG consists of four grid cells, QG = {< 2, 2 >, < 2, 3 >, <

3, 2 >, < 3, 3 >} the overlapping cells with the video in Example 1 become: OG(V G
k , QG) = {<

(2, 3), 3, {< 2, 10 >, < 20, 5 >} >, < (3, 3), 1, {< 10, 7 >} >}.

4.4.2 Histogram Based Relevance Scores

Using the grid base overlap region OG, we redefine the three proposed relevance metrics in Sec-
tion 4.2.

Total Overlap Cells (RG
TA)

RG
TA is the extend of the overlap region on QG, i.e., how many cells in QG are overlapping

with V G
k . Thus, RG

TA is simply the cardinality of the overlapping set OG(V G
k , QG). In the above

example, RG
TA = 2.

Overlap Duration (RG
D)

The duration of overlap between a query QG and V G
k can be easily calculated using the interval

sets in OHk: OverlapHistTime.

RG
D

(

V G
k , QG

)

= CombineIntervals(OHk) (15)

Function CombineIntervals combines the intervals in the histogram. Note that there may be time
gaps when the intervals for some of cells are disjoint. There also are overlap time duration across
cells. IN the above example, RG

D = 18 seconds.

Summed Number of Overlapping Cells (RG
SA)

RG
SA is the total number of overlap occurrences between V G

k and QG and therefore is a measure
of how many cells in QG are covered by video V G

k and how many times each overlap cell is covered.
Since the histogram of a video already holds the appearance frequencies (F ) of all overlap cells, it
can be defined as follows assuming l cells in the histogram;

RG
SA

(

V G
k , QG

)

=

l
∑

i=1

OHk.fi (16)

As we mentioned in the previous sections, a histogram gives the overlap distribution within
the query region with discrete numbers. Knowing the overlap distribution is helpful for interactive
video search applications where user might further refine the search criteria and narrow down the
search results.
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4.5 Run-time Requirements of Ranking

The run-time requirement for computing the overlap region, as described in Section 4.1 and 4.2 is
bounded by the number of edges in query polygon Q. The OverlapBoundary algorithm can be
computed in O(n) time where n is the number of edges in Q. For, the georeferenced video search
applications we target, the query region given by the user is usually not a complex polygon, mostly
a rectangle shaped region. Therefore, the overlap region for a single FOV Scene can be computed
in constant time. However, for a realtime georeferenced search system where huge amount of
videos are processed, the actual calculation of Alg.-?? can be very time consuming. However,
the grid-based histogram approach can greatly reduce the run-time computing requirement by
preprocessing videos, i.e., building histograms of videos. By the fact that video data do not need
to be frequently modified in many applications, the histogram approach can provide an appealing
practical solution for georeferenced video search. In addition, in georeferenced video search, like
many other multimedia search systems it is not critically essential to have very precise calculations.
Therefore, estimation of the overlap region up to a certain error rate can be highly acceptable for
the application areas we target.

5 Experimental Evaluation

5.1 Data Collection and Methodology

5.1.1 Data Collection

To collect georeferenced video data, we have constructed a prototype system which includes a
camera, a 3D compass and a GPS receiver. We used the JVC JY-HD10U camera with a frame
size of approximately one megapixel (1280x720 pixels at a data rate of 30 frames per second). It
produces MPEG-2 HD video streams at a rate of slightly more than 20 Mb/s and video output is
available in real time from the built-in FireWire (IEEE 1394) port. To obtain the orientation of
the camera, we employed the OS5000-US Solid State Tilt Compensated 3 Axis Digital Compass,
which provides precise tilt compensated headings with roll and pitch data. To acquire the camera
location the Pharos iGPS-500 GPS receiver has been used. A program was developed to acquire,
process, and record the georeferences along with the MPEG2 HD video streams. The system
can process MPEG2 video in real-time (without decoding the stream) and each video frame can
be associated with its viewable scene information. In all of our experiments, a FOVScene (FS)
was constructed every second, i.e., one FS per 30 frames of video. More details on acquisition
and synchronization issues have been provided in Section 3.2 [Check later depending on previous
sections.]. Although our sensor rich video recording system has been tested mainly with a camera
that produces MPEG-2 video output, with little effort it can be configured to support any digital
camera producing compressed or uncompressed video streams.

Figure 1 shows the setup for our recording prototype. We have mounted the recording system
setup on a pickup truck and captured video outdoors in Moscow, Idaho, traveling at different
speeds (max. 25 MPH). During video capture, we frequently changed the camera view directions.
The captured video covered a 6 kilometers by 5 kilometers size region quite uniformly. However,
for a few popular locations we shot several videos, each viewing the same location from different
directions. The total captured data includes 134 video clips, ranging from 60 to 240 seconds in
duration. Figure 7 shows a visualization example of camera viewable scenes for two video files
on a map. For visual clarity, viewable scene regions are drawn every three seconds. Due to
space limitations we cannot include more example visualizations. Further samples can be found at
http://eiger.ddns.comp.nus.edu.sg/geospatialvideo/ex.html.
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Figure 7: Visualization of viewable scenes on a map.

5.1.2 Methodology

Using the collected 134 video data set that covers 6 kilometer by 5 kilometer area, we generated
250 random range queries with a fixed query range of 300 meter by 300 meter. For each query, we
searched the georeferenced video dataset for overlapping videos with the query region (Filter Step).
We then calculated the relevance scores based on the three metrics in Section-4.2. The rank lists
RLTA, RLSA and RLD are constructed from the relevance metrics RTA, RSA and RD respectively.
A rank list is a sorted list of video clips in descending order of their relevance scores.

In order to evaluate the accuracy of rankings from our proposed schemes, one needs the ”ground
truth’” rank order for comparison. Unfortunately, there is no classified publicly available georefer-
enced video data (similar to TRECVID benchmark evaluation data for still images [Check later if
this is correct]) that can be the reference for comparison. Therefore we first analyzed and compared
the rankings from the proposed schemes each other. Next, we independently conducted experiments
to rank the results by human judges. Finally, by comparing the results from human judges and
those from the proposed schemes, we evaluated the accuracy of our ranking schemes.

We conducted two set of experiments to evaluate the ranking accuracy of the proposed methods:

1. Experiment 1: We compared the rankings RLTA, RLSA and RLD with each other over the
whole set of 250 queries.

2. Experiment 2: Among the 250 random queries we picked 25 easily recognizable query regions
and asked human judges to rate each video file using a four point scale ranging from ”3-highly
relevant” down to ”0-irrelevant”. We compared our results to user provided feedback labels
over this 25 random queries.

5.1.3 Evaluation Metrics.

Since each ranking scheme interprets the relevance in a different way, it is not expected to obtain
a unique result from all schemes. However, we claim that they all should have similar sets of video
clips within the top N of their rank lists for some N because of the nature of geospatial query.
Having similar results from all three ranking algorithms would show that the resulting videos are
most interesting to the user. To compare the accuracy of results, we adopted the Precision at N
(P(N)) metric [Any reference?], which is a popular method that reports the fraction of relevant
videos ranked in the top N results. We redefine P(N) as the fraction of common videos ranked
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MAP at MAP at MAP at MAP at MAP at MAP at
N=1 N=2 N=5 N=10 N=15 N=20

Compare All topN(RLT A)
⋂

topN(RLD)
⋂

topN(RLSA)
N

0.60 0.789 0.918 0.993 0.999 1.0

Compare RLTA

and RLSA

topN(RLT A)
⋂

topN(RLSA)
N

0.727 0.839 0.961 0.993 1.0 1.0

Compare RLTA

and RLD

topN(RLT A)
⋂

topN(RLD)
N

0.677 0.842 0.933 0.987 0.999 1.0

Compare RLSA

and RLD

topN(RLSA)
⋂

topN(RLD)
N

0.745 0.885 0.947 0.987 1.0 1.0

Table 2: Comparison of proposed ranking methods: RLTA, RLSA and RLD

in top N results from more than one rank list. Note that the exact rank of videos within the top
N is irrelevant. P(N) only shows the precision of a single query, therefore to measure the average
precision over multiple queries, we use Mean Average Precision (MAP), which is the mean of P(N)s
for multiple queries. We evaluate the results of Experiment 1 with MAP scores.

For Experiment 2 which includes human judgement, in addition to MAP, a second evaluation
metric namely Discounted Cumulated Gain (DCG) was used [Reference]. DCG systematically
combines video rank order and degree of relevance. The discounted cumulative gain vector ~DCG
is defined as

DCG[i] =

{

G[1] if i=1
DCG[i − 1] + G[i]/logei otherwise

where ~G is the gain vector which contains the gain values for the ranked videos in order. The gain
values correspond to the user assigned relevance labels ranging from 0 to 3. Note that a video
with lower relevance label listed at top rank will dramatically increase the DCG sum. But a video
with high relevance label listed lower in the rank list will not contribute much to the sum. This is
because the lower the position of a relevant video the less valuable it is for the user. The perfect
ordering where all highly relevant videos are ranked at the top and less relevant documents are
listed lower in the rank list will give the ideal DCG vector. Normalized-DCG (NDCG) is the final
DCG sum normalized by the DCG of ideal ordering. The higher the NDCG of a given ranking the
more accurate it is.

5.2 Comparison of Ranking Accuracy

5.2.1 Comparison of Proposed Ranking Schemes

We compare the ranking accuracy of RLTA, RLSA and RLD using MAP. In Table-2, the first row
calculates MAP as the average ratio of the videos that are common to all three rank lists within
the top 1, 2, 5, 10 and 20 ranked results for all 250 queries. Second, third and fourth rows give the
MAP scores in RLTA and RLSA, RLTA and RLD, RLD and RLSA respectively. The results show
that the precision increases as N grows and almost full precision is achieved at N=10. Note that
we get a very high precision even at N=5. This implies that all three proposed schemes similarly
identify the most relevant videos. Table-2 displays RLTA, RLSA, RLD from a specific query Q207.

The rank differences in RLTA, RLSA and RLD are mainly due to the different interpretations
of relevance. To further investigate the differences and similarities between the rankings, see V46

and V108 in Table-2. Both videos overlap Q207 almost the same amount of time and they both
cover almost the whole query region. Thus, RTA and RD scores for both videos are very close.
However RSA for V108 is much higher than V46. To investigate the difference, we built the overlap
histograms OH46 and OH108 and extracted the cells that overlap with query Q207. Color highlighted
visualizations of OG(V G

46 , QG) and OG(V G
108, Q

G) are shown in Fig.-8. Fig.-8(b) has a higher color
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RLTA
RTA RLSA

RSA RLD
RD

score (km2) score (km2) score (secs)

1 46 0.087 108 1.726 108 65
2 108 0.084 43 0.813 46 61
3 43 0.063 46 0.558 43 42
4 107 0.055 42 0.359 107 38
5 42 0.052 107 0.338 133 31
6 131 0.045 131 0.291 131 25
7 132 0.045 133 0.135 42 18
8 133 0.038 132 0.087 106 16
9 109 0.022 109 0.073 118 11
10 118 0.018 118 0.045 109 10
11 47 0.004 106 0.025 44 6
12 106 0.004 44 0.008 132 5
13 44 0.001 47 0.004 47 1
14 65 0.001 65 0.001 65 1

Table 3: The ranked video results and relevance scores obtained for Q207

intensity in the middle showing that V108 intensively covers the middle part of Q207. This caused
by that the middle portion of Q207 was far more frequently covered by V108 than V46. At this point
we can not argue whether one of the ranking methods is better than the others. We believe that
each ranking scheme interprets a different aspect of relevance, therefore query results should be
customized based on user preferences.

(a) (b)

Figure 8: Color highlighted visualizations for overlap histograms for videos V46 and V108 [Isn’t this
switched?]

5.2.2 Comparison with User Feedback

This set of experiments aimed to evaluate the accuracy of our ranking methods by comparing results
to user provided relevance feedback. Relevance judgements were made by a student familiar to the
region where the videos are captured. We selected 25 query regions from the 250 queries, which
are relatively easy to be recognized by human in video. The selected 25 queries returned total 103
videos and each query returned 14 videos on the average. The user manually analyzed all these
103 videos in random order and evaluated the relevance of these videos for each of the 25 queries.
The user was asked to rate the relevance based on a four-point scale: “3 - highly relevant”, “2 -
relevant”, “1 - somehow relevant” and “0 - irrelevant”. Trajectories of camera movements were
displayed on a map for all 103 videos. Finally, the user created a rank list per query.

We compare the rankings RLTA, RLSA and RLD to the user rankings using the metrics DCG
and NDCG for the 25 queries. For the comparison, the average of DCG vectors for the rankings
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Figure 9: Discounted Cumulated Gain (DCG) curves

were used. Fig.-9 shows the DCG vector curves for the rank lists RLTA, RLSA, RLD and the ideal
curve for ranks 1 to 16. Ideal curve corresponds to the DCG vector based on the user ranking.
Clearly, the DCG curves for the proposed schemes have a close match with the ideal DCG curve.

Next, NDCG scores with respect to the ideal curve were calculated. The NDCG scores of
RLTA, RLSA and RLD were 0.975, 0.951 and 0.921, respectively. All scores are close to 1, which
implies that all three are highly successful in ranking the most relevant videos at top, similar to
human judgement. We observed that rank differences among them mostly occurred in rating less
relevant videos. Recall that DCG and NDCG reward relevant videos in the top ranked results
more heavily than those ranked lower. High NDCG scores also justify that the proposed ranking
methods successfully identify the most relevant videos.

Among the proposed schemes, the highest precision was obtained by RLTA at all levels. This
is because human perception for the relevance is more related to what one can actually see clearly
(i.e., spatial perception) rather than how long one sees the same thing (i.e., temporal perception).
All three ranking schemes describe different properties of video, and importance of a video is highly
subjective to users and the criteria users are looking for. Fig.-9 also clearly shows that RLTA in
overall has the best accuracy with respect to user ranking among the three.

We are aware that such user judgement is prone to errors. More accurate results can be obtained
by performing an intensive user study with far more number of human judges, videos and queries.
Such an extensive study is out of the scope of this paper and will be part of our future work.

5.3 Evaluating the Computational Performance

This section evaluates the computational cost of the proposed schemes. In our implementation,
three steps account for the computational cost: 1) loading georeferenced data, i.e., FOVScene
descriptions, from a hard disk, 2) filter step to exclude videos with no overlap, 3) calculating the
area of overlap between FOVScenes (results of the filter step) and query regions, and 4) computing
the relevance scores for the three rank lists. For RTA and RSA, step 3 consumes around 60% of the
computation time. In step 4, RSA just needs to sum the areas of overlap polygons, however RTA

needs to compute the extend of all overlap polygons therefore it takes longer to construct the rank
list. RD is computationally the most efficient since RD only extracts the time of overlap and skips
the overlap area calculation.

Using a 2.33 GHz Intel Core2 Duo PC, we measured the processing time of each scheme to per-
form the same 250 queries in Section 5.2.1. The test data included 134 videos with a total duration
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Step Calculating RLTA Calculating RLSA Calculating RLD

Avg No. of V Avg Time Avg No. of V Avg Time Avg No. of V Avg Time
processed (secs) processed (secs) processed (secs)

1. Load FOVScene
descriptions from

disk
134 0.523 134 0.523 134 0.523

2. Filter step 134 0.016 134 0.016 134 0.016
3. Calculate the area
of Overlap polygons

8.46 1.176 8.46 1.176 8.46 0.527

4. Calculate the
Relevance Scores

8.46 0.367 8.46 0.097 8.46 0.100

Total time (sec) 2.082 1.812 1.166

Table 4: Measured computational time per query

of 175 minutes. A FS was recorded per every second of video so total 10500 FS representations
were used in the calculations. Detailed processing time measurements for running the major steps
of ranking schemes are summarized in Table-4. Step 1 and 2 were required for all queries and
all 134 videos were processed per query. It is important to note that, during query processing, a
vast majority of the videos were filtered out through the filter step. As shown in Table-4 for each
query, on average 8.46 out of 134 were actually processed in step 3 and 4 since all other videos
were excluded through the filter step. The details of the filter step is explained in Section4.3. For
a particular query, the average processing time required to construct RLTA, RLSA and RLD was
around 2.082, 1.811 and 1.66 seconds respectively.

The query processing time depends on the number of FOVScenes to be processed which varies
query by query. Thus, we next examine how the processing time changes as the number of videos
increases. Fig.-10 shows the processing time vs. number of videos for the three rankings. It
shows that the processing time linearly grows as a function of videos, i.e., as a function of number
of FOVScenes. The small fluctuation was caused from the different number of FOVScenes in a
specific video and the number of FOVScenes after the filter steps in a specific query. Thus, we can
compute the average time to process a single FOVScene per query. When the processing time per
query took 2.082 seconds with 134 videos (total 175 minutes so 10500 FOVScenes) for RLTA, the
average processing time per FOVScene per query was 0.198 milliseconds. Similarly, it was 0.172 and
0.110 milliseconds for RLSA and RLD, respectively. These numbers can provide a good estimation
of query processing time with a larger data set. For example, when the size of query range is same
but the number of FOVScenes increases to 100,0001, we can estimate the average query processing
time for RLTA as 0.198msec × 100, 000 = 198seconds.

Section-4.5 briefly discussed the run time requirement of the proposed schemes. In this study
we only present the initial findings and do not aim to provide any contributions in efficient retrieval
and indexing of the FOVScene descriptions. The used methods are not optimized for computational
efficiency. However, it is worth to mention that calculating the area of overlap between a pie-shaped
FOVScene and polygon shaped query is computationally expensive and might not be practical for
realtime applications. The histogram based ranking introduced in Section-4.4.2 can move most of
the costly computation overhead to offline preprocessing step, leaving the query processing step
simpler and faster. Next, we will present the findings on the accuracy and efficiency of histogram
based ranking.

1There is no direct relation between the number of FOVScenes and the length of video because FOVScene can be

sampled with various intervals.
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Figure 10: Processing time per query vs Number of videos

5.4 Ranking based on Histogram

We built the overlap histograms for all 134 videos as described in Section-4.4. The same 250 queries
were processed using the histograms and the relevance scores were calculated for the returned videos
based on the metrics we proposed in Section-4.4.2. Let RLG

TA, RLG
SA and RLG

D be the rankings
obtained from relevance metrics RG

TA, RG
SA and RG

D respectively.
First, in order to evaluate the accuracy of RLG

TA, RLG
SA, RLG

D, we compared them to precise
rankings RLTA, RLSA, RLD and measure the precision for various cell sizes. Recall that we use
the exact area of overlap polygon for calculating the relevance scores for precise rankings whereas
the histogram approximates the overlap polygon with grid cells. Therefore, we use rank lists RLTA,
RLSA and RLD as baseline for comparison. Fig.-11 shows the results using the MAP metric for
grid cell sizes varying from 25m by 25m to 200m by 200m. Note that the size of query range was
300m by 300m. MAP Results were averaged across all queries in the test. The results showed that
the precision for all three histogram based rankings decreases linearly as the cell size gets larger. It
is expected because a larger cell size means a coarser representation of overlapping. However, the
degradation of precision was insignificant (especially considering the performance gain explained
later) when the cell size becomes small and N becomes large. For example, when the cell size is
smaller than 100m by 100m and N is greater than two, MAP becomes greater than 0.9 in Fig.-11(b).
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Figure 11: MAP at N for (a) RLG
TA, (b) RLG

SA and (c) RLG
D for varying cell sizes

Next, we measured the query processing time of the histogram based ranking and compared
it with those of the precise rankings. Fig.-12 shows the processing times per query with respect
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to the number of videos for both histogram based and RTA when the cell size was [put the cell
size used]. Obviously, the histogram ranking demonstrated a high superiority to RTA. This is
because most of costly overlap computations are performed while the histogram is being built as a
pre-processing step (e.g., when the video is first uploaded to system). The histograms of all videos
are constructed just once and all queries can share them. The result is a short query processing
time. Foe example, the average query processing time was around just 5% of that of RTA as shown
in Fig.-12. Similar results were obtained for other rankings schemes. Again our main goal in this
work is not to provide contributions in efficient querying and storage of FOVScenes. Although the
histogram based ranking achieves a greatly better performance, there can still be open ways of
optimizations such as adopting a well studied index structure.

We already showed that the accuracy of the histogram ranking is highly dependent on the cell
size. The smaller the grid cell size the better estimation histogram achieves. However, time to build
the histogram increases as cell size gets smaller. We investigated the tradeoff between the precision
of ranking and computational cost of building histograms while varying cell sizes. efficiency. CPU
processing times to build histograms were recorded as seconds. Fig.-13 shows the change in both
precision and CPU time for varying cell sizes for RG

TA. [Is this time to build 134 histograms? or
ONe?] As the cell size increases, the precision linearly decreases while CPU time exponentially
decreases. When cell size exceeds 75mx75m, the CPU time decreases little while the precision
continues to drop steadily. Thus, in our experiments, the cell size between 50mx50m and 75mx75m
provides a good tradeoff between the accuracy and build overhead of histograms.
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Figure 12: Comparison of precise and histogram based query processing

One important and unique advantage of histogram is to describe both the extend and density
of overlap between video FOVScenes and the query region. By analyzing the overlap distribution
in histogram, it is possible for users to further understand results. Also it can be quite useful in
interactive video search where the overlap density through the query region is used to guide the user
to further drill down to more specific queries. For example, a visualization of the histogram data
similar to Fig.-8 can be provided to the user for the top ranked videos so that user can interactively
customize the query and easily access the information he/she is looking for. We plan to elaborate
on histogram data analysis as part of our future work.

[Sakire, the following paragraph is not very clear. I know the intention to provide a comparison
on exact ranks. But the table does not look good. O notation is confusing. We used O as overlap.
Moreover, it is not complete. What if two rank lists have different number of videos?]

Finally, we look at the differences between the rank-orders of videos in histogram based rankings
(RLG

TA, RLG
SA, RLG

D) and original rankings (RLTA, RLSA, RLD). First, we extract the rank-order
of each individual video both in RLG

TA and RLTA, and for each query we compute the mean absolute
difference between the rank-orders of all videos in the rank list for that query. We repeate the same
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Figure 13: Evaluation of computational time and precision with respect to grid cell size

Average rank-order Cell Size Cell Size Cell Size Cell Size Cell Size
difference 25mx25m50mx50m100mx100m150mx150m200mx200m

RLG
TA

1
|Q|

|Q|
∑

q=1
Avg

(∣

∣O(RLTA(q), i) − O(RLG
TA(q), i)

∣

∣

)

0.2243 0.3191 0.7508 0.9662 1.1973

RLG
SA

1
|Q|

|Q|
∑

q=1
Avg

(∣

∣O(RLSA(q), i) − O(RLG
SA(q), i)

∣

∣

)

0.2345 0.4069 0.7655 0.9808 1.1116

RLG
D

1
|Q|

|Q|
∑

q=1
Avg

(∣

∣O(RLD(q), i) − O(RLG
D(q), i)

∣

∣

)

0.4378 0.7822 1.0366 1.3411 1.5415

|Q| : number of queries in dataset, Avg : Average, O: Order function

Table 5: Comparison of rank orders RLG
TA, RLG

SA, RLG
D with RLTA, RLSA, RLD

for the rank lists RLG
SA vs. RLSA and RLG

D vs. RLD. Results are reported in Table-5. When grid
cell size is small the mean order difference is as low as 0.2. Even for large cell sizes the mean order
difference is around 1.2 which implies that on average each video is displaced ±1 position in rank
list. Therefore, the histogram rankings not only ensure high precision but also guarantee accurate
rank order.

6 Discussion

Talk about other meta-data associated with videos that can be used to improve ranking.

• (i) Average angular distance (or separation) between the overlap region and direction vector
as observed from the camera location.

• (ii) Ground Sample Distance (GSD) between the overlap area and camera location. GSD
refers to the distance on the ground represented by each pixel in the x and y components,
expressed in ground units. For example, if an orthophoto has a 1.0 m GSD, each pixel
represents a ground area measuring 1 m x 1 m.

Mention that the histogram based approach gives clues about how heavily does a video show
certain parts of the query region. (i.e. query region borders, center or corners). Discuss an interac-
tive interface where user can visually see how the FOVscenes of a video intersects with the query
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region and run custom queries.

Our contributions in this paper have been threefold. First, we introduced a methodology for
automatic annotation of video clips with a collection of meta-data such as camera location, viewing
direction, field-of-view, etc. Such meta-data can provide a comprehensive model to describe the
scene a camera captures. We proposed a viewable scene model that strikes a balance between the
analytical complexity and the practical applicability of the scene description to enable effective and
efficient search of videos. Second, we described our implemented prototype which demonstrates the
feasibility of acquiring, storing, searching and retrieving meta-data enhanced georeferenced video
based on the proposed viewable scene model. We collected a sufficiently large set of georeferenced
video data using our prototype system. Finally, we demonstrated the benefits of using our approach
in accurately retrieving the relevant video segments for a given query. We plan to extend our work
in several directions:

(i) In our initial work we used a simple relational database schema to store camera viewable
scenes. We also mentioned some alternative spatio-temporal structures that can be used to index the
area that a camera viewable scene covers. However, we argue that current work in spatio-temporal
indexing can not fully optimize the search of a dynamically changing viewable scene. Therefore,
there is a strong need for a better index structure that would specifically target georeferenced
annotations of video data.

(ii) In our study we only show examples for simple spatial range queries. However, the proposed
viewable scene model that includes the camera view direction and camera location provides a rich
information base to answer more complex geospatial queries. Similarly, when query results are
presented to a user, the resulting video segments can be ranked based on how relevant they are to
the query requirements and user interests. In our initial work, we show how the search accuracy
can be improved even for simple range queries using our viewable scene model. We will elaborate
on video ranking in our future work.

(iii) There are several additional factors that influence the effective viewable scene in a video,
such as occlusions, visibility depth, resolution, etc. The proposed viewable scene model has to be
extended and improved to account for these factors. Occlusions have been well studied in computer
graphics research. We plan to incorporate an existing occlusion determination algorithm into our
model.

(iv) To enable video search on a larger scale, a standard format for georeferenced video annota-
tions must be established and issues for enabling automated integration with other providers’ data
have to be investigated.

7 Conclusion
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