
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2004; 00:1–15 Prepared using speauth.cls [Version: 2002/09/23 v2.2]

Scalability Evaluation of the
Yima Streaming Media
Architecture‡

Roger Zimmermann∗, Cyrus Shahabi, Kun Fu, and Shu-Yuen Didi Yao

Integrated Media Systems Center and Department of Computer Science
University of Southern California
Los Angeles, California 90089–2561

SUMMARY

Over the last decade research has been pursued on all aspects of streaming media. While many theoretical
results have been reported in the literature, few performance results of large-scale systems have been
published. In this report we specifically explore the scalability aspects of our Yima streaming media
architecture in an end-to-end test environment. With Yima, it was our goal to design and implement an
architecture that would scale in performance from small to large systems. Some of the design features
include 1) a multi-node cluster architecture based on commodity hardware and custom software, 2)
media type independence (support ranges from 500 Kb/s MPEG-4 to 45 Mb/s HDTV, at both variable
and constant bitrates), 3) fine-grained online scale up/down capabilities, and 4) a client-controlled rate
smoothing protocol. We briefly discuss the design and implementation of these capabilities of Yima and then
thoroughly evaluate its scalability through several sets of experiments. Our results show that Yima scales
linearly (within the range of our test parameters) as a function of the cluster size and also as a function of
available resources such as network bandwidth and CPU performance.

KEY WORDS: Streaming media, continuous media, multimedia servers

1. Introduction

We report on the implementation and evaluation of a scalable real-time streaming media architecture
called Yima† that enables applications such as news-on-demand, distance learning, e-commerce,
corporate training, and scientific visualization on a large scale. A growing number of applications
store, maintain, and retrieve large volumes of real-time data, where the data are required to be
available online. We denote these data types collectively as “continuous media,” or CM for short.

‡This research has been funded in part by NSF grants EEC-9529152 (IMSC ERC) and IIS-0082826, and unrestricted cash gifts
from NCR, Microsoft, Intel, Hewlett-Packard and the Okawa and Lord Foundations.
∗Correspondence to: Integrated Media Systems Center and Department of Computer Science, University of Southern California,
Los Angeles, California 90089–2561
†Yima in ancient Iranian religion, is the first man, the progenitor of the human race, and son of the sun.

Received 6 June 2003
Copyright c© 2004 John Wiley & Sons, Ltd. Revised 11 June 2004



2 R. ZIMMERMANN, ET AL.

CM is distinguished from traditional textual and record-based media in two ways. First, the retrieval
and display of CM are subject to real-time constraints. Second, CM objects are large. A high
definition MPEG-2 stream with a 19.4 Megabits per second (Mb/s) bandwidth requirement such as
the Tournament of Roses broadcast on New Year’s day requires 145 Megabytes per minute of storage
or about 26 Gigabytes (GB) for three hours. Popular examples of CM are video and audio objects,
while less familiar examples are haptic, avatar and application coordination data [17].

The first research reports on the design of CM servers appeared about a decade ago, followed by a
steady stream of publications on this topic until today. Many of the investigations focused on algorithms
and simulations while only a few resulted in prototype implementations. Examples are Streaming-
RAID [22], the Oracle Media Server [9], the UMN system [7], Tiger [2], Fellini [10], Mitra [5] and
RIO [11]. These first generation CM servers were primarily addressing the design of different data
placement paradigms, buffer management mechanisms, and retrieval scheduling techniques to optimize
for high throughput and/or low startup latency time.

While contributing to the state-of-the-art, these early prototypes have been at a disadvantage in two
aspects. First, since they were implemented concurrently during the same time frame, each one of
them could not take advantage of the successes and failures of the other projects. Second, almost all of
these research prototypes were completed before the industry’s standardizations for streaming CM over
IP networks. Hence, each prototype has its own proprietary media content format, client (and codec)
implementation and communication/network protocol. Some of these prototypes focused solely on the
server design and never reported on their network and client configurations. They mainly assumed a
very fast network and constant bitrate media types in their corresponding research publications. From
a practical point of view, these environment assumptions are not realistic.

In this paper we describe and evaluate an end-to-end implementation of the distributed Yima
architecture. We assess its scalability through numerous experiments with several parameter sets (e.g.,
different amounts of resources such as network bandwidth). The focus of our implementation has been
on providing a high-performance, scalable system that builds upon and extends the latest research
results and is fully compatible with open industry standards. For example, we extended UMN’s
scheduling (to deadline-driven) and adapted the disk cluster (in Mitra’s and Fellini’s terms) or logical
volume striping (in UMN’s vocabulary) storage design. We extended RIO’s random data placement (to
pseudo-random placement for easier bookkeeping and storage scale-up) and instead of the expensive
shared-memory architecture of UMN (based on SGI’s Onyx), we employed a shared-nothing approach
on commodity personal computer hardware.

The remainder of this paper is organized as follows. First we describe some of the details of
the fully distributed Yima architecture in Section 2. In Section 3, we evaluate the scalability of the
Yima architecture through several sets of experiments with a complete end-to-end implementation. For
example, we study the scenarios when different resources of a node (i.e., CPU and network) become a
bottleneck. Finally, Section 4 concludes the paper and discusses our future plans in this area.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 00:1–15
Prepared using speauth.cls



SCALABILITY EVALUATION OF YIMA 3

1000 Mb/s

Node 0 Node 1 Node 2 Node N

Ethernet
Switch

Disks: high-performance, Ultra160 SCSI

(e.g., Seagate Cheetah)

Multiple 100 Mb/s NICs

Ultra160 SCSI
Controller

Personal
Computer

(e.g., 866 MHz;
 256 MB) PCI bus;

1064 Mb/s

Fast Ethernet or Gigabit Ethernet

Internet Backbone Routers

End-User

End-User

End-User

Inactive
Modules

Data Request

Data

Active
Modules

RTSP Server

RTP Server

Scheduler

File I/OFile I/O File I/O File I/O

RTP Server

Scheduler

RTP Server

Scheduler

RTP Server

Scheduler

RTSP Server RTSP Server RTSP Server

0 1 2 3 4 5 6 7

MPEG-2

MPEG-4

HDTV

Figure 1. The Yima multi-node hardware and software architecture. Each node is based on a commodity PC and
connects to one or more disk drives and the network. Four software modules run on each node.

2. System Architecture

2.1. Overview of the Yima Architecture

A detailed description of the Yima architecture design is provided in [21]. Here we summarize some
of its features. Yima is designed as a completely distributed system (with no single point of failure
or bottleneck) on a multi-node, multi-disk platform as shown in Fig. 1. It separates physical disks
(used to store the data) from the concept of logical disks (used for retrieval scheduling) to support fault
tolerance [29] and heterogeneous disk subsystems [28]. Data blocks are pseudo-randomly placed on
all nodes and non-deterministic scheduling is performed locally on each node. Yima includes a method
to reorganize data blocks in real-time for online addition/removal of disk drives [6]. Additionally, a
flexible rate-control mechanism between clients and the server supports both variable and constant
bitrate media types [32]. Further included are techniques to resolve stream contentions at the server
for ensuring inter-stream synchronization as proposed in [18], as well as optimization techniques such
as Super-Streaming [16]. Network congestion control has been investigated extensively by many
researchers. In our Yima architecture, we assume that the network provides enough streaming
bandwidth.

Yima follows the open industry standards proposed by the Internet Streaming Media Alliance
(ISMA; www.ism-alliance.org) with some extensions for higher bitrate media. It supports the RTP
and RTSP communication standards for IP based networks. Content-wise, Yima can stream MPEG-
1, MPEG-2, and MPEG-4 video formats. The clients can be either off-the-shelf QuickTime players
or our own Windows and Linux clients that handle advanced multi-channel audio and video HDTV
playback [21].

The Yima system has been evaluated in many different networking environments. For
example, when broadband first became available we successfully streamed NTSC-quality
MPEG-4 content from an Yima server located on the USC campus to a residential location
connected via ADSL [27]. Yima is also the streaming engine of the Remote Media Immersion

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 00:1–15
Prepared using speauth.cls



4 R. ZIMMERMANN, ET AL.

(RMI) system developed at the Integrated Media Systems Center (IMSC) at USC. RMI is a
platform to deliver very high quality content such as high definition video and immersive, multi-
channel, uncompressed audio across different networking environments (e.g., Internet2) [31].
Additionally, we have reported on our design and evaluation of packet loss error recovery
techniques with Yima based on extensive experiments in both LAN and WAN environments [24,
25].

2.2. Multi-node Architecture

The design of Yima is based on a bipartite model. From a client’s viewpoint, the scheduler, the
RTSP and the RTP server modules are all centralized on a single master node. Yima expands on
decentralization by keeping only the RTSP module centralized (again from the client’s viewpoint)
and parallelizing the scheduling and RTP functions as shown in Fig. 1. Hence, every node retrieves,
schedules, and sends data blocks that are stored locally directly to the requesting client, thereby
eliminating a potential bottleneck caused by routing all data through a single node. The elimination of
this bottleneck and the distribution of the scheduler reduces the inter-node traffic to only control related
messages, which is orders of magnitude less than the streaming data traffic. The term “bipartite” relates
to the two groups, a server group and a client group (in the general case of multiple clients), such that
data flows only between the groups and not between members of a group.

Although the advantages of the bipartite design are clear, its realization introduces several new
challenges. First, since clients are receiving data from multiple servers, a global order of all packets
per session needs to be imposed and communication between the client and servers needs to be
carefully designed (e.g., for lost packet retransmission requests). Second, to implement the single
control point for client requests as well as the synchronized decentralized scheduler and RTP server
for each node while maintaining load balance across all server nodes under all kinds of VBR stream
load is a challenge. Third, a flow control mechanism is needed to prevent client buffer from overflow or
starvation. Fourth, UDP based RTP packets may get lost during transmission, hence a new efficient loss
recovery scheme is required. Lastly, an effective on-line data reorganization technique is also desired.

2.3. Data Placement and Disk Scheduling

There are two basic techniques to assign the data blocks of a media object, in a load balanced manner,
to the magnetic disk drives that form the storage system: in a round-robin sequence [1], or in a random
manner [13]. Traditionally, the round-robin placement utilizes a cycle-based approach for scheduling
of resources to guarantee a continuous display, while the random placement utilizes a deadline-driven
approach. In general, the round-robin approach provides high throughput with little wasted bandwidth
for video objects that are retrieved sequentially. This approach can employ optimized disk scheduling
algorithms (such as elevator [14]) and object replication and request migration [4] techniques to reduce
the inherently high startup latency. The random approach has several benefits as described in [12],
such as 1) support for multiple delivery rates with a single server block size, 2) support for interactive
applications, and 3) support for data reorganization during disk scaling [6].

One potential disadvantage of random data placement is the need for a large amount of meta-data:
the location of each block must be stored and managed in a centralized repository (e.g., tuples of the
form 〈nodex, disky〉). Yima avoids this overhead by utilizing a pseudo-random block placement. With

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 00:1–15
Prepared using speauth.cls



SCALABILITY EVALUATION OF YIMA 5

pseudo-random number generators, a seed value initiates a sequence of random numbers which can
be reproduced by using the same seed. File objects are split into fixed-size blocks and each block is
assigned to a random disk. Block retrieval is similar. Hence, Yima needs to store only the seed for each
file object, instead of locations for every block, to compute the random number sequence.

2.4. Communication Protocol

Each client maintains contact with one RTSP module for the duration of a session to relay control
related information (such as PAUSE and RESUME commands). A session is defined as a complete
RTSP transaction for a continuous media stream, starting with the DESCRIBE and PLAY commands
and ending with a TEARDOWN command. When a client requests a data stream using RTSP, it is directed
to a server node running an RTSP module. For load-balancing purposes each server node may run an
RTSP module. For each client, the decision of which RTSP server to contact can be based on either a
round-robin DNS or a load-balancing switch.

2.5. Variable Bitrate Smoothing

In order to avoid bursty traffic and to accommodate variable bitrate media, the client sends slowdown
or speedup signals to adjust the data transmission rate from the server. By periodically sending these
signals to the Yima server, the client can receive a smooth flow of data by monitoring the amount of
data in its buffer. If the amount of buffered data decreases (increases), the client will issue speedup
(slowdown) requests. Thus, the amount of buffered data can remain close to constant to support the
consumption of variable bitrate media. This mechanism will complicate the server scheduler logic, but
the standard deviation of bursty traffic is reduced by up to 81% as demonstrated in [32].

2.6. Transmission Error Recovery

There has been considerable work in the area of error recovery techniques that can be applied
to real-time streaming applications. Example techniques include error concealment, forward
error correction (FEC), and retransmission based error control [24]. To solve the error recovery
problem in Yima’s fully distributed bipartite architecture, we utilize a retransmission-based error
control (RBEC) mechanism ‡. Because data is randomly placed and all server nodes send data to client
independently, a client may not know which server node to ask for a lost packet retransmission. With
RBEC, the client determines the server node from which a lost RTP packet was intended to be delivered
by detecting gaps in node specific packet sequence numbers. We term these local sequence number
(LSN) as opposed to the global sequence number (GSN) that orders all packets. This mechanism
requires packets to contain an LSN along with a GSN. Experiments [24, 26] show that the clients need

‡Another possible solution is the use of forward error correction (FEC). However, FEC always adds a constant percentage
of bandwidth overhead irrespective of the network condition. As pointed out by Dempsey et al. [3], if the packet loss rate
is very low and timely retransmission can be performed with a high probability of success, a retransmission-based error
control (RBEC) approach is an attractive solution. It imposes little overhead on network resources and can be used in
conjunction with other error control schemes, such as FEC or error concealment.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 00:1–15
Prepared using speauth.cls



6 R. ZIMMERMANN, ET AL.

little computation to locate missing packets, which enables Yima to utilize the benefits of random data
placement in cluster environments. Please note that our proposed technique can be combined with
other existing error control techniques, such as FEC and error concealment to support either
unicast and multicast applications. A more extended discussion of our proposed technique can
be found elsewhere [24].

2.7. Data Reorganization

Yima incorporates a unique online storage scalability feature for the addition of disks to increase
storage and/or bandwidth or the deletion of disks when either capacity needs to be conserved or old
disk drives are retired. Our approach is an efficient randomized technique to reorganize continuous
media blocks, called SCADDAR [6]. With SCADDAR, disk additions or deletions can be done online
with minimum overhead in terms of the number of media blocks needing to be redistributed while
still maintaining the randomized uniform distribution of the blocks. The SCADDAR approach is based
on a series of REMAP functions which can derive the location of a new block using only its original
location as a basis.

We have conducted streaming experiments while performing disk scaling operations, such as
removing a disk. During the switch-over period, the system continues to perform well [20]. Note
that a disk removal differs from a disk crash in that a disk crash generally happens unexpectedly.
If it is possible to predict when a disk might crash in the future (for example through the
Self-Monitoring, Analysis and Reporting Technology, SMART), a disk removal operation can
be initiated in advance. Otherwise, a fault tolerant design is required to provide continuous
streaming service while surviving disk crashes [30, 29].

3. Scalability Experiments

We have implemented the features described in the previous section in our Yima streaming media
prototype. It was our goal to design and implement an architecture that would scale in performance
from small to large systems. In this section we assess its scalability in a end-to-end test environment.

A computer system is scalable if it can scale up to accommodate performance demands and/or
scale down to reduce cost [8]. Scalability can be classified into two categories: (1) size scalability:
scaling up by increasing the number of server nodes; (2) scale up in resources: scaling up by adding
resources such as memory, cache, disks, or network bandwidth. We present the results of two sets of
experiments. First, we compare a single node server with two different network interface bandwidths:
100 Mb/s versus 1 Gb/s. These experiments show that the system can scale up in resources.

In the second set of experiments we increased a server cluster from 1 to 2 and then 4 nodes. The goal
of every cluster architecture is to achieve close to a linear performance scale-up when system resources
are increased. However, achieving this goal in a real-world implementation is very challenging. Our
experiments show the size scalability of the Yima system. We start by describing our measurement
methodology. Table I lists the terms used in this section.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 00:1–15
Prepared using speauth.cls



SCALABILITY EVALUATION OF YIMA 7

Term Definition
N The number of concurrent clients supported by Yima server
Nmax The maximum number of sustainable, concurrent clients
µidle Idle CPU in percentage
µsystem System (or kernel) CPU load in percentage
µuser User CPU load in percentage
BavgNet Average network bandwidth per client (Mb/s)
Bnet Network bandwidth (Mb/s)
Bdisk The amount of movie data accessed from disk per second (termed disk bandwidth) (MB/s)
Bcache The amount of movie data accessed from server cache per second (termed cache bandwidth) (MB/s)
BavgNet[i] The BavgNet measured for i-th server node in a multi-node experiment
Bnet[i] The Bnet measured for i-th server node in a multi-node experiment
Bdisk [i] The Bdisk measured for i-th server node in a multi-node experiment
Bcache[i] The Bcache measured for i-th server node in a multi-node experiment
R∆r The number of rate changes per second

Table I. List of terms used repeatedly in this section and their respective definitions.

3.1. Methodology of Measurement

One of the challenges when stress-testing a high-performance streaming media server is the necessary
support of a large number of clients. For a realistic test environment, these clients should not be
simulated, but rather be real viewer programs that run on various machines across a network. To
keep the number of client machines manageable we ran several client programs on each machine.
Since decompressing multiple MPEG-2 encoded DVD-quality streams requires a very high CPU
performance, we changed our client software to not actually decompress the media streams. Such a
client is identical to its real counterpart in every respect, except that it does not render any video or
audio. Instead, this emulation client consumes data according to a movie trace data file, which contains
the pre-recorded consumption behavior of a real client with respect to a particular movie. Thus, by
changing the movie trace file, each emulation client can behave like, for example, a DVD stream (5
Mb/s, VBR), an HDTV stream (20 Mb/s, CBR), or an MPEG-4 stream (800 Kb/s, VBR). For all
the experiments in this section, we chose trace data from the DVD movie “Twister”(see Fig. 2) as
the consumption load. The average bandwidth requirement for this DVD movie is approximately
5.33 Mb/s. For each experiment, we started clients in a staggered manner (the incoming streaming
request arrival rate is 0.5 per minute). On the server side, we recorded the following statistics every
two seconds: CPU load (µidle, µsystem and µuser), disk bandwidth (Bdisk), cache bandwidth (Bcache),
R∆r, the total network bandwidth (Bnet) for all clients, the number of clients served, and the average
network bandwidth per client, BavgNet.

The server nodes were run with disabled admission control policies to allow us to push them into
overload and hence find the maximum sustainable throughput used by many client sessions. Therefore,
client starvation would occur when the number of sessions N increased beyond a threshold. We defined
that threshold as the maximum number of sustainable, concurrent sessions Nmax. Specifically, this
threshold marks the point where certain server system resources reach full utilization and become a
bottleneck, for example the network bandwidth, the disk bandwidth or the CPU load.

We first assess the Yima server performance with two different network connections, and then we
evaluate our prototype in a cluster scale-up experiment.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 00:1–15
Prepared using speauth.cls



8 R. ZIMMERMANN, ET AL.

0

4

8

12

16

20

24

0 200 400 600 800 1000 1200 1400

Data Rate [Mbits/sec]

Time [seconds]

Movie consumption rate

Figure 2. The consumption rate of a segment of the movie “Twister” encoded with a variable bitrate MPEG-2
algorithm.

3.2. Network Scale-up Experiments

3.2.1. Experimental Setup

We tested a single node server with two different network connections: 100 Mb/s and 1 Gb/s Ethernet.
Fig. 1 illustrates our experimental setup. In both cases, the server consists of a single Pentium III 933
MHz PC with 256 MB of memory. The PC is connected to an Ethernet switch (model Cabletron 6000)
via a 100 Mb/s network interface for the first experiment and a 1 Gb/s network interface for the second
experiment. Movies are stored on a 73 GB Seagate Cheetah disk drive (model ST373405LC). The
disk is attached through an Ultra2 low-voltage differential (LVD) SCSI connection that can provide 80
MB/s throughput. RedHat Linux 7.2 is used as the operating system. The clients are based on several
Pentium III 933 MHz PCs, which are connected to the same Ethernet switch via 100 Mb/s network
interfaces. Each PC can support up to 10 concurrent MPEG-2 DVD emulation clients (with 5.3 Mb/s
stream consumption rate for each client).

3.2.2. Experimental Results

Fig. 3 shows the server measurement results for both sets of experiments (100 Mb/s and 1 Gb/s) in two
columns. Figs. 3(c) and (d) present the per stream bandwidth § BavgNet with respect to the number of
clients, N . Fig. 3(c) shows that, for a 100 Mb/s network connection, BavgNet remains steady (between

§In the paper, we use “per stream bandwidth” and “per client bandwidth” interchangeably.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 00:1–15
Prepared using speauth.cls



SCALABILITY EVALUATION OF YIMA 9

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18

System

System + User

Number of clients

C
P

U
 u

sa
ge

 (
 in

 p
er

ce
nt

ag
e)

CPU usage.
µsystem + µuser

← (a) (b)→

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45

System + User

System

Number of clients

C
P

U
 u

sa
ge

 (
in

 p
er

ce
nt

ag
e)

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16 18
Number of clients

A
vg

. n
et

w
or

k 
ba

nd
w

id
th

 p
er

 c
lie

nt
 (

M
bp

s)

Average network
bandwidth.
BavgNet

← (c) (d)→

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40 45
Number of clients

A
vg

. n
et

w
or

k 
ba

nd
w

id
th

 p
er

 c
lie

nt
 (

M
bp

s)

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18

Disk + Cache

Disk

Number of clients

D
is

k 
an

d 
ca

ch
e 

ba
nd

w
id

th
 (

M
B

ps
)

Disk and cache
bandwidth.

Bdisk

← (e) (f)→

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45
Number of clients

D
is

k 
an

d 
ca

ch
e 

ba
nd

w
id

th
 (

 M
B

ps
) Disk

Disk + Cache

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16 18
Number of clients

N
um

be
r 

of
 r

at
e 

ch
an

ge
s 

pe
r 

se
co

nd

Rate changes.
R∆r

← (g) (h)→

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45
Number of clients

N
um

be
r 

of
 r

at
e 

ch
an

ge
s 

pe
r 

se
co

nd

0

50

100

150

200

0 2 4 6 8 10 12 14 16 18

N
et

w
or

k 
ba

nd
w

id
th

 (
M

bp
s)

Number of clients

Network
bandwidth.

Bnet

← (i) (j)→

0

50

100

150

200

0 5 10 15 20 25 30 35 40 45
Number of clients

N
et

w
or

k 
ba

nd
w

id
th

 (
M

bp
s)

Figure 3. Yima single node server performance with 100 Mbps (left column) versus 1 Gbps (right column) network
connection.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 00:1–15
Prepared using speauth.cls



10 R. ZIMMERMANN, ET AL.

5.3 and 6 Mb/s) when N is less than 13; after 13 clients, BavgNet decreases steadily and falls below
5.3 Mb/s (depicted with a dashed horizontal line), which is the average consumption bandwidth of our
test movie. Note that the horizontal dashed line intersects with the BavgNet curve at approximately
12.8 clients. Thus, we consider 12 as the maximum number of clients, Nmax, supportable by a 100
Mb/s networking interface. An analogous result can be observed in Fig. 3(d), indicating a maximum
throughput of Nmax = 35 with a 1 Gb/s network connection.

Figs. 3(a) and (b) show the CPU utilization as a function of N for 100 Mb/s and 1 Gb/s
network connections. Both figures contain two curves: µsystem (kernel space CPU utilization) and
µsystem + µuser (combined user and kernel space CPU utilization). As expected, the CPU load (both
µsystem and µuser) increases steadily as N increases. With the 100 Mb/s network connection, the
CPU load reaches its maximum at 40% with 12 clients, which is exactly Nmax suggested by Fig. 3(c)
(vertical dashed line). Similarly, for 1Gb/s, the CPU load levels off at 80% where Nmax = 35 clients.
Note that in both experiments, µsystem accounts for more than 2/3 of the maximum CPU load.

Yima implements a simple yet flexible caching mechanism in the file I/O module (Fig. 1). Movie
data are loaded from disks as blocks (e.g., 1 MB). These blocks are organized into a shared block
list maintained by the file I/O module in memory. For each client session, there are at least two
corresponding blocks on this list. One is the block currently used for streaming, and the other is the
prefetched, next block. Some blocks may be shared because the same data is used by more than one
client session simultaneously. Therefore, a session counter is implemented for each block. When a
client session requests a block, the file I/O module checks the shared block list first. If the block
is found, then the corresponding block counter will be incremented and the block made available;
otherwise, the requested block will be fetched from disk and added to the shared block list (with its
counter set to one). We define the cache bandwidth, Bcache, as the amount of data accessed from the
shared block list (server cache) per second.

Figs. 3(e) and (f) show Bdisk and Bcache as a function of N for 100 Mb/s and 1 Gb/s network
connections. In both experiments, the Bdisk + Bcache curves increase linearly until N reaches its
respective Nmax (12 for 100 Mb/s and 35 for 1 Gb/s), and they level off beyond those points. For
the 100 Mb/s network connection, Bdisk + Bcache level off at around 8.5 MB/s, which equals the 68
Mb/s peak rate, Bnet, in Fig. 3(i) with N = Nmax. Similarly, for the 1 Gb/s network connection,
Bdisk + Bcache level off at 25 MB/s, which corresponds to the 200 Mb/s maximum, Bnet, in Fig. 3(j)
with N = Nmax = 35. In both cases, Bcache contributes little to Bdisk + Bcache when N is less
than 15. For N > 15, caching becomes increasingly effective. For example, with 1 Gb/s network
connection, Bcache accounts for 20% of 30% to Bdisk + Bcache with N between 35 and 40. This is
because for higher N , the probability that the same cached block is accessed by more than one client
increases. Intuitively, caching is more effective with large N .

Figs. 3(i) and (j) show the relationship of Bnet and N for both network connections. Both figures
nicely complement Figs. 3(e) and (f). With the 100 Mb/s connection, Bnet increases steadily with
respect to N until it levels off at 68 Mb/s with Nmax (12 clients). For the 1 Gb/s connection, the
results is similar except that Bnet levels off at 200 Mb/s with N = 35 (Nmax for 1 Gb/s setup). Note
that the horizontal dashed line in Fig. 3(i) represents the theoretical bandwidth limit for the 100 Mb/s
setup.

Figs. 3(g) and (h) show the number of rate adjustments R∆r with respect to N for 100 Mb/s and
1 Gb/s network connections. Both figures suggest a similar trend: there exists a threshold T where, if
N < T , R∆r is quite small (approximately 1 per second); otherwise, R∆r increases significantly to

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 00:1–15
Prepared using speauth.cls



SCALABILITY EVALUATION OF YIMA 11

2 for 100 Mb/s connection and 5 for the 1 Gb/s connection. With the 100 Mb/s setup, T is reached at
approximately 12 clients. For the 1 Gb/s case, the limit is 33 clients. In general, T roughly matches
Nmax for both experiments. Note that in both cases, for N > T , at some point R∆r begins to decrease.
This is due to client starvation. Under these circumstances such clients send a request for the maximum
stream transmission rate. Because this maximum cannot be increased, no further rate changes are sent.

Note that in both the 100 Mb/s and 1 Gb/s experiments, Nmax is reached when some system
resources become a bottleneck. For the 100 Mb/s setup, Fig. 3(a) and Fig. 3(e) suggest that the CPU
and disk bandwidth are not the bottleneck, because neither of them reaches more than 50% utilization.
On the other hand, Fig. 3(i) indicates that the network bandwidth, Bnet, reaches approximately 70%
utilization for N = 12 (Nmax for 100 Mb/s setup), and hence is most likely the bottleneck of the
system. For the 1 Gb/s experiment, Fig. 3(f) and Fig. 3(j) show that the disk and network bandwidth
are not the bottleneck. Conversely, Fig. 3(b) shows that the CPU is the bottleneck of the system because
it is heavily utilized (µsystem + µuser is around 80%) for N = 35 (Nmax for the 1 Gb/s setup).

3.3. Server Scale Up Experiments

3.3.1. Experimental Setup

To evaluate the cluster scalability of the Yima server, we conducted three sets of experiments. The
server cluster consists of multiple rack-mountable Pentium III 866 MHz PCs with 256 MB of memory.
We increased the number of server PCs from 1 to 2 to 4, respectively, for the scale up experiments.
The server PCs are connected to an Ethernet switch (model Cabletron 6000) via 100 Mb/s network
interfaces. Movies are striped over several 18 GB Seagate Cheetah disk drives (model ST118202LC,
one per server node), which are attached through an Ultra2 low-voltage differential (LVD) SCSI
connection that can provide 80 MB/s throughput. RedHat Linux 7.0 is used as the operating system
and the client setup is the same as in Section 3.2.

3.3.2. Experimental Results

The results for a single node server have already been reported in Section 3.2. Here we will not repeat
them, but refer to them where appropriate. Fig. 4 shows the results for the 2 and 4 nodes experiments
in two columns.

Figs. 4(c) and (d) present the measured per stream bandwidth BavgNet as a function of N . Fig. 4(c)
shows two curves representing two nodes: BavgNet[1] and BavgNet[1] + BavgNet[2]. Similarly,
Fig. 4(d) shows four curves: BavgNet[1], BavgNet[1] + BavgNet[2], BavgNet[1] + BavgNet[2] +
BavgNet[3] and BavgNet[1] + BavgNet[2] + BavgNet[3] + BavgNet[4]. Note that each server node
contributes roughly the same share to the total bandwidth BavgNet, i.e., 50% in case of the 2 node
system and 25% for the 4 node cluster. This illustrates how well the nodes are load balanced within our
architecture. Recall that the same software modules are running on every server node, and the movie
data blocks are evenly distributed by the random data placement technique. Similarly as in Fig. 3(c)
and (d), the maximum number of supported clients can be derived as Nmax = 25 for 2 nodes and
Nmax = 48 for 4 nodes. Including the previous results from 1 node (see the 100 Mb/s experimental
results in Fig. 3), with 2 and 4 nodes the maximum number of client streams Nmax are 12, 25, and 48
respectively, which represents an almost ideal linear scale-up.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 00:1–15
Prepared using speauth.cls



12 R. ZIMMERMANN, ET AL.

0

20

40

60

80

100

0 5 10 15 20 25 30

System
System + User

Number of clients

C
P

U
 u

sa
ge

 (
in

 p
er

ce
nt

ag
e)

CPU usage.
µsystem + µuser

← (a) (b)→

0

20

40

60

80

100

0 10 20 30 40 50

System

Number of clients

C
P

U
 u

sa
ge

 (
 in

 p
er

ce
nt

ag
e) System + User

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30

Server 1
Server 2

Number of clients

A
vg

. n
et

w
or

k 
ba

nd
w

id
th

 p
er

 c
lie

nt
 (

M
bp

s)

Average network
bandwidth.
BavgNet

← (c) (d)→

0

1

2

3

4

5

6

7

0 10 20 30 40 50

Server 4
Server 3Server 1

Server 2

Number of clients
A

vg
. n

et
w

or
k 

ba
nd

w
id

th
 p

er
 c

lie
nt

 (
M

bp
s)

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30
Number of clients 

D
is

k 
an

d 
ca

ch
e 

ba
nd

w
id

th
 (

M
B

ps
) Server 1 disk

Server 2 disk
Server 1 cache

Server 2 cache

Disk and cache
bandwidth.

Bdisk + Bcache

← (e) (f)→

0

5

10

15

20

25

30

35

0 10 20 30 40 50

Server 1 disk
Server 1 cache

Server 2 cache
Server 2 disk

Server 4 cache
Server 4 disk

Server 3 disk
Server 3 cache

Number of clients

D
is

k 
an

d 
ca

ch
e 

ba
nd

w
id

th
 (

M
B

ps
)

0

1

2

3

4

5

6

0 5 10 15 20 25 30
Number of clients

N
um

be
r 

of
 r

at
e 

ch
an

ge
s 

pe
r 

se
co

nd

Rate changes.
R∆r

← (g) (h)→

0

1

2

3

4

5

6

0 10 20 30 40 50
Number of clients

N
um

be
r 

of
 r

at
e 

ch
an

ge
s 

pe
r 

se
co

nd

0

50

100

150

200

250

300

0 5 10 15 20 25 30

Server 1
Server 2

Number of clients

N
et

w
or

k 
ba

nd
w

id
th

 (
M

bp
s)

Network
bandwidth.

Bnet

← (i) (j)→

0

50

100

150

200

250

300

0 10 20 30 40 50

Server 1
Server 2
Server 3
Server 4

Number of clients

N
et

w
or

k 
ba

nd
w

id
th

 (
M

bp
s)

Figure 4. Yima two node (left column) versus four node (right column) server performance. The curves in
Figs. 4(c,d,e,f,i,j) are cumulative. For example, in Fig. 4(c), “Server 2” refers to “Server 1+Server 2”.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 00:1–15
Prepared using speauth.cls



SCALABILITY EVALUATION OF YIMA 13

Fig. 4(a) and (b) show the average CPU utilization on 2 and 4 server nodes as a function of N . In
both figures, µsystem and µsystem + µuser are depicted as two curves with similar trends. For 2 nodes
the CPU load (µsystem + µuser) increases gradually from 3% with N = 1 to approximately 38% with
N = 25 (Nmax for this setup), and then levels off. With 4 nodes, the CPU load increases from 2%
with N = 1 to 40% with N = 48 (Nmax for this setup). Note that the curves in both figures are not
very smooth, which might be due to server logging activities and the measurement interval variations.

Fig. 4(e) and (f) show Bdisk+Bcache. The 4 curves presented in Fig. 4(e) cumulatively show the disk
and cache bandwidth for 2 nodes: Bdisk [1], Bdisk[1]+Bcache[1], Bdisk[2]+Bdisk[1]+Bcache[1], and
Bdisk[2] + Bcache[2] + Bdisk [1] + Bcache[1]. The curves exhibit the same trend as shown in Fig. 3(e)
and (f) for a single node. Bdisk + Bcache reach a peak value of 17 MB/s with N = Nmax for the 2
node setup and 32 MB/s for the 4 node experiment. Note that Bdisk + Bcache for 4 nodes is nearly
doubled compared with 2 nodes, which is double that of the 1 node setup. In both cases, each server
contributes approximately the same share to the total of Bdisk + Bcache, illustrating the balanced load
in the Yima cluster. Furthermore, similar to Fig. 3(e) and (f), caching effects are more pronounced with
large N in both the 2 and 4 node experiments.

Figs. 4(i) and (j) show the achieved network throughput Bnet. Again, Fig. 4(i) and (j) nicely
complement Figs. 4(e) and (f). For example, the peak rate, Bnet, of 136 Mb/s for the 2 node setup
is equal to the 17 MB/s peak rate of Bdisk + Bcache. Each node contributes equally to the total served
network throughput.

Finally, Figs. 4(g) and (h) show the number of rate changes, R∆r, that are sent to the server cluster by
all clients. Similarly to the 1 node experiment, for the 2 node server R∆r is very small (approximately
1 per second) when N is less than 26, and increases significantly above this threshold. For the 4 node
experiment, a steady increase is recorded when N is less than 26; after that it remains constant at 2.5 for
N between 27 and 45, and finally R∆r increases for N beyond 45. Note that for all experiments, with
N < Nmax, the rate change messages R∆r generate negligible network traffic and server processing
load. Therefore, our MTFC smoothing technique [32] is well suited for a scalable cluster architecture.

Overall, the experimental results presented here demonstrate that our current architecture scales
linearly to four nodes while at the same time achieving an impressive performance on each individual
node. Furthermore, the load is nicely balanced and remains such, even if additional nodes or disks are
added to the system (with SCADDAR). We expect that high-performance Yima systems can be built
with 8 and more nodes. When higher performing CPUs are used (beyond our dated 866 and 933 MHz
Pentium IIIs) each node should be able to eventually reach 300 to 800 Mb/s. With such a configuration
almost any currently available network could be saturated (e.g., 8 × 800 Mb/s = 6.4 Gb/s effective
bandwidth).

4. Conclusions and Future Work

Yima is a second generation scalable real-time streaming architecture that builds upon results from
first generation research prototypes, and is compatible with industry standards. The fully distributed
design of Yima yields a linear scale up in performance, which we successfully verified through several
experiments with realistic end-to-end setups.

We plan to extend Yima in three ways. First, we are working toward enabling it with scalable real-
time recording capabilities [23]. Second, we plan to extend our experiments to investigate distributed

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 00:1–15
Prepared using speauth.cls



14 R. ZIMMERMANN, ET AL.

clients from more than one Yima server cluster. By co-locating two Yima server clusters at off-campus
locations and two other servers in different buildings within our campus, we have an initial setup
to start our distributed experiments. We have some preliminary approaches to manage distributed
continuous media servers [19] that we would like to incorporate, experiment with and extend. Finally,
we performed some studies on supporting other media types, in particular the immersive sensor data
streams [15]. Our next step would be to store and stream immersive sensor data.

REFERENCES

1. S. Berson, S. Ghandeharizadeh, R. Muntz, and X. Ju. Staggered Striping in Multimedia Information Systems. In
Proceedings of the ACM SIGMOD International Conference on Management of Data, 1994.

2. W. J. Bolosky, J. S. Barrera, R. P. Draves, R. P. Fitzgerald, G. A. Gibson, M. B. Jones, S. P. Levi, N. P. Myhrvold, and R. F.
Rashid. The Tiger Video Fileserver. In 6 th Workshop on Network and Operating System Support for Digital Audio and
Video, Zushi, Japan, April 1996.

3. B. J. Dempsey, J. Liebeherr, and A. C. Weaver. On Retransmission-based Error Control for Continuous Media Traffic in
Packet-Switching Networks. Computer Networks and ISDN Systems, 28(5):719–736, 1996.

4. S. Ghandeharizadeh, S. H. Kim, W. Shi, and R. Zimmermann. On Minimizing Startup Latency in Scalable Continuous
Media Servers. In Proceedings of Multimedia Computing and Networking 1997, pages 144–155, February 1997.

5. S. Ghandeharizadeh, R. Zimmermann, W. Shi, R. Rejaie, D. Ierardi, and T. Li. Mitra: A Scalable Continuous Media Server.
Kluwer Multimedia Tools and Applications, 5(1):79–108, July 1997.

6. A. Goel, C. Shahabi, S.-Y. D. Yao, and R. Zimmermann. SCADDAR: An Efficient Randomized Technique to Reorganize
Continuous Media Blocks. In Proceedings of the 18th International Conference on Data Engineering, pages 473–482,
February 2002.

7. J. Hsieh, J. Liu, D. Du, T. Ruwart, and M. Lin. Experimental Performance of a Mass Storage System for Video-On-
Demand. Special Issue of Multimedia Systems and Technology of Journal of Parallel and Distributed Computing (JPDC),
30(2):147–167, November 1995.

8. K. Hwang and Z. Xu. Scalable Parallel Computing: Technology, Architecture, Programming. McGraw-Hill, ISBN 0-07-
031798-4, February 1, 1998.

9. A. Laursen, J. Olkin, and M. Porter. Oracle Media Server: Providing Consumer Based Interactive Access to Multimedia
Data. In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 470–477, 1994.

10. C. Martin, P. S. Narayan, B. Özden, R. Rastogi, and A. Silberschatz. The Fellini Multimedia Storage Server. In S. M.
Chung, editor, Multimedia Information Storage and Management, chapter 5. Kluwer Academic Publishers, Boston, August
1996. ISBN: 0-7923-9764-9.

11. R. Muntz, J. Santos, and S. Berson. RIO: A Real-time Multimedia Object Server. ACM Sigmetrics Performance Evaluation
Review, 25(2):29–35, September 1997.

12. J. R. Santos, R. Muntz, and B. Ribeiro-Neto. Comparing Random Data Allocation and Data Striping in Multimedia Servers.
In Proceedings of ACM SIGMETRICS 2000, pages 44–55, June 2000.

13. J. R. Santos and R. R. Muntz. Performance Analysis of the RIO Multimedia Storage System with Heterogeneous Disk
Configurations. In ACM Multimedia Conference, Bristol, UK, 1998.

14. M. Seltzer, P. Chen, and J. Ousterhout. Disk Scheduling Revisited. In Proceedings of the 1990 Winter USENIX Conference,
pages 313–324, Washington DC, Usenix Association, 1990.

15. C. Shahabi. AIMS: An Immersidata Management System. In VLDB First Biennial Conference on Innovative Data Systems
Research (CIDR 2003), Asilomar, California, January 5-8 2003.

16. C. Shahabi and M. Alshayeji. Super-streaming: A New Object Delivery Paradigm for Continuous Media Servers. Journal
of Multimedia Tools and Applications, 11(1), May 2000.

17. C. Shahabi, G. Barish, B. Ellenberger, N. Jiang, M. Kolahdouzan, A. Nam, and R. Zimmermann. Immersidata
Management: Challenges in Management of Data Generated within an Immersive Environment. In Proceedings of the
International Workshop on Multimedia Information Systems, October 1999.

18. C. Shahabi, S. Ghandeharizadeh, and S. Chaudhuri. On Scheduling Atomic and Composite Continuous Media Objects.
Transactions on Knowledge and Data Engineering, 14(2):447–455, 2002.

19. C. Shahabi and F. B. Kashani. Decentralized Resource Management for a Distributed Continuous Media Server. IEEE
Transactions on Parallel and Distributed Systems (TPDS), 13(6), June 2002.

20. C. Shahabi and R. Zimmermann. Design and Development of a Scalable End-to-End Streaming Architecture, chapter Book
chapter 32 in Handbook for Video Databases: Design and Applications. Editors Borko Furht and Oge Marques. CRC Press
LLC, Boca Raton, Florida, September 2003.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 00:1–15
Prepared using speauth.cls



SCALABILITY EVALUATION OF YIMA 15

21. C. Shahabi, R. Zimmermann, K. Fu, and S.-Y. D. Yao. Yima: A Second Generation Continuous Media Server. IEEE
Computer, 35(6):56–64, June 2002.

22. F. Tobagi, J. Pang, R. Baird, and M. Gang. Streaming RAID-A Disk Array Management System for Video Files. In First
ACM Conference on Multimedia, August 1993.

23. R. Zimmermann, K. Fu, and W.-S. Ku. Design of a Large Scale Data Stream Recorder. In Proceedings of the 5th
International Conference on Enterprise Information Systems (ICEIS 2003), Angers, France, April 23-26 2003. URL:
http://www.iceis.org/.

24. R. Zimmermann, K. Fu, and F. Liao. Retransmission-based Error Control for Scalable Streaming Media Systems. Accepted
for publication in the SPIE Journal of Electronic Imaging, 2004.

25. R. Zimmermann, K. Fu, N. Nahata, and C. Shahabi. Retransmission-Based Error Control in a Many-to-Many Client-Server
Environment. In SPIE Conference on Multimedia Computing and Networking (MMCN), Santa Clara, CA, January 29–31,
2003.

26. R. Zimmermann, K. Fu, N. Nahata, and C. Shahabi. Retransmission-Based Error Control in a Many-to-Many Client-
Server Environment. In Proceedings of the SPIE Conference on Multimedia Computing and Networking 2003 (MMCN
2003), Santa Clara, California, January 29-31 2003.

27. R. Zimmermann, K. Fu, C. Shahabi, S.-Y. D. Yao, and H. Zhu. Yima: Design and Evaluation of a Streaming Media System
for Residential Broadband Services. In VLDB 2001 Workshop on Databases in Telecommunications (DBTel 2001), Rome,
Italy, September 2001.

28. R. Zimmermann and S. Ghandeharizadeh. Continuous Display Using Heterogeneous Disk-Subsystems. In Proceedings
of the Fifth ACM Multimedia Conference, pages 227–236, Seattle, Washington, November 9-13, 1997.

29. R. Zimmermann and S. Ghandeharizadeh. HERA: Heterogeneous Extension of RAID. In Proceedings of the 2000
International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2000), Las Vegas,
Nevada, June 26-29 2000.

30. R. Zimmermann and S. Ghandeharizadeh. Highly Available and Heterogeneous Continuous Media Storage Systems.
Accepted for publication in the IEEE Transactions on Multimedia Journal, 2004.

31. R. Zimmermann, C. Kyriakakis, C. Shahabi, C. Papadopoulos, A. A. Sawchuk, and U. Neumann. The Remote Media
Immersion System. IEEE MultiMedia, 11(2):48–57, April-June 2004.

32. R. Zimmermann, C. Shahabi, K. Fu, and M. Jahangiri. A Multi-Threshold Online Smoothing Technique for Variable Rate
Multimedia Streams. Accepted for publication in the Kluwer Multimedia Tools and Applications journal, 2004.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 00:1–15
Prepared using speauth.cls


