
Retransmission-based error control for scalable
streaming media systems

Roger Zimmermann
Kun Fu

Frank Liao
University of Southern California
Integrated Media Systems Center

Los Angeles, California, USA 90089-2561
E-mail: kunfu@usc.edu

Abstract. Large-scale continuous media (CM) system implementa-
tions require scalable servers most likely built from clusters of stor-
age nodes. Across such nodes, random data placement is an attrac-
tive alternative to the traditional round-robin striping. One benefit of
random placement is that additional nodes can be added with low
data-redistribution overhead such that the system remains load bal-
anced. One of the challenges in this environment is the implemen-
tation of a retransmission-based error control (RBEC) technique.
Because data is randomly placed, a client may not know which
server node to ask for a lost packet retransmission. We design and
implement three RBEC techniques that utilize the benefits of ran-
dom data placement in a cluster server environment while enabling
a client to efficiently identify the correct server node for lost packet
requests. We implement and evaluate our techniques with a one-,
two-, four-, and eight-way server cluster and across local and wide-
area networks. Our results show the feasibility and effectiveness of
our approaches in a real-world environment and also identify one
solution as generally superior to the other two. © 2005 SPIE and
IS&T. [DOI: 10.1117/1.1877524]

This paper is a revision of a paper presented at the SPIE
conference on Multimedia Computing and Networking
2003, Jan. 2003, Santa Clara, California. The paper pre-
sented there appears in SPIE Proceedings Vol. 5019. See
Reference@33#.

1 Introduction

Continuous media~CM!, such as digital video and audio,
greatly exceed the resource demands of traditional data
types and require massive amounts of space and bandwidth
for their storage and transmission.1 To achieve the high
bandwidth and storage required for multiuser CM servers,
multinode clusters of commodity personal computers offer
an attractive and cost-effective solution to support many
simultaneous display requests. One of the characteristics of
CM streams is that they require data to be delivered from
the server to a client location at a predetermined rate. This
rate may vary over time for streams that have been com-
pressed with a variable bit rate~VBR! media encoder. VBR
streams enhance the rendering quality, however, they gen-

erate bursty traffic on a packet switched network such as
the Internet. This, in turn, can easily lead to packet loss due
to congestion. Such data loss adversely affects compressed
audio and video streams because much of the temporal or
spatial redundancy in the data has already been removed by
the compression algorithm. Furthermore, important data
such as audio/video synchronization information may get
lost, which will introduce artifacts in a stream for longer
than a single frame. As a result, it is imperative that as little
as possible of a stream’s data is lost during the transmission
between the server and a client.

We were faced with all these constraints when we imple-
mented our CM prototype system called Yima2 ~see Fig. 1!.
Yima is based on a multinode cluster architecture. Across
such nodes, random data placement is an attractive alterna-
tive to the traditional round-robin striping. One benefit of
random placement is that server nodes can be added or
removed with minimum data-redistribution overhead such
that the system remains load balanced.3 However, it is a
challenge to implement a retransmission-based error con-
trol technique in such a cluster architecture compared to a
single-node environment because data is randomly placed
and a client may not know which server node to ask for a
lost packet retransmission. In this paper, we detail our de-
sign and implementation of an efficient packet recovery
algorithm that supports multiple server nodes connected to
many client stations. Note that our proposed technique
could be combined with the existing error control tech-
niques, such as forward error correction~FEC! and error
concealment, to support either unicast or multicast applica-
tions.

The rest of the paper is organized as follows. Section 2
surveys the related work in this field. Section 3 then details
the challenges in a multinode server environment and our
approach to the solution. In Sec. 4, we present our exten-
sive experimental results. Finally, Sec. 5 concludes the pa-
per and discusses future research issues.

2 Related Work

There has been considerable work in error recovery
techniques that can be applied to real-time streaming
applications.4,5 As shown in Fig. 2, these techniques can be

Paper 03120 received September 10, 2003; revised manuscript received March 11,
2004; accepted for publication May 25, 2004.
1017-9909/2005/$22.00 © 2005 SPIE and IS&T.

Journal of Electronic Imaging 14(1), 000 (Jan–Mar 2005)

000-1Journal of Electronic Imaging Jan–Mar 2005/Vol. 14(1)

divided into three groups: receiver-based recovery, sender-
based recovery, and hybrid error recovery.6 Receiver-based
recovery is also known as error concealment techniques,
which rely on the receiver to produce a replacement for the
original, lost packet.7–9 Sender-based recovery requires the
participation of the sender and can be further categorized
into three groups: retransmission techniques, interleaving
techniques, and FEC technique.10 Here, we review the re-
lated work on retransmission techniques.11–17 A detailed
discussion on the other two techniques can be found
elsewhere.4,5

Retransmission techniques can be distinguished based
on their applications: reliable unicast support12–15 and reli-
able multicast support.16,17 For reliable multicast support,
Floyd et al.16 proposed a reliable multicast scheme based
on retransmission called scalable reliable multicast~SRM!.
Carle and Biersack4 provided an overview of existing
transport-layer error control techniques and discussed their
suitability for use in Internet protocol~IP!-based networks.
Perkinset al.5 surveyed packet loss recovery techniques for
streaming audio applications operating with IP multicast.
Finally, Nonnenmacheret al.17 investigated how FEC can
be combined with retransmission to achieve SRM transmis-
sions.

For reliable unicast support, previous work has mostly
concentrated on analyzing the viability and effectiveness of
retransmission-based error control schemes for continuous
media applications.12–15 Marasli et al.12 compared the reli-
ability and delay of sender-based and receiver-based loss
detection. Papadopoulos and Parulkar18 presented a retrans-
mission scheme employing gap-based loss detection. How-
ever, their scheme is limited to a single-sender setup as it
employs a global sequence number for loss detection.
Feamster and Balakrishnan15 proposed a hybrid packet loss
recovery technique that leverages the characteristics of
MPEG-4 to selectively retransmit only the most important
data if retransmission is possible, otherwise, they rely on
error concealment at the receiver.

To our knowledge there has been no proposal so far for
retransmission-based error control in an environment where
the data is randomly distributed across multiple server
nodes. Random data placement enables scale up of the
number of nodes in the server cluster with low data-
redistribution overhead. However, because of random
placement of the data, when a packet is lost, the client
cannot determine the correct server node to which it should
send a retransmission request~or NACK! only on the basis
of the global sequence number as proposed in all the pre-
vious work.

3 Approach

For large-scale client-server applications the aggregation of
multiple-server machines into a cluster is essential to
achieve high performance and scalability. We will first out-
line our assumed system platform and then describe the
challenges and our proposed solution in detail.

3.1 System Architecture

Figure 1 shows the overall system architecture of Yima.
Our implementation emphasizes the use of low-cost, off-
the-shelf, commodity hardware components for the com-
plete end-to-end system. In our prototype implementation,
the server consists of a eight-way cluster of rack-mountable
Dell PowerEdge 1550 Pentium III 866 MHz PCs with 256
Mbytes of memory running Red Hat Linux 7.0. The media

Fig. 1 Multinode Yima continuous media server architecture.

Fig. 2 Classification of error recovery techniques for real-time
streaming applications.

Zimmerman, Fu, and Liao

000-2Journal of Electronic Imaging Jan–Mar 2005/Vol. 14(1)

data is stored on four 18 Gbyte Seagate Cheetah hard disk
drives that are connected to the server nodes via Ultral60
small computer standard interface~SCSI! channels.

The nodes in the cluster communicate with each other
and send the media data via multiple 100 Mbits/s fast Eth-
ernet connections. Each server is attached to a local
Cabletron 6000 switch with a fast Ethernet line. The local
switch is connected to both a wide-area network~WAN!
backbone~to serve distant clients! and a local-area network
~LAN ! environment with local clients. Choosing an IP-
based network keeps the per-port equipment cost low and is
immediately compatible with the public Internet.

The clients are again based on the commodity PC plat-
form. The Yima client software~Yima Presentation Player!
runs on either Red Hat Linux or Microsoft Windows. It is
structured into several components:

1. The network thread manages both the control and
data connections between the servers and the client.
The control connection is based on the real-time
streaming protocol@RTSP, transmission control pro-
tocol ~TCP!-based# protocol while the data transmis-
sion is carried out via the real-time transport protocol
@RTP, used datagram protocol~UDP!-based# proto-
col.

2. The user interface thread enables user input to be
processed such as pause and resume commands.

3. The playback thread retrieves media data that has
been stored in the playback circular buffer by the
network thread, decodes~i.e., decompresses! it, and
renders the resulting data via the appropriate output
device~e.g., the sound card for audio or the graphics
card for video!.

Within this modular architecture we have implemented
multiple software and hardware decoders to support various
media types. Table 1 lists the different media types that
Yima currently recognizes. Our design goal was to not only
support the standard MPEG-1, MPEG-2, and MPEG-4 me-
dia types at various data rates@i.e., starting from 600 Kb/s
for MPEG-4 up to 40 Mb/s for the MPEG-2 high-definition
TV ~HDTV! format, the standard for which is defined
by the Advanced Television Systems Committee, ww-
w.atsc.org#, but also to enable both constant bit rate~CBR!
and VBR transmissions.

3.2 Server Multinode Design

An important component of delivering isochronous multi-
media over IP networks to end-users and applications is the
careful design of a multimedia storage server. The task of
such a server is twofold:~1! it must efficiently store the
data and~2! it must schedule the retrieval and delivery of
the data precisely before it is transmitted over the network.
Recall that our server cluster architecture is designed to
harness the resources of many nodes and many disk drives
per node concurrently. We start by describing the server
implementation and then elaborate on the challenges for the
media data transmission components.

Because of their high performance and moderate cost,
magnetic disk drives have become very popular as storage
devices for CM servers. A single high-end disk, such as the
Seagate Cheetah X15, can sustain an average transfer rate
of more than 30 Mbytes/s~e.g., close to 60 4-Mbits/s
streams, under ideal conditions!. If—for a large-scale
server—a higher bandwidth or more storage space are re-
quired than a single disk can deliver, then disk drives are
commonly combined into disk arrays.19 For load-balancing
purposes without requiring data replication a multimedia
object X is commonly striped into blocks, e.g.,
X0 ,X1 ,...,Xn21 across an array.20,21

Both the display time of a block and its transfer time
from the disk are a function of the display requirements of
an object and the transfer rate of the disk, respectively. A
multimedia object may either require a CBR or a VBR for
a smooth display. VBR encoding generally results in a su-
perior visual quality as compared with CBR for the same
object size, because bits can be allocated to high-
complexity scenes rather than being spread out evenly.
However, the bursty nature of VBR media imposes addi-
tional challenges for the data scheduling and transmission
mechanisms. A CM server should be designed to handle
both types of media. Many of today’s popular compression
algorithms, e.g., MPEG-4, can produce VBR streams.

There are two basic techniques to assign the data blocks
to the magnetic disk drives that form the storage system: in
a round-robin sequence22 or in a random manner.23–25 Tra-
ditionally, the round-robin placement utilizes a cycle-based
approach to scheduling of resources to guarantee a continu-
ous display, while the random placement utilizes a

Table 1 Yima client media type support. All clients are currently implemented on standard Pentium III
PC platforms but could also be ported to digital set-top boxes.

Parameters Client Media Type Support

Media type DivX;-) MPEG-4 MPEG-21DD MPEG-2 HD MPEG-1 & 2

Decoder Software Creative Dxr2 DVD Vela Research Cinecast HD Vela Research Cinecast

Channels 1 video12 audio 1 video15.1 audio 1 video116 audio 4 video18 audio

Operating system (OS) Linux (RH 7.x) Linux (RH 7.x) Linux (RH 7.x) Windows NT 4.0

Min. CPU speed 500 MHz 300 MHz 750 MHz 400 MHz

Video resolution 7203480 7203480 192031080i 43(7203480)

Audio encoding MP3 Dolby Digital AC-3 Uncompressed linear PCMa MPEG-1 and 2

Delivery rate 1 Mbits/s 6 to 8 Mbits/s 40112 Mbits s 435 Mbits/s

aOur remote media immersion (RMI) system implements a 10.2 channel immersive sound system. See http://imsc.usc.edu/rmi

Retransmission-based error control . . .

000-3Journal of Electronic Imaging Jan–Mar 2005/Vol. 14(1)

deadline-driven approach. In general, the round-robin/
cycle-based approach provides high throughput with little
wasted bandwidth for video objects that are retrieved se-
quentially ~e.g., a feature length movie!. Block retrievals
can be scheduled in advance by employing optimized disk
scheduling algorithms~such as elevator26! during each
cycle. Furthermore, the load imposed by a display is dis-
tributed evenly across all disks. However, the initial startup
latency for an object might be large under heavy load be-
cause the disk on which the starting block of the object
resides might be busy for several cycles. The random/
deadline-driven approach, on the other hand, enables short
startup latencies can easily support multimedia applications
with nonsequential data access patterns including VBR
video or audio, and interactive applications such as 3-D
interactive virtual worlds, interactive scientific visualiza-
tions, etc. Interestingly, results show that system perfor-
mance with random data allocation is competitive and
sometimes even outperforms traditional data striping tech-
niques for the workloads for which data striping is designed
to work best; i.e., streams with sequential access patterns
and CBR requirements.25

Additionally, a scalable storage architecture should al-
low for the addition of disks to increase storage capacity
and/or bandwidth. By randomly placing data blocks on
multiple nodes it is possible to move the minimal number
of blocks from an existing storage system to newly added
disk drives.3 For example, increasing a four-disk platform
to five disks requires only 20% of all data blocks to be
moved, whereas with traditional round-robin striping nearly
100% of all data must be relocated.

Due to its superiority in supporting general workloads,
allowing incremental system growth, and providing com-
petitive system performance, we chose random data alloca-
tion for our Yima server architecture.

One disadvantage of random data placement is the ne-
cessity for a large amount of meta-data: the location of each
block Xi must be stored and managed in a centralized re-
pository ~e.g., tuples of the form̂Xi ,disky&). Yima avoids
this overhead by utilizing a pseudo-random block place-
ment. With random number generators, a seed value ini-
tiates a sequence of random numbers. Such a sequence is
pseudo-random because it can be reproduced if the same
seed value is used. By placing blocks in a pseudo-random
fashion, the next block in a sequence of blocks can always
be found using the pseudo-random number generator and
the appropriate seed for that sequence. Hence, Yima needs
to store only the seed for each file object instead of loca-
tions for every block.

3.3 Retransmission-Based Error Control

The Yima cluster architecture takes advantage not only of
the distributed storage resources among the multiple nodes,
but also of the multiple network connections that link all
the nodes together. To avoid traffic bottlenecks, each node
transmits the data blocks that it holds directly to the clients
via the RTP. Hence, each client will receive RTP data pack-
ets from each server node within the cluster. Because RTP
packets are connection-less UDP datagrams they might ar-

rive slightly out of order at the client location. Reordering
can easily be achieved by using a global sequence number
across all packets.

However, an interesting challenge arises when
retransmission-based error control is employed. Recall that
the current Internet infrastructure provides only best-effort
packet delivery and UDP datagrams are not guaranteed to
arrive. Therefore, the transmission of CM streams via RTP/
UDP requires special provisions if the quality of the ren-
dered streams at the receiving side should be acceptable.
One possible solution is the use of FEC. However, FEC
always adds a constant percentage of bandwidth overhead
irrespective of the network condition. As pointed out by
Dempseyet al.,11 if the packet loss rate is very low and
timely retransmission can be performed with a high prob-
ability of success, a retransmission-based error control
~RBEC! approach is an attractive solution since it imposes
little overhead on network resources and can be used in
conjunction with other error control schemes, such as FEC
or error concealment. With Yima we are transmitting some
streams that require in excess of 50 Mbits/s bandwidth, for
example, for our remote media immersion experiments.27,28

Our network environment is very stable and usually only a
small number of packets are lost during transmission.
RBEC has been shown to be an effective solution for CM
applications that employ a playout buffer at the client
side.18

A central question arises when data is randomly stored
across multiple server nodes and RBEC is employed. When
multiple servers deliver packets that are part of a single
stream, and a packet does not arrive, how does the client
know which server node attempted to send it?

In other words, it is not obvious where the client should
send its request for retransmission of the packet. We have
investigated three solutions to this problem. First, the client
broadcasts the retransmission request to all server nodes.
Second, it uses a heuristic as follows. The server node that
successfully transmitted the last packet is a good candidate
for a single, targeted retransmission request. Third, addi-
tional information is introduced such that the correct server
node for the retransmission request can be correctly identi-
fied. Note that the idea of adding extra information to a
RTP/UDP packet to send the client more detailed informa-
tion is not new. However, we believe that the fact that it is
used to identify a specific sender in a cluster has not been
explored in any previous work. One might think of other
variations for retransmissions, however, we chose the pre-
ceding three schemes because of their simplicity~tech-
niques 1 and 2! or their good performance~technique 3!.
One important property that we insisted on being preserved
across all techniques is that the server should be scalable
~i.e., the number of transmission nodes increasable! without
requiring any code upgrades at the client sites. Such client-
server decoupling is crucial for any real-world, large-scale
deployment of video streaming services. It is impractical to
require code updates at each of possibly thousands of client
sites whenever the server capacity is increased. Hence, we
found any technique that requireda priori knowledge of
how data was distributed across the server nodes to be
inadequate.

Zimmerman, Fu, and Liao

000-4Journal of Electronic Imaging Jan–Mar 2005/Vol. 14(1)

3.3.1 Common implementation features

We implemented the three chosen techniques within a com-
mon framework and we outline the shared components
first. Subsequently, we present additional details for each
technique.

A client uses a gap-based detection algorithm to initiate
retransmission requests. A circular playout buffer is used to
accumulate the received RTP packets and a flag array, as
shown in Fig. 3, maintains one flag per global packet se-
quence number~GSN!. Each flag is initially set to a ‘‘not
received’’ status and then updated to ‘‘received’’ once the
corresponding packet has indeed arrived.

In our experiments, our client circular playout buffer
size is 32 Mbytes. Note that the media playout buffer is
also used as the retransmission buffer, which is described in
details in the next paragraph. However, this buffer size
could be smaller and numerous methods have already dis-
cussed how to configure the buffer size with RBEC ap-
proaches. In these proposed methods, buffer size is esti-
mated based on the network delay measurement,29 on some
stochastic assumptions about the network delay,11,30,31 or
both.32 ~Interested readers could refer to these papers for
details.!

Within the circular playout buffer, a sliding window is
implemented. The window itself is partitioned into a num-
ber of segments of sizeQ. In our implementation, the slid-
ing window contains 32 segments, i.e.,Q532 and each
segment contains 32 packets. For every packet, there is a
corresponding flag, i.e., a bit in the flag array. Therefore,
the flag array containsQ33251024 flags~bits!, which
map to the 1024 packets in the sliding window. Inside the
sliding window, there is a threshold that is set to 3/4 of the

window size~i.e., 24 segments!. Note that we empirically
set the window size and threshold values with the goal of
achieving good and stable performance. Finding the opti-
mal values would require the consideration of the round-
trip time ~RTT!, the movie consumption rate, etc., but this
has not been the focus of our work. Whenever the client
receives a packet with a global sequence number beyond
the threshold, the sliding window is advanced forward by
one segment. The last segment ‘‘left behind’’ is then
scanned for gaps in global sequence numbers~i.e., flags
that are in the ‘‘not received’’ state! that indicate lost pack-
ets. For each missing packet a retransmission request is sent
to the server~s!—according to one of the three methods—to
obtain the missing data.

On receipt of a retransmission request, the server iden-
tifies the client via the source IP address of the received
request. The server retransmission module maintains a cir-
cular buffer per client with the lastM previously transmit-
ted packets. Each GSN maps to a particular index in this
buffer. The packet corresponding to the sequence number
of a particular retransmission request is either still present
in the circular buffer, or it has already been replaced by
newer packets. If the packet is found, it is sent to the client.
Otherwise the request is out of range and no further action
is taken.

We implemented this sliding window scheme for several
reasons. First, a sequence number gap at the client side
usually indicates a packet loss. However, in some cases the
packet is just transmitted out of order or delayed due to
some temporary condition in the network. For example,
Fig. 4 shows the amount of reordering observed during five
separate streaming sessions between our server on the East

Fig. 3 Design of the client side sliding window mechanism.

Retransmission-based error control . . .

000-5Journal of Electronic Imaging Jan–Mar 2005/Vol. 14(1)

Coast and a client located in our laboratory at the Univer-
sity of Southern California~USC!. Reordering gaps of one
or two sequence numbers are fairly common, while gaps
longer than about eight are very infrequent on this particu-
lar path.

Issuing retransmission requests for such reordered pack-
ets is obviously unnecessary, and it would waste server
resources as well as network bandwidth. Furthermore, the
client would receive such a packet twice. This suggests that
the client should wait sufficiently long before requesting
retransmissions so that it does not make any premature re-
transmission requests. However, if retransmission requests
are delayed too long, the server may no longer hold a copy
of the requested GSN in its retransmission buffer. A large
number of such dropped requests can potentially make the
retransmission protocol ineffective and have a severe effect
on the playback quality at the client.

Therefore, the correct operation of the described mecha-
nism depends on a useful ratio ofR5M /Q. Intuitively M
5Q should work fine under ideal conditions. Figure 5
shows the total number of out-of-range requests received
by the server and the number of packets received twice by
the client, as a function ofR. Because of the packet round-
trip delay, the number of out-of-range packets drops to zero
for a ratio slightly larger than 1 (R>1.14). At the same
time, the number of duplicates increases forR.1.02 and
remains fairly constant afterward. We conducted all our ex-
periments with this ratio.

The second reason for choosing a sliding window imple-
mentation is as follows. Because the window is advanced
through incoming packets, the pace of retransmission re-
quests automatically follows the incoming packet stream
rate. For a high-bandwidth stream, lost packets are retrans-
mitted more quickly because presumably the data is con-
sumed at a quicker pace. Such an adaptive mechanism is
difficult to achieve with timer-based retransmissions. We
now describe the differences between the three techniques.

3.3.2 Broadcast retransmission requests (BCAST
technique)

With the broadcast approach a packet retransmission re-
quest is sent to all server nodes. Please note that the request
broadcasting in this scenario can be well targeted to include
all the server nodes, but no other computers. From observ-
ing the RTP/UDP packet header source IP address, the cli-
ent can easily establish the complete set of server nodes.
Once a server receives a request it checks whether it holds
the packet, and either ignores the request or performs a
retransmission. A disadvantage of this approach is that it
wastes network bandwidth and increases server load.

3.3.3 Unicast retransmission requests (HEUR and
GLSN techniques)

An alternative, more efficient, and scalable method of send-
ing retransmission requests requires that the unique server
node that holds the missing packet be identified. This could
be accomplished in several ways. For example, the client
could reproduce the pseudo-random number sequence that
was originally used to place the data across multiple server
nodes. This approach has several drawbacks. First, identical
algorithms on both the clients and the servers must be used
at all times. If the server software is upgraded then all
clients must be upgraded immediately too. The logistics of
such an undertaking can be daunting if the clients are dis-
tributed among thousands of end-users. Second, during
scaling operations, the number of server nodes or disk
drives changes and hence new parameters must be propa-
gated to the clients immediately. Otherwise, the server
nodes will be misidentified. Third, if for any reason the
client computation is ahead of or behind the server compu-
tation ~e.g., the total number of packets received does not
match the number of packets sent!, then any future compu-
tations will be wrong. This could potentially happen if the
client has only a limited memory and packets arrive suffi-
ciently out of sequence.

A simple method that decouples the server from the cli-
ent computation is as follows. As a heuristic, the client

Fig. 4 Frequency distribution of packet sequence number reorder-
ing. Gaps of one or two are fairly common, while gaps of more than
eight are unusual.

Fig. 5 Number of out-of-range request at the server side and the
number of packets received twice by the client as a function of the
buffer size ratio on both ends.

Zimmerman, Fu, and Liao

000-6Journal of Electronic Imaging Jan–Mar 2005/Vol. 14(1)

assumes that each lost packet can be retrieved from the
server node that successfully transmitted the last packet
prior to the loss. To accomplish this, the client must keep a
record of the sender node for each packet received. Then,
for each retransmission request, the client retrieves the
server IP of the last, prior packet received, and sends the
retransmission request only to that node. We refer to this
method as HEUR for the rest of this paper. The servers
function identically to the nodes in the BCAST scheme.

The misprediction rate of HEUR is affected by the
packet loss rate, the number of server nodes, and also by
how many or how few packets are sent from each server in
sequence. The more packets are sent from each server in
sequence, the better the performance of HEUR, because
mispredictions occur when packets are lost during the
hand-off between two nodes. In our experiments, server
storage blocks carry between 500 to 2000 packets each. We
investigated the performance of HEUR and document it in
a later section.

If the potential for lost packets is not tolerable, then a
more robust approach is as follows. The client determines
the server node from which a lost RTP packet was intended
to be delivered by detecting gaps in node-specific packet
sequence numbers. We term these local sequence numbers
~LSN! as opposed to the GSN that orders all packets. Al-
though this approach requires packets to contain a node-
specific sequence number along with a GSN, the clients
require very little computation to identify and locate miss-
ing packets. We refer to this addressing approach as global-

local sequence numbers~GLSN! for the remainder of this
paper. We previously proposed this technique,33 but pre-
sented only limited experimental results at the time.

Next, we describe how the local and global sequence
numbers of the GLSN scheme are implemented on both the
server and client sides. Subsequently, we introduce an ana-
lytical analysis of the misdirected retransmission requests
that should be expected with the HEUR technique. Finally,
in Sec. 4 we present an elaborate set of implementation test
results that show the strengths and weaknesses of each
approach.

3.4 GLSN Implementation

Figure 6 illustrates the concept of the local sequence num-
bers with a two-node server. The transmission module at
each server node adds a local sequence number to the RTP
header of each packet. The LSNs are 32-bit wide, i.e., they
wrap around to zero after every set of 232 packets. Further-
more, the LSNs for different client sessions are indepen-
dent.

As a client starts to receive packets, it acquires the num-
ber of server nodes by detecting the number of distinct
source IP addresses~it is straightforward to obtain the cor-
responding IP address of the sender at the receiver by using
system calls, such as ‘‘recvfrom~!’’ on Unix ! when receiv-
ing the IP packets that contain RTP/UDP payloads. Addi-
tionally, the client also maintains an array of bit flags to

Fig. 6 GLSN implementation: the communication between two server nodes and one client, including
the path for retransmission requests.

Retransmission-based error control . . .

000-7Journal of Electronic Imaging Jan–Mar 2005/Vol. 14(1)

keep track of the LSNs received from each node. Hence, on
receipt of a new packet, the client first examines the source
IP address to identify the server node. Then it sets the cor-
responding bit for the received LSN in the flag array for
that node.

Unlike the BCAST and HEUR techniques, the GLSN
client implementation maintains one flag array per server
node. Each flag array uses the previously described sliding
window mechanism and they operate independently from
each other. For our experiments, the total number of flags in
all arrays was kept equal for the three techniques to achieve
a fair comparison.

3.5 Analytical Analysis of HEUR Technique

Any packets lost with either the BCAST or the GLSN tech-
nique are due to the loss characteristics of the network.
However, with the HEUR approach, additional data may be
lost because the client misidentifies the server node being
responsible for the lost packets. This phenomenon occurs
when the first one or more packets of a movie block are
lost. Because of the random assignment of movie blocks to
server nodes, the HEUR technique will incorrectly identify
the previous server as the sender~because previous packets
were sent from there!. In this section, we analytically com-
pute the additional number of packets lost that is to be
expected with HEUR as compared to either BCAST and
GLSN. Table 2 summarizes the analytical terms used in this
manuscript.

Let NR denote the number of retransmission requests
during a movie playback, andNS represents the number of
server nodes. We make the following assumptions. Only
one retransmission attempt is initiated and every packet in-
cluding retransmission request, transmitted and retransmit-
ted packet has the same probability of being lost during

transmission.~Note that this assumption may not be true in
real networks, where the packets are usually lost in bursts.
And the bursty nature is often characterized by the Gilbert
loss model commonly used in network modeling. More de-
tails of the loss modeling are given later in Sec. 4.! The
packet loss probability is denoted asp. Then, letLi denote
the probability of losing thei th packet of each movie block
and Eq.~1! illustrates how to computeLi . ~We assume that
the retransmission requests are always initiated early
enough and the client playout buffer size is big enough
such that the retransmitted packets can be received at the
client in time.!

Li55 S)
j 51

i 21

L j D 3pF S 12
1

NS
D1

1

NS
3p~22p!G1S 12)

j 51

i 21

L j D 3p2~22p! if 1 , i<SB

pS 12
1

NS
D1

1

NS
3p2~22p! if i 51~first packet!.

~1!

For example,L1 , the probability of losing the first
packet of each movie block, can be computed as the com-
bination of two parts:~1! p(121/NS), the probability of
the packet being lost because the client misidentifies a
server node, and~2! 1/NS3p2(22p), the probability of
the packet being lost either because the retransmission re-
quest is lost during retransmission or because the retrans-
mitted packet is lost during retransmission. For the other
packets in a movie block,Li can be obtained similarly.

Now, let Hi represent the probability of losing thei ’ th
RTP packet of each movie block due to the incorrect iden-
tification of a server. Following a similar reasoning as for
Eq. ~1!, we derive Eq.~2! to computeHi .

Hi55 S)
j 51

i 21

L j D 3pS 12
1

NS
D if 1 , i<SB

pS 12
1

NS
D if i 51

. ~2!

Let NTL denote the total number of lost packets during a
movie playback due to HEUR misidentifying the sender,
and NB denotes the movie size in the number of movie
blocks. Accordingly, on average,NB3H1 denotes the num-
ber of first packets in all movie blocks that are lost due to
misidentification of the server node. Similarly,NB3Hi rep-
resents the number ofi ’ th packets in all movie blocks that

Table 2 List of terms used repeatedly in this study and their respec-
tive definitions.

Term Definition

NB Movie Size in number of blocks

SB Block Size in number of RTP packets

NS Number of server nodes

p Probability of losing a packet during transmission

Li Probability of losing the i’th RTP packet of each movie
block

Hi Probability of losing the i’th RTP packet of each movie
block due to HEUR misidentifying the sender

NTL Total number of lost packet during a movie playback
due to HEUR misidentifying the sender

NR Number of retransmission requests generated by
client during a movie playback

Reff Client observed packet loss rate with retransmission

Praw Client observed packet loss rate without
retransmission

Zimmerman, Fu, and Liao

000-8Journal of Electronic Imaging Jan–Mar 2005/Vol. 14(1)

are lost due to server misidentification. Therefore, we can
computeNTL asNB3(i 51

SB Hi . Furthermore, based on Eqs.
~1! and ~2!, NTL can be computed as

NTL5NB3(
i 51

SB

Hi5NB3pS 12
1

NS
D S 11 (

j 51

SB21

)
i 51

j

L i D .

~3!

Note thatNTL quantifies the difference between the HEUR
and the GLSN schemes. As an example, consider a system
with a loss rate ofp50.02221 usingNS54 server nodes. If
a movie consists ofNB51074 blocks ofSB52000 packets
each, then HEUR will loose an additionalNTL'17.89
packets during the 25-min playback of this movie.

Figure 7 shows the additional packet losses caused by
misidentifying the sender using HEUR compared to GLSN
with NB51074 andSB52000. Figure 7~a! shows thatNTL

increases as the number of server nodesNS increases. This
is intuitively understandable because with more server
nodes, the HEUR scheme will more likely misidentify the
server node to which it will send the retransmission request.
Note that the straight line above the curve is the computed
theoretical upper bound ofNTL . Appendix A provides an

analysis of this upper bound onNTL when the number of
server nodes increases. Figure 7~b! shows the trend ofNTL
with respect to the increase of the raw packet loss ratep.
Note thatNTL increases almost linearly as a function ofp.
Intuitively, this is because asp increases, the number of
times that the client needs to decide which server to ask for
retransmissions will also increase.

Figure 8 shows the additional packet losses due to server
misidentification with the HEUR technique as compared
with the GLSN scheme with block sizeSB varying from 50
to 4000 andNS54. Note that the total number of movie
packets corresponds to the size of the movie segment
Twister~see Table 3! we used in our experiments, which is
SB3NB5107432000. Therefore, by increasing the movie
block sizeSB , the number of movie blocksNB decreases.
Clearly, the HEUR scheme is affected by the number of
consecutive packets from the same server contained in each
block of sizeSB . With a larger block sizeSB , the number
of lost packets due to server misidentification is amortized
significantly from more than 700 to less than 10.

The results shown in Fig. 8 imply that the HEUR
scheme can be adopted when large blocks are used with a
streaming server. However, there are several other serious
problems with the HEUR scheme. First, the preceding

Fig. 7 Additional packet losses caused by misidentifying the server
with the HEUR technique (as compared with the GLSN scheme)
with NB51074 and SB52000.

Fig. 8 Additional packet losses due to server misidentification with
the HEUR technique (as compared with the GLSN scheme) with
different block size SB and a fixed total movie packet number SB

3NB and NS54.

Table 3 Parameters used in the experiments.

Parameters Configurations

Test movie Twister MPEG-2 video, AC-3
audio

Average bandwidth 698594 bytes/sec

Length 25 min

Throughput standard deviation 308 283.8

Number of blocks (NB) 1074

Number of RTP packets in a block
(SB)

2000

Number of server nodes (NS) 1, 2, 4, 8

Retransmission-based error control . . .

000-9Journal of Electronic Imaging Jan–Mar 2005/Vol. 14(1)

analysis is based on a simplified assumption that each
packet has the same loss probability, which may not hold
true in real networks. We show in Sec. 4.2.2 that if the
packet losses are very bursty, the HEUR scheme performs
much worse than the GLSN scheme. Second, with an in-
creased disk block size, the required buffer size to hold the
disk blocks on the server also increases, hence more
memory is required. Furthermore, the larger block buffer
size also increases the startup latency at the client.22,25

4 Performance Evaluation

We implemented and integrated all three of our proposed
retransmission-based techniques into our distributed con-
tinuous media architecture called Yima, which serves as the
platform for assessing the effectiveness of our algorithms.
Figure 1 illustrates the overall diagram and the components
of our experimental setup. The algorithms are implemented
as plug-in modules in both the server and client software.
Note that only one retransmission attempt is implemented
in the current version of the three techniques, to avoid stall-
ing the real-time media traffic. In all experiments, the serv-
ers stream the MPEG-2 movieTwister to a client. The list
of common experimental parameters and their values is
shown in Table 3.

We first evaluate the performance of the GLSN tech-
nique in a series of cluster scale-up experiments, and then
we compare it with the two other proposed techniques
based on the broadcast~BCAST! or heuristic~HEUR! mod-
els. In the following sections, we report the detailed results.

4.1 Server Scale Up Experiments

We conducted the experiments with two different types of
networks:~1! a LAN where the server and client are di-
rectly connected through a fast-Ethernet switch and the
RTT is usually less than 1 ms, and~2! a cross-continental
link via a shared Internet link, where the RTT is around 63
ms. Table 4 shows the data route from one of the servers at
USC to our client machine located at the University of
Maryland.

4.1.1 LAN experiments

In our campus LAN environment, we experience very little
packet loss. To evaluate our techniques and to emulate net-
work losses, we implemented a loss module for each server.
Whenever a server node must send a packet, the loss mod-
ule decides whether or not to discard the packet. We used a
two-state Markov model, also known as the Gilbert model34

to emulate the bursty packet loss behavior of a long-haul
network. This model is characterized by two conditional
probabilitiesp andq, as shown in Fig. 9. The mean arrival
and loss probabilitiesParrival andPloss can be computed as

Table 4 End-to-end route from one Yima server node (located at USC campus, Los Angeles) to the
Yima client (University of Maryland).

Hop Number Router RTT (ms)

1 imsc-gw (128.125.163.254) 0.322

2 sal-gw-43 (128.125.3.252) 0.343

3 c2-12008 (128.125.251.65) 0.284

4 ISI-USC.POS.calren2.net (198.32.248.26) 0.750

5 UCLA-ISI.POS.calren2.net (198.32.248.30) 1.348

6 dc-lax-12410a-c2-ucla-pos.cenic.net (137.164.22.56) 1.988

7 hpr-lax-12410-dc.lax-12410a-ge.cenic.net
(137.164.22.13)

1.939

8 abilene-LA-hpr-lax-gsr1-10ge.cenic.net
(137.164.25.3)

1.897

9 hstnng-losang.abilene.ucaid.edu (198.32.8.22) 33.404

10 atlang-hstnng.abilene.ucaid.edu (198.32.8.34) 46.576

11 atla-atlang.abilene.ucaid.edu (198.32.11.109) 46.624

12 washng-atla.abilene.ucaid.edu (198.32.8.66) 61.843

13 dcne-abilene-oc48.maxgigapop.net (206.196.177.1) 61.811

14 clpk-so3 1-0.maxgigapop.net (206.196.178.46) 62.230

15 206.196.177.126 (206.196.177.126) 62.155

16 Gi3-5.ptx-core-r1.net.umd.edu (129.2.0.233) 62.436

17 Gi5-8.css-core-r1.net.umd.edu (128.8.0.85) 62.369

18 Po1.css-priv-r1.net.umd.edu (128.8.0.14) 62.715

19 128.8.6.139 (128.8.6.139) 62.512

20 imsc.cs.umd.edu (128.8.126.6) 62.869

Fig. 9 Gilbert loss model.

Zimmerman, Fu, and Liao

000-10Journal of Electronic Imaging Jan–Mar 2005/Vol. 14(1)

Parrival5
q

p1q
, Ploss5

p

p1q
. ~4!

In all our experiments, we setp50.0192 andq50.8454 as
suggested in Ref. 35. Hence, the resulting mean loss prob-
ability Ploss is approximately 2.221%.

Figure 10 shows the client observed packet loss rate
~termed effective loss! when using the GLSN technique as
well as the observed packet loss rate before retransmission
recoveries~termed raw loss! with different server configu-
rations (NS51, 2, 4, and 8 nodes in a LAN environment!.
Figure 10~a! shows the raw packet loss rate and effective
loss rate measured at the client and generated by the loss
model during the streaming of the movieTwister in a
single-server environment. The packet loss rate decreased
from 2.2198 to 0.0461%. Similar results are shown in Figs.
10~b!, 10~c!, and 10~d!, which present the effective loss
during 1400 s of the same movie with an increasing number
of server nodes. The average packet loss rate declines dra-
matically from 2.2168 to 0.0481% forNS52, from 2.2185
to 0.0512% forNS54, and from 2.2187 to 0.049% forNS

58.
Note that the average raw packet loss rates are always

approximately 2.22%, which matches well with thePloss

predicted by the Gilbert model. Specifically, withp denot-
ing the raw RTP packet loss rate andq denoting the retrans-
mission request loss rate, while considering only one re-
transmission attempt, then the effective loss ratePeff can be
computed as

Peff5p3$q1@~12p!3p#%. ~5!

If we assumep5q, then Eq.~5! can be simplified as

Peff5p23~22p!. ~6!

In our LAN experiments, we implemented a loss model
for traffic from the server to the client, but not in the other
direction, and thereforep'2.221% andq50. Based on
Eq. ~6!, Peff is expected to be approximately 0.04933%,
which matches well with our LAN experimental results.

Figure 11 shows the RTP packet GSNs at the client side
between 100 and 200 s of the movie playback time for
one-, two-, four-, and eight-node server configurations. Dif-
ferent colors are used to distinguish the RTP packets sent
from different server nodes; for example, there are eight
colors in Fig. 11~d!. Note that each packet uses the RTP
standard 16-bit GSN space, so sequence numbers wrap af-

Fig. 10 Effective loss versus raw loss with different numbers of servers in a LAN environment.

Retransmission-based error control . . .

000-11Journal of Electronic Imaging Jan–Mar 2005/Vol. 14(1)

ter 65,536 packets. In all cases, there are three wraps during
the first 100 s. In Fig. 11~a!, four pairs of lines are shown.
The first line in each pair represents packets that are suc-
cessfully transmitted initially, while the second line shows
the successfully retransmitted packets. Note that in Figs.
11~b!, 11~c!, and 11~d!, there are multiple lines of retrans-
mitted packets. This is because in our GLSN client imple-
mentation, the sliding window for each server is operated
independently and hence retransmission requests are trig-
gered at different times. Figure 11 shows that the number of
retransmitted packets is much less than the volume of ini-
tially sent packets. Recall that in our current implementa-
tion, GLSN attempts only one retransmission request.

4.1.2 WAN experiments

In our WAN experiments, we performed the same set of
experiments as reported for the LAN environment. The
servers remained unchanged in our USC campus labora-
tory, while the client was now located across the continen-
tal United States in Maryland. The network path of Table 4
details this cross-country Internet link. All data packets
traveled through this shared Internet link and therefore
some packet loss occurred naturally. The natural loss rate
we measured between servers and the client~the corre-
sponding link is shown in Table 4! was quite low at the

time of our experiments. Hence, to better evaluate the per-
formance of our technique, we conducted tests with an
added loss model, which is the same as we used in Sec.
4.1.1. However, other links may have much higher packet
loss rates, as described in Sec. 4.2.

Similar to Fig. 10, Fig. 12 shows the raw loss and the
corresponding effective loss using GLSN, withNS51, 2, 4,
and 8 server nodes. The average raw loss rate decreased
from 2.2151 to 0.0692% forNS51, from 2.2159 to
0.0662% forNS52, from 2.2221 to 0.0639% forNS54,
and from 2.2214 to 0.0655% forNS58. The total average
packet loss rate was still approximately 2.2%, which is sur-
prisingly similar to thePlossgenerated by the Gilbert model
we used in our LAN experiments. However, compared with
Fig. 10~a!, the WAN results show a bit more burstyness
than those generated by only the loss model. We attribute
this to the impact of the nature of packet losses in the real
network. The effective loss rate is between 0.06 and 0.07%,
which is a slightly higher that of the LAN experiments.
This is because in the LAN experiments, the Gilbert loss
model is implemented only on the server side, and hence
the client retransmission requests are not subject to losses.
However, in the real network, natural losses happen in both
directions. If we consider the raw packet loss ratep and the
retransmission request loss rateq to be the same—that is,

Fig. 11 Client observed RTP packet GSNs for NS51, 2, 4, and 8 nodes in a LAN environment.

Zimmerman, Fu, and Liao

000-12Journal of Electronic Imaging Jan–Mar 2005/Vol. 14(1)

p5q'2.221% based on Eq.~6!—then we obtainPeff

'0.0976%. Since the WAN experimental results are less
than 0.0976%, we infer that the loss rate for retransmission
requests is less than 2.221%. Finally, Fig. 13 shows results
similar to Fig. 11 for the WAN environment.

4.1.3 Summary of the scale up experiments

Table 5 summarizes the results for our node scale up ex-
periments for both LAN and WAN environments. Our ex-
perimental results and our detailed discussion in previous
sections confirm that the GLSN scheme performs consis-
tently well as the number of server node increases in both
LAN and WAN environments.

4.2 Comparison of Three Techniques

In this section we compare the performance of the GLSN
approach with the BCAST and HEUR techniques that we
also implemented in our servers. We conducted experi-
ments with three different networks links:~1! a LAN envi-
ronment with an RTT delay of less than 1 ms;~2! a cross-
continental shared Internet link to the Georgia Institute of
Technology in Atlanta, where the RTT is around 54 ms; and
~3! another cross-continental link to the New World Sym-
phony in Miami Beach~with an RTT of approximately 73
ms!. Table 6 shows the data route from one of the servers at

USC to our client machine at GeorgiaTech, and Table 7
shows the data route to our client machine at the New
World Symphony.

Note that in all the experiments we use a four-node
server configuration, that is,NS54. Our comparisons are
based on the following two metrics:~1! the effectiveness in
improving the raw packet loss ratePraw to the a better
effective loss ratePeff , and~2! the overhead as produced by
the number of retransmission requestsNR .

4.2.1 LAN experiments

Similar to the node scale up LAN experiments, we used the
same loss model when we compared the three techniques in
the LAN environment. Therefore, the average raw loss rate
Praw is expected to be 2.221%. Figure 14 shows the client
observed effective packet loss ratePeff and raw packet loss
rate Praw with the three techniques, BCAST, GLSN, and
HEUR. The results are quite close and on average the
packet loss rate drops fromPraw52.2188% to Peff

50.0518% for the BCAST scheme, fromPraw52.2207%
to Peff50.0505% for the GLSN scheme, and fromPraw

52.2184% toPeff50.0536% for the HEUR scheme.
Figure 15 shows the RTP packet GSNs observed at the

client between 100 and 200 s of the movie. Figures 15~a!

Fig. 12 Effective loss versus raw loss with different number of servers in a WAN environment.

Retransmission-based error control . . .

000-13Journal of Electronic Imaging Jan–Mar 2005/Vol. 14(1)

and 15~c!, which illustrate the BCAST and HEUR tech-
niques, look quite similar. Both of them show three pairs of
lines, one for the first-time successfully transmitted RTP
packets, and the other for the retransmitted RTP packets.
However, the GLSN approach in Fig. 15~b! shows multiple
doted lines for the retransmitted packets. This is because in
our implementation, there is only one sliding window for
the BCAST and the HEUR technique, while there are four
independent sliding windows for GLSN withNS54 server
nodes.

Figure 16 shows the number of retransmission requests
that are sent out every second at the client between 100 and
1100 s of the movie. As expected, the GLSN and HEUR
results are quite close while the number of retransmission
requests for BCAST is almost four times higher. This is
also be confirmed byNR , the total number retransmission
requests during the 25 min movie playback. For GLSN,
NR544,213, for HEUR,NR544,152, and for BCAST,NR

5176,712.

Fig. 13 Client-observed RTP packet GSNs for NS51, 2, 4, and 8 nodes in a WAN environment.

Table 5 Summary of measurements results for node scale up experiments for different network envi-
ronments.

Network Type

Number of Server Nodes

NS51 NS52 NS54 NS58

LAN Raw loss1 2.2198% 2.2168% 2.2185% 2.2187%

Eff. loss2 0.0461% 0.0481% 0.0512% 0.049%

WAN (Maryland) Raw loss1 2.2151% 2.2159% 2.2221% 2.2214%

Eff. loss2 0.0692% 0.0662% 0.0639% 0.0655%

1The average packet loss rate observed at the client without retransmission.
2The average packet loss rate observed at the client with retransmission.

Zimmerman, Fu, and Liao

000-14Journal of Electronic Imaging Jan–Mar 2005/Vol. 14(1)

Based on the results of these LAN experiments, we
make the following observations:

1. Overall, the GLSN technique performs best in terms
of both the improvement in the packet loss rate and
the minimal additional retransmission overhead.

2. The BCAST technique performs similarly well as
GLSN in terms of the improvement in the packet loss
rate, however, the retransmission overhead is higher.
In our LAN environment there is enough bandwidth
and resources available, thus, the additional retrans-
mission request overhead only has little impact on the
performance of the system.

3. The HEUR technique also shows fairly good perfor-
mance in terms of the improvement in the packet loss
rate and the retransmission overhead. When consid-
ering the packet loss rate, it degrades only approxi-
mately 0.0031% compared with GLSN~about 67
RTP packets! during the 25 min movie playback, due
to misidentifying packet senders. Based on our analy-
sis in Sec. 3.5, and assuming that each packet has an
equal loss probabilityp52.221%, we expectNTL

'17.89 lost packets. Our measurement result is a
somewhat higher than the computed result because
the loss model that we employed emulates the busty

Table 6 End-to-end route from one Yima server node (located at USC campus, Los Angeles) to the
Yima client (Georgia Institute Technology, Atlanta, Georgia).

Hop Number Router RTT (ms)

1 imsc-gw (128.125.163.254) 0.248

2 sal-gw-43 (128.125.3.252) 0.264

3 c2-12008 (128.125.251.65) 0.220

4 ISI-USC.POS.calren2.net (198.32.248.26) 0.843

5 UCLA-ISI.POS.calren2.net (198.32.248.30) 1.302

6 c2-ucla-gsr-dc-lax-12008-atm.cenic.net
(137.164.22.5)

2.161

7 hpr-lax-12410-dc-lax-12410a-ge.cenic.net
(137.164.22.13)

2.356

8 abilene-LA-hpr-lax-gsrl-10ge.cenic.net (137.164.25.3) 2.252

9 hstnng-losang.abilene.ucaid.edu (198.32.8.22) 33.796

10 atla-hstnng.abilene.ucaid.edu (198.32.8.34) 52.873

11 sox-rtr.abilene.sox.net (199.77.193.9) 52.938

12 gw2-sox.sox.gatech.edu (199.77.194.6) 53.606

13 130.207.251.6 (130.207.251.6) 54.614

14 ucs-imse.cc.gt.atl.ga.us (199.77.128.196) 53.959

Table 7 End-to-end route from one Yima server node (located at USC campus, Los Angeles) to the
Yima client (New World Symphony, Miami, Florida).

Hop Number Router RTT (ms)

1 imsc-gw (128.125.163.254) 0.264

2 sal-gw-43 (128.125.3.252) 0.306

3 c2-12008 (128.125.251.65) 0.182

4 ISI-USC.POS.calren2.net (198.32.248.26) 0.705

5 UCLA-ISI.POS.calren2.net (198.32.248.30) 1.283

6 c2-ucla-gsr-dc.lax-12008-atm.cenic.net
(137.164.22.5)

2.142

7 hpr-lax-12410-dc-lax-12410a-ge.cenic.net
(137.164.22.13)

2.476

8 abilene-LA-hpr-lax-gsrl-10ge.cenic.net (137.164.25.3) 2.267

9 hstnng-losang.abilene.ucaid.edu (198.32.8.22) 34.202

10 atla-hstnng.abilene.ucaid.edu (198.32.8.34) 52.874

11 abilene-oc3.ampath.net (198.32.252.253) 71.078

12 juniper-to-gsr.ampath.net (198.32.252.194) 71.508

13 nws.ampath.net (198.32.252.202) 72.320

14 user111.209.42.43.dsli.com (209.42.43.111) 72.360

Retransmission-based error control . . .

000-15Journal of Electronic Imaging Jan–Mar 2005/Vol. 14(1)

nature of real network losses, which means that each
packet does not have an equal loss probability. How-
ever, since the burstyness is not very high, the HEUR
scheme still works reasonably well in this LAN en-
vironment.

4.2.2 WAN experiments

In our WAN experiments, we performed the same set of
experiments as reported for the LAN environment. The

servers remained unchanged in our USC campus labora-
tory, while the client was now located across the continen-
tal United States in two different locations, one at the Geor-
gia Institute Technology, Atlanta, and the other at the New
World Symphony, Miami Beach, Florida. The network
paths are shown in Tables 6 and 7. These are regular, shared
Internet links, and therefore some packet losses occurred
naturally.

Fig. 14 Effective loss and raw loss for the three techniques with
four server nodes in a LAN environment.

Fig. 15 Client observed RTP packet GSNs for the three techniques
with four server nodes in a LAN environment.

Zimmerman, Fu, and Liao

000-16Journal of Electronic Imaging Jan–Mar 2005/Vol. 14(1)

Figure 17 shows the client observed raw packet loss rate
Praw and effective packet loss ratePeff between 100 and
1100 s for the BCAST, GLSN, and HEUR techniques under
two different WAN environments, i.e., to Atlanta and Mi-
ami Beach. For both the Atlanta and Miami Beach links,
the average packet loss rate is higher than the average loss
rate generated by the Gilbert loss model, which is used in

our previous experiments. From Atlanta, the GLSN scheme
improves the packet loss rate from 3.7981 to 0.8844%, the
BCAST scheme improves the rate from 3.7072 to 2.2158%,
and the HEUR scheme improves the rate from 3.5282 to
3.0495%. Among these three techniques, our GLSN ap-
proach outperforms the other two. Similar results are ob-
tained from Miami Beach, where GLSN reduced the packet
loss rate from 3.6905 to 0.0352%, BCAST reduced the loss
rate from 3.7531 to 1.7116%, and HEUR reduced the rate
from 4.0185 to 2.8829%. One important observation is that
in WAN environments it is very common to see very bursty
loss characteristics. Throughout all our tests, the client was
occasionally experiencing very long loss bursts. We believe
that both the HEUR and BCAST techniques do not work
well in such a bursty environment. Recall that we chose a
movie block size ofSB52000 packets on the servers. How-
ever, we experienced burst losses much longer than that,
sometimes more than 6000 consecutive packets were lost.
Hence, the HEUR technique would send retransmission re-
quests to the incorrect server for extended periods of time.
For the BCAST scheme, the huge burst losses that hap-
pened during a very short interval resulted in a high number
of retransmission requests during the same period of time,
which would lead to a much higher loss rate for these re-
transmission requests as compared with the GLSN ap-
proach.

Figure 18 illustrates the client observed RTP packet
GSNs for all three techniques between 100 and 1100 s of
movie playback time. Most of the time there are no packet
losses, so there is a single line that wraps periodically.
Sometimes, however, there are some long periods of 4000
to 6000 packet losses. With BCAST and GLSN, retransmis-
sions are much more successful than with HEUR.

Figure 19 shows the number of retransmission requests
NR that the client sent to servers between 100 and 1100 s of
the movie playback time for BCAST, GLSN, and HEUR,
respectively. From Atlanta, the GLSN scheme send out
78,280 retransmission requests, which is similar to the
number NR576,456 generated by HEUR, while for
BCAST the number isNR5276,324. For all three schemes,
the retransmission requests are sent out in bursts. This is
because of the extreme bursty packet loss characteristic of
these networks, as we pointed earlier. From both Atlanta
and Miami Beach, the retransmission requests are much
more bursty for the BCAST approach because the number
of requests is multiplied.

Based on the results of our WAN experiments, we make
the following observations:

1. It is very common to see extremely long sequences of
lost packets. For example, sometimes 5000 or 6000
packets are lost consecutively.

2. In a bursty environment, the GLSN scheme performs
much better than either BCAST or HEUR in terms of
both the improvement of the packet loss rate and the
additional retransmission overhead.

3. The BCAST scheme performs badly because of the
high probability of losing retransmission requests due
to the much larger quantity of these requests when
large number of packets are lost at same time.

Fig. 16 Number of retransmission requests initiated by a client for
three techniques with four server nodes in a LAN environment.

Retransmission-based error control . . .

000-17Journal of Electronic Imaging Jan–Mar 2005/Vol. 14(1)

4. The HEUR scheme performs the worst under ex-
tremely busty network conditions.

4.2.3 Overhead measurements

Table 8 shows the number of sent and received retransmis-
sion requests on each server node and client machine in
both LAN and WAN environments. We denote the number
of correct retransmission requests received by a server dur-

ing the movie playback time asSRcorr. The total number of
retransmission requests received by server is denoted as
SRtot . We use Srcv to represent the summation of the
number of retransmission requests received by serves dur-
ing the movie playback time. Finally, the percentage of the
summation ofNR , the number of retransmission requests
generated by the client, is denoted byPrcv .

Fig. 17 Effective loss versus raw loss for the three techniques with four server nodes in a WAN
environment.

Zimmerman, Fu, and Liao

000-18Journal of Electronic Imaging Jan–Mar 2005/Vol. 14(1)

For the BCAST scheme in a LAN environment,SRcorr

andSRtot for all four server nodes are quite close. However,
for the Atlanta and Miami Beach links,SRtot for all four
server nodes are close, butSRcorr are different. When we
look at Srcv , the summation of the number retransmission
requests received by all servers,SRcorr are around 1/4 the
SRtot for all environments, LAN, Atlanta, and Miami
Beach. For example, for LAN,SRcorr544,716 andSRtot

5178,853; for the Atlanta link,SRcorr527,737 andSRtot

5110,801; and for the Miami Beach link,SRcorr541,012
andSRtot5163,738. This is confirmed byPrcv as well.

For the HEUR scheme, because the low burstyness in
packet loss model as we discussed in previous section,
HEUR performs well in LAN experiments, which leads to
quite similarSRcorr and SRtot values for each server node
and across the server nodes. On the contrary, due to the

Fig. 18 Client-observed RTP packet GSN for the three techniques with four server nodes in a WAN
environment.

Retransmission-based error control . . .

000-19Journal of Electronic Imaging Jan–Mar 2005/Vol. 14(1)

high bursty loss nature in the Atlanta and Miami Beach
links, both SRcorr and SRtot are quite different for each
server nodes and across server nodes.

We make several interesting observations:

1. In a LAN environment, almost all the retransmission
requests are successfully received by the servers,

which is illustrated byPrcv599.95% forSRtot with
BCAST, andPrcv599.78% forSRtot with HEUR.

2. For the Miami Beach link and the BCAST scheme,
54.47% retransmission requests are successfully re-
ceived by the servers, as compared to 99.48% for the
HEUR scheme. Because the GLSN scheme will gen-
erate retransmission requests at a similar frequency

Fig. 19 Number of retransmission requests initiated by a client for the three techniques with four
server nodes in a WAN environment.

Zimmerman, Fu, and Liao

000-20Journal of Electronic Imaging Jan–Mar 2005/Vol. 14(1)

under the similar network conditions as the HEUR
scheme, it is reasonable to assume that for the GLSN
scheme, almost all the retransmission requests are
successfully transmitted to the correct server, which
is why the average effective packet loss rate for
GLSN is extremely low, only 0.0352%.

3. For the Atlanta link, due to the high bursty retrans-
mission requests of BCAST scheme, 40.1% retrans-
mission requests are correctly received by the serv-
ers, as compared to 70.14% for the HEUR scheme.
Following a similar reasoning as for the Miami
Beach case, we can also deduce that for the GLSN
scheme approximately 70% of the retransmission re-
quests are successfully transmitted to the servers,
which is why the client still observed 0.8844%
packet loss rate after retransmissions. Additionally
for the BCAST scheme, among those successfully
received retransmission requests, only 10.04% are in
fact correct requests~correct means that the requests
are sent to the right server!, as compared to 14.03%
for the HEUR scheme. This is why the average ef-
fective packet loss rates are still very high, 2.2158%
for BCAST and 3.0495% for HEUR.

4.2.4 Summary of the comparison experiments

Table 9 summarizes comparison results for the GLSN,
BCAST, and HEUR techniques. Based on our experimental
results and the detailed discussions in the previous sections,

we conclude that our GLSN technique consistently outper-
forms the other two approaches, BCAST and HEUR, in
both LAN and WAN environments.

5 Conclusions and Future Research Directions

We presented the novel challenges that arise when a multi-
node server cluster that stores data randomly across nodes

Table 8 Overhead measurements for different network environments and different retransmission
techniques.

Parameters LAN Atlanta Miami Beach

Scheme System SRcorr
1 SRtot

2 SRcorr
1 SRtot

2 SRcorr
1 SRtot

2

BCAST server 1 11,132 44,686 6,281 27,647 9,863 40,867

server 2 11,099 44,737 7,877 27,586 12,563 40,948

server 3 11,238 44,720 6,529 27,768 10,713 40,922

server 4 11,247 44,710 7,050 27,800 7,873 41,001

Srcv
3 44,716 178,853 27,737 110,801 41,012 163,738

Prcv
4 24.99% 99.95% 10.04% 40.1% 13.64% 54.47%

NR
5 178,944 276,324 300,588

HEUR server 1 11,580 11,587 1,364 4,813 10,393 25,250

server 2 11,505 11,508 4,803 28,804 4,458 18,797

server 3 11,734 11,739 1,678 11,377 4,318 17,621

server 4 11,737 11,743 2,882 8,635 4,614 21,927

Srcv
3 46,556 46,577 10,727 53,629 23,783 83,595

Prcv
4 99.73% 99.78% 14.03% 70.14% 28.30% 99.48%

NR
5 46,682 76,456 84,033

GLSN NR
5 44,213 78,280 78,140

1Number of CORRECT retransmission requests received during the movie playback time.
2Total number of retransmission requests received during the movie playback time.
3Summation of the number of retransmission requests received by servers during the movie playback time.
4Percentage of the summation of the number of retransmission requests received by servers.
5Number of retransmission requests generated by client during the movie playback time.

Table 9 Experimental results for different network environments
and three techniques.

Parameters Measurements

Network Schemes Raw Loss1 Eff. Loss2 NR
3

GLSN 2.2207% 0.0505% 44,213

LAN BCAST 2.2188% 0.0518% 176,712

HEUR 2.2184% 0.0536% 44,152

GLSN 3.7981% 0.8844% 78,280

GIT BCAST 3.7072% 2.2158% 276,324

HEUR 3.5282% 3.0495% 76,456

MIAMI

GLSN 3.6905% 0.0352% 78,140

BCAST 3.7531% 1.7116% 300,588

HEUR 4.0185% 2.8829% 84,033

1The average packet loss rate observed at the client without retrans-
mission.

2The average packet loss rate observed at the client with retrans-
mission.

3The number of retransmission requests during the movie playback
time.

Retransmission-based error control . . .

000-21Journal of Electronic Imaging Jan–Mar 2005/Vol. 14(1)

is combined with RBEC. We presented an approach based
on sequence numbers that are local per node. With this
solution retransmission requests can be sent directly to the
correct machine. We implemented our technique and evalu-
ated it with an extensive set of experiments across LAN
and WAN environments. The results show that the method
is feasible and effective. A possible extension of this work
will be to enable multiple retransmission requests per
packet.

6 Appendix A: Analysis of the Upper Bound of
NTL

6.1 Lemma A.1 ; i.0, Li<p

Proof. We prove this lemma with the following two
cases:

Case 1: When i51.

L15pS 12
1

NS
D1

1

NS
3p2~22p! @Eq. ~1!#

5pS 12
1

NS
D1

1

NS
3p

3@12~12p!~12p!# @p~22p!

512~12p!~12p!#<pS 12
1

NS
D1

1

NS
3p @1>p

<0 and 12~12p!~12p!<1#5p.

Case 2: When i>2.

Li5S)
j 51

i 21

L j D 3pF S 12
1

NS
D1

1

NS
3p~22p!G

1S 12)
j 51

i 21

L j D 3p2~22p! ~1!

5S)
j 51

i 21

L j D
3pF S 12

1

NS
D1

1

NS
@12~12p!~12p!#G

1S 12)
j 51

i 21

L j D p@12~12p!~12p!# @p~22p!

512~12p!~12p!#<S)
j 51

i 21

L j D pF S 12
1

NS
D1

1

NS
G

1S 12)
j 51

i 21

L j D p @1

>p>0

and 12~12p!~12p!<1#5p.

6.2 Lemma A.2

1. NTL<NB3pS 12
1

NS
D3

pSB21

p21
,

2. lim
NS→`

S NB3pS 12
1

NS
D3

pSB21

p21 D5NB3p3
pSB21

p21
.

Proof.

1. NTL5NB3(
i 51

SB

Hi5NB3pS 12
1

NS
D S 11(

i 51

SB

)
i 51

j

L i D
[Eqn. ~3!]

<NB3pS 12
1

NS
D3S 11 (

j 51

SB21

pj D
(Lemma A.1)

5NB3pS 12
1

NS
D3

pSB21

p21
.

2. Based on the result of Lemma A.2~1!, it is straight-
forward to obtain this.

6.3 Theorem A.1: ;NS.0, NTL<NB3p3pSB21/p
21

Proof. Using Lemma A.2, it is straightforward to obtain
this theorem.

Based on theorem A.1, we can compute that withp
50.02221,NB51074, andSB52000,NTL<24.3954. Note
that this is number shown as a straight line in Fig. 7~a!.

Acknowledgments

We thank the following students for helping with the imple-
mentation of certain Yima components: Vasan N. Sundar,
Mehrdad Jahangiri, Rishi Sinha, Sahitya Gupta, Farnoush
Banaei-Kashani, and Hong Zhu. This research has been
funded in part by National Science Foundation~NSF!
grants EEC-9529152~IMSC ERC!, IIS-0082826 and CMS-
0219463, and unrestricted cash/equipment gifts from Intel,
Hewlett-Packard and the Lord Foundation.

References
1. S. Berson, L. Golubchik, and R. R. Muntz, ‘‘Fault tolerant design of

multimedia servers,’’ inProc. ACM SIGMOD Int. Conf. on Manage-
ment of Data, pp. 364–375~1995!.

2. C. Shahabi, R. Zimmermann, K. Fu, and S.-Y. D. Yao, ‘‘Yima: a
second-generation continuous media server,’’IEEE Comput.35~6!,
56–64~June 2002!.

3. A. Goel, C. Shahabi, S.-Y. D. Yao, and R. Zimmermann, ‘‘SCAD-
DAR: an efficient randomized technique to reorganize continuous me-
dia blocks,’’ in Proc. IEEE Computer Society 18th Int. Conf. on Data
Engineering (ICDE 2002), pp. 1850–1854, San Jose, CA~2002!.

4. G. Carle and E. W. Biersack, ‘‘Survey of error recovery techniques for
IP-based audio-visual multicast applications,’’IEEE Net. 11~6!,
24–36~1997!.

5. C. Perkins, O. Hodson, and V. Hardman, ‘‘A survey of packet loss
recovery techniques for streaming audio,’’IEEE Net.12~5!, 40–48
~1998!.

6. Y. Wang, A. Ahmaniemi, D. Isherwood, and W. Huang, ‘‘Content-
based UEP: a new scheme for packet loss recovery in music stream-
ing,’’ in Proc. 11th ACM Int. Multimedia Conf. (ACM Multimedia
2003), pp. 412–421, Berkeley, CA~2003!.

Zimmerman, Fu, and Liao

000-22Journal of Electronic Imaging Jan–Mar 2005/Vol. 14(1)

7. M. Bystrom, V. Parthasarathy, and J. Modestino, ‘‘Hybrid error con-
cealment schemes for broadcast video transmission over ATM net-
works,’’ IEEE Trans. Circ. Syst. Video Technol.9~6!, 868–881~1997!.

8. B. W. Wah, X. Su, and D. Lin, ‘‘A survey of error-concealment
schemes for real-time audio and video transmission over the Internet,’’
in Proc. IEEE Int. Symp. on Multimedia Software Engineering, pp.
17–24, Taipei, Taiwan~2000!.

9. R. Sinha, C. Papadopoulos, and C. Kyriakakis, ‘‘Loss concealment for
multi-channel streaming audio,’’ inProc. 13th ACM Int. Workshop on
Network and Operating Systems Support for Digital Audio and Video
(NOSSDAV 2003), pp. 16–21, Monterey, CA~2003!.

10. L. Rizzo, ‘‘Effective erasure codes for reliable computer communica-
tion protocols,’’ACM Comput. Commun. Rev.27, 24–36~Apr. 1997!.

11. B. J. Dempsey, J. Liebeherr, and A. C. Weaver, ‘‘On retransmission-
based error control for continuous media traffic in packet-switching
networks,’’Comput. Net. ISDN Syst.28~5!, 719–736~1996!.

12. R. Marasli, P. D. Amer, and P. T. Conrad, ‘‘Retransmission-based
partially reliable transport service: an analytic model,’’ inProceeding
of IEEE INFOCOMM’96 The Conference on Computer Communica-
tions, 15th Annual Joint Conference of the IEEE Computer and Com-
munications Societies, pp. 621–629~1996!.

13. S. Pejhan, M. Schwartz, and D. Anastassiou, ‘‘Error control using
retransmission schemes in multicast transport protocols for real-time
media,’’ IEEE/ACM Trans. Net.4~3!, 413–427~1996!.

14. D. Loguinov and H. Radha, ‘‘On retransmission schemes for real-time
streaming in the Internet,’’ inProceeding of IEEE INFOCOMM’01
The Conference on Computer Communications, 20th Annual Joint
Conference of the IEEE Computer and Communications Societies, pp.
1310–1319~2001!.

15. N. Feamster and H. Balakrishnan, ‘‘Packet loss recovery for streaming
video,’’ in Proc. 12th Int. Packet Video Workshop, IEEE Signal Pro-
cessing Society~Apr. 2002!.

16. S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang, ‘‘A
reliable multicast framework for light-weight sessions and application
level framing,’’ IEEE/ACM Trans. Net.5~6!, 784–803~1997!.

17. J. Nonnenmacher, E. W. Biersack, and D. Towsley, ‘‘Parity-based loss
recovery for reliable multicast transmission,’’IEEE/ACM Trans. Net.
6~4!, 349–361~1998!.

18. C. Papadopoulos and G. M. Parulkar, ‘‘Retransmission-based error
control for continuous media applications,’’ inProc. ACM 6th Int.
Workshop on Network and Operating Systems Support for Digital
Audio and Video (NOSSDAV 1996), Zushi, Japan~1996!.

19. E. Chang and H. Carcia-Molina, ‘‘Effective memory use in a media
server,’’ in Proc. Int. Conf. on Very Large Databases, pp. 496–505,
Athens~1997!.

20. V. Polimenis, ‘‘The design of a file system that supports multimedia,’’
Technical Report TR-91-020, ICSI~1991!.

21. F. Tobagi, J. Pang, R. Baird, and M. Gang, ‘‘Streaming RAID—a disk
array management system for video files,’’ inProc. 1st ACM Conf. on
Multimedia, pp. 393–400, Anaheim, CA,~1993!.

22. S. Berson, S. Ghandeharizadeh, R. Muntz, and X. Ju, ‘‘Staggered
striping in multimedia information systems,’’ inProc. ACM SIGMOD
Int. Conf. on Management of Data, pp. 79–90, Minneapolis, MN
~1994!.

23. J. R. Santos and R. R. Muntz, ‘‘Performance analysis of the RIO
multimedia storage system with heterogeneous disk configurations,’’
in Proc. ACM Multimedia Conf., pp. 303–308, Bristol, UK~1998!.

24. R. Muntz, J. Santos, and S. Berson, ‘‘RIO: a real-time multimedia
object server,’’ACM Sigmet. Perform. Eval. Rev.25~2!, 29-35 ~Sep.
1997!.

25. J. R. Santos, R. R. Muntz, and B. Ribeiro-Neto, ‘‘Comparing random
data allocation and data striping in multimedia servers,’’ inProc. ACM
SIGMETRICS, pp. 44-55, Santa Clara, CA~2000!.

26. M. Seltzer, P. Chen, and J. Ousterhout, ‘‘Disk scheduling revisited,’’
in Proc. 1990 Winter USENIX Conf., pp. 313–324, Usenix Associa-
tion, Washington, DC~1990!.

27. R. Zimmermann, C. Kyriakakis, C. Shahabi, C. Papadopoulos, A. A.
Sawchuk, and U. Neumann, ‘‘The remote media immersion system,’’
IEEE MultiMedia 11~2!, 48-57~2004!.

28. E. A. Taub, ‘‘On internet of the future, surfers may almost feel the
spray,’’ New York Times, p. C4 of the Circuits section~May 9, 2002!;
URL:http://dmrl.usc.edu/pubs/NYTimes-RMI.pdf

29. W. Montgomery, ‘‘Techniques for packet voice synchronization,’’
IEEE J. Sel. Areas Commun.SAC1~6!, 1022–1028~1983!.

30. G. Barberis and D. Pazzaglia, ‘‘Analysis and design of a packet-voice
receiver,’’ IEEE Trans. Commun.COMM28 ~2!, 217–227~1980!.

31. G. Barberis, ‘‘Buffer sizing of a packet-voice receiver,’’IEEE Trans.
Commun.COMM29 ~2!, 152–156~1981!.

32. W. Naylor and L. Kleinrock, ‘‘Stream traffic communication in
packet-switched networks: destination buffering considerations,’’
IEEE Trans. Commun.COMM30 ~12!, 2527–2534~1982!.

33. R. Zimmermann, K. Fu, N. Nahata, and C. Shahabi, ‘‘Retransmission-
based error control in a many-to-many client-server environment,’’
Proc, SPIE-IS&T Electronic Imaging, Multimedia Computing and
Networking 2003, R. Rajkumai, ed.,5019, 34–44~2003!.

34. W. Jiang and H. Schulzrinne, ‘‘Modeling of packet loss and delay and
their effect on real-time multimedia service quality,’’ inProc. ACM
10th Int. Workshop on Network and Operating System Support for
Digital Audio and Video (NOSSDAV 2000), ~2000!.

35. M. Yajnik, S. B. Moon, J. F. Kurose, and D. F. Towsley, ‘‘Measure-
ment and modeling of the temporal dependence in packet loss,’’ in
Proceeding of IEEE INFOCOMM’99 The Conference on Computer
Communications, 18th Annual Joint Conference of the IEEE Com-
puter and Communications Societies, pp. 345–352~1999!.

Roger Zimmermann received his PhD de-
gree from the University of Southern Cali-
fornia where he is a research assistant pro-
fessor of computer science, a research
area director with the Integrated Media
Systems Center (IMSC), and directs the
Data Management Research Laboratory
(DMRL). His research interests are stream-
ing media architectures and distributed da-
tabase integration.

Kun Fu is a doctoral candidate in com-
puter science at the University of Southern
California (USC). He did research at the
Data Communication Technology Re-
search Institute and National Data Commu-
nication Engineering Center in China prior
to coming to the United States and is cur-
rently a research assistant working on
large-scale data stream recording architec-
tures at the Integrated Media System Cen-
ter (IMSC) and Data Management Re-

search Laboratory (DMRL) in the Computer Science Department at
USC. He received his MS degree in engineering science from the
University of Toledo. He is a member of the IEEE.

Frank Liao is a multimedia software and
content developer, specializing in interac-
tive media, streaming media, and computer
graphics. He received his B Arch degree in
1999 from the Southern California Institute
of Architecture and his MS degree in 2003
in integrated media systems from the Uni-
versity of Southern California (USC). He
has held various positions at Thomas
Blurock Architects, USC Institute of Cre-
ative Technologies, USC Integrated Media

Systems Center, and USC Teaching and Learning Services.

Retransmission-based error control . . .

000-23Journal of Electronic Imaging Jan–Mar 2005/Vol. 14(1)

