
IE
EE

 P
ro

of

W
eb

 V
er

sio
n

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 0, NO. , 2013 1

Scalable Content-Based Music Retrieval Using Chord
Progression Histogram and Tree-Structure LSH
Yi Yu, Roger Zimmermann, Senior Member, IEEE, Ye Wang, Member, IEEE, and Vincent Oria

Abstract—With more and more multimedia content made avail-
able on the Internet,music information retrieval is becoming a crit-
ical but challenging research topic, especially for real-time online
search of similar songs from websites. In this paper we study how
to quickly and reliably retrieve relevant songs from a large-scale
dataset of music audio tracks according to melody similarity. Our
contributions are two-fold: (i) Compact and accurate representa-
tion of audio tracks by exploiting music semantics. Chord progres-
sions are recognized from audio signals based on trained music
rules, and the recognition accuracy is improved by multi-probing.
A concise chord progression histogram (CPH) is computed from
each audio track as a mid-level feature, which retains the discrim-
inative capability in describing audio content. (ii) Efficient organ-
ization of audio tracks according to their CPHs by using only one
locality sensitive hash table with a tree-structure. A set of domi-
nant chord progressions of each song is used as the hash key. Av-
erage degradation of ranks is further defined to estimate the simi-
larity of two songs in terms of their dominant chord progressions,
and used to control the number of probing in the retrieval stage.
Experimental results on a large dataset with 74,055 music audio
tracks confirm the scalability of the proposed retrieval algorithm.
Compared to state-of-the-art methods, our algorithm improves the
accuracy of summarization and indexing, andmakes a further step
towards the optimal performance determined by an exhaustive se-
quence comparison.

Index Terms—Music-IR, audio computing, chord progression
histogram, tree-structure, locality sensitive hashing.

I. INTRODUCTION

W ITH an explosive growth of community-contributed
multimedia data, content-based music information

retrieval (CBMIR) on large-scale social websites has become
a timely and critical research topic. For example, many music
movie soundtracks, with the same or similar melody but sung
and recorded by different people, are uploaded to YouTube
every year. A melody is a linear succession of music tones.
CBMIR, in terms of melody similarity, has several novel
applications such as plagiarism analysis, near duplicate audio
detection, relevant song retrieval and recommendation, etc.
In typical scenarios, a user can find audio tracks similar to

Manuscript received September 22, 2012; revised January 06, 2013 and
March 14, 2013; accepted March 15, 2013. This work was supported by the
Singapore National Research Foundation under its International Research
Centre Singapore Funding Initiative and administered by the IDM Pro-
gramme Office. The associate editor coordinating the review of this manuscript
and approving it for publication was Chia-Wen Lin.
Y. Yu, R. Zimmermann, and Y. Wang are with the Department of Computer

Science, National University of Singapore, Singapore (e-mail: yuy@comp.nus.
edu.sg).
V. Oria is with the Department of Computer Science, New Jersey Institute of

Technology, Newark, NJ 07102 USA.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMM.2013.2269313

his favorite melody using an audio example, or music compa-
nies can recommend to users new music albums with similar
melodies according to listening records. These applications
need large-scale CBMIR techniques.
Scalable CBMIR is commonly related to two essential as-

pects: (i) Representing audio signals by compact features.Music
signals usually are described by sequences of low-level fea-
tures such as short-time Fourier transform (STFT) [1], pitch [2],
[3], mel-frequency cepstral coefficient (MFCC), and chroma
[4]–[6]. (ii) Organizing audio features in the database using an
indexable format. Locality sensitive hashing (LSH) [1], [5], [7],
[8], tree structure [9]–[11], and hierarchical structure [12] are
typical methods to music audio content indexing. These two
aspects need joint design so as to improve both accuracy and
efficiency of large-scale music retrieval. Unfortunately, music
audio content analyses and summarizations by means of low-
level features in previous works are insufficient for the scal-
able CBMIR task. This is because low-level feature descriptors
of audio signals are highly heterogeneous and do not generate
a robust description for music audio tracks. The performance
of summarizing audio signals without exploiting music knowl-
edge is limited. In contrast, mid-level features (chord [13]–[18],
rhythm, and instrument) represented as musical attributes are
able to better extract music structures from complex audio sig-
nals and retain semantic similarity. A chord sequence contains
rich music information related to tonality and harmony, which
is helpful for effectively distinguishing whether music audio
tracks are similar to each other or not. However, chord recogni-
tion accuracy is still relatively low in previous state-of-the-art
algorithms [13]–[18], which affects the performance of chord-
based music retrieval. Moreover, good scalability requires that
the retrieval complexity should be at most sub-linear with re-
spect to the number of songs in the database. These issues in-
spire us to make use of mid-level feature descriptors and orga-
nize them in an indexable structure affordable for large-scale
music audio content matching and retrieval.
In this paper we study chords—a harmony-related mid-level

feature—for the task of scalable CBMIR and exploit chord pro-
gressions (CPs) to realize accurate summarization of music con-
tent and efficient organization of the database. As for CPs, we
mainly consider transitions between adjacent chords. But it is
easy to extend the idea to longer chord progressions. The pro-
posed algorithm consists of three key components: (i) recog-
nizing CPs from a music audio track based on the trained music
rules, (ii) computing a summary of the track from the recog-
nized CPs, and (iii) organizing the summaries of audio tracks
in the database using an indexing structure. How to improve
CP accuracy was investigated in our previous work [19]. In this
paper we conduct more detailed analyses. Specifically, the CPs
are divided into two categories. Their recognition accuracy is

1520-9210/$31.00 © 2013 IEEE

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

2 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 0, NO. , 2013

investigated by using multiple chroma features and refining the
training set. In addition, summaries computed from CPs are or-
ganized in a refined LSH table in order to accelerate the retrieval
process. The effect of CP recognition on LSH design is also the-
oretically analyzed. Our major contributions are summarized as
follows:
• Compact and accurate representation of audio tracks via
CPs. Recognition accuracy of CPs is greatly improved
by exploiting multi-probing. More specifically, through a
modified Viterbi algorithm, -best CPs are locally probed,
which in terms of their ranks are further summarized into
a compact chord progression histogram (CPH). Combi-
nations of the proposed multi-probing technique with dif-
ferent chroma features and the effect of refining the training
set are also studied.

• Efficient organization of CPHs of audio tracks via LSH.
A satisfactory recall is achieved with only one hash table,
by using dominant CPs of audio tracks as hash keys and
exploiting multi-probing. Organizing songs in the lay-
ered tree-structure helps alleviate the potential imbalance
among buckets. Average degradation of ranks is further
defined to assess the similarity of two songs in terms of
their dominant CPs, and used to control the number of
probings in the retrieval stage.

By locally probing CPs among adjacent frames according to
their state transition probabilities, the computed CPH is an accu-
rate and powerful feature containing harmonic progression and
tonal structures of audio tracks. In addition, retrieval accuracy
of the LSH-based indexing is improved by multi-probing, and
the implementation of LSH is efficient by requiring only one
hash table. Our experiments, on real-world large-scale datasets
including 74,055 audio tracks, confirm that the proposed algo-
rithm achieves a nice tradeoff between retrieval accuracy and ef-
ficiency and demonstrate the feasibility of using CPs for music
content representation and scalable retrieval. Compared to pre-
vious schemes which address summarization and indexing, the
proposed algorithm makes a further step towards the optimal
performance determined by an exhaustive sequence compar-
ison. As melody is usually embodied in chord progressions, the
proposed CPH feature serves as a signature of an audio melody
and helps to accelerate similarity retrieval in terms of melody.
This work begins with a review of music background and re-

lated work on music representations, LSH, CBMIR, and a com-
parison with our retrieval method in Section II. Section III de-
scribes the proposed retrieval algorithm in detail, focusing on
how to realize multi-probing in recognizing CPs, how to sum-
marize the probed CPs into a CPH, and how to organize CPHs
in the LSH table. In Section IV, we discuss the effect of training
sets on CP recognition, the effect of multi-probing in CP recog-
nition and retrieval, and present overall experiment results. Fi-
nally, we conclude the paper with Section V.

II. BACKGROUND AND RELATED WORK

Conventionally, music retrieval on the Internet heavily de-
pends on tag information, both in the database and the query.
However, tag information of user-generated audio tracks might
be missing, ambiguous, or even misleading. In contrast, content
analysis and detection of audio tracks help improve retrieval
quality. However, scalability becomes a challenging issue as

Fig. 1. Music representation: from signal to chord.

multimedia music content has become prevalent on user-con-
tributed social websites. To provide real-time online content re-
trieval in a large-scale CBMIR system, approximate search is
usually adopted instead of the time-consuming exhaustive com-
parison and it can be described as follows: input a segment of a
music piece, perform index-based similarity search, and finally
return some relevant songs in a ranked list.

A. Representation of Music Information

An instrument-generated song can be represented at different
levels. At the high level, each song has its own score. At the
mid-level, at any moment, usually multiple notes are played
together which correspond to a chord. At the low level, the
acoustic signal of simultaneously played notes provides a spe-
cific music (spectral) perception to users.
Fig. 1 shows different levels of abstraction of music signals.

A music signal in Fig. 1(a) is a long sequence of samples in the
time domain. Directly comparing music signals is prohibitively
expensive and finding an appropriate representation is the key to
efficient music retrieval. Music signals are perceived by human
beings in terms of spectral components (Fig. 1(b)). In conse-
quence, most CBMIR algorithms rely on extracting spectral fea-
tures (e.g., STFT [1], MFCC) from acoustic signals. However, it
is also time-consuming to determine the similarity of two audio
signals in terms of feature sequences.
The frequency resolution of the human auditory system is

limited and non-linear. It is sufficient to divide the music fre-
quency band into 88 sub-bands in the log-scale, each corre-
sponding to a pitch note [2], [3], as shown in Fig. 1(c), where
adjacent pitches are spaced by a semitone. Due to the harmonic
nature of music instruments, a frequency appearing in the spec-
trum is often accompanied by its octave frequency. In addition,
multiple pitch components are generated simultaneously in a
polyphonic song. Therefore, it is relatively difficult to find the
exact pitches. Harmonic frequency components are perceptu-
ally similar. Accordingly, the energy of 88 pitch sub-bands can
be further grouped into 12 pitch class profiles, or the 12-dimen-
sion chroma feature [13], where energies of pitches in the same
harmonic family are added together.

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

YU et al.: SCALABLE CONTENT-BASED MUSIC RETRIEVAL USING CHORD PROGRESSION HISTOGRAM AND TREE-STRUCTURE LSH 3

Different methods have been suggested to compute chroma
features, e.g., chroma energy normalized statistics (CENS)
in [20] and chroma DCT-reduced log pitch (CRP) in [21],
where chroma is computed, smoothed and down-sampled.
Beat-synchronous chroma based on instantaneous frequency
(BSIF chroma) is suggested in [4], where chroma is computed
per-frame using the instantaneous frequency information.
Adjacent chroma features, corresponding to the same beat, are
aggregated into a single feature by computing their average.

B. Chord Progression Recognition

Mid-level features of music audio tracks are compact de-
scriptors transcribed from low-level features of acoustic sig-
nals by aid of signal processing, musical knowledge, machine
learning and pattern recognition. These features capture musical
attributes (e.g., chord, rhythm, and instrument) and better rep-
resent musical semantics than low-level features. They provide
a brief yet accurate enough representation of audio signals and
can be used as an alternative when high-level semantic features
are not available. They can serve as audio signatures and help
to accelerate music similarity retrieval, structure segmentation,
mood classification and genre recognition.
As a mid-level feature, a chord is a concise representation

of music signals. A chord [22] in music is a combination of
two or more notes initiated simultaneously. Chord progression
represents harmonic content and semantic structure of a music
work, and influences music melody. Hence, chord recognition
has attracted great interest and many efforts have been devoted
to transcribing chords from music signals [13]–[18]. Major
bins of a chroma feature are associated with a chord pattern,
e.g., the chroma in Fig. 1(d) corresponds to major triad C in
Fig. 1(e). The simplest way to chord recognition is template
matching [13], computing the correlation between the chroma
feature (Fig. 1(d)) and a target chord pattern (Fig. 1(e)). This,
however, does not always work well since unexpected com-
ponents sometimes may dominate chroma energy [14]. More
advanced chord recognition involves supervised training using
either a Gaussian model or a support vector machine (SVM).
Instead of simple chroma [4], [20], [21], BSIF chroma, together
with its quad terms, forms a compound feature with
dimensions and is used in chord recognition in [16]. In contrast
to per-frame recognition, a more effective policy is to consider
chord progression and exploit sequence detection by the hidden
Markov model (HMM) [18].

C. Locality Sensitive Hashing

LSH [23] is an index-based data organization structure, used
to quickly and approximately find items relevant to a given
query. Its retrieval speed usually is much faster than that of ex-
haustive search algorithms. Accordingly, LSH-based methods
have shown great impact on multimedia information retrieval
such as music content detection [1], duplicate video mining and
clustering [24], and large-scale image retrieval and searching.
Conceptually, the general idea behind LSH is very simple as

follows: if items are similar to each other in the original vector
space, after projecting these items into a new vector space by a
family of locality sensitive hashing functions, they remain sim-
ilar to each other with a high probability. In a LSH-based re-

trieval, at first buckets associated with the hash key determined
by the query are located. Then, with a post comparison, rele-
vant items are found and ranked according to their similarity to
the query. Distribution of features in buckets tend to be uneven.
This can be solved by splitting big buckets into sub-buckets [7].
Typically, many parallel LSH tables are required to achieve high
retrieval accuracy, which occupies a large space. The number of
hash tables can be greatly reduced by exploiting multi-probing
[25], [26].

D. Related CBMIR Systems

A quick search in a large-scale music database needs a careful
tradeoff between accuracy and efficiency, where retrieval effi-
ciency can be greatly improved by summarization and LSH.
Efforts in Summarizing Audio Signals: In [27], principal

component analysis (PCA) is used to compute a summary
representation from typical audio features (timbre, rhythm and
pitch). With annotated class information, a multi-layer neural
network is trained. The activation value of each feature inside
the neural network is regarded as the most discriminative infor-
mation. This method is more suitable for music classification
than content-based retrieval. The most-frequently-used spectral
features (e.g., MFCC, chroma, and pitch) are combined into
a federated feature [28] by aid of assigning a set of weights
trained from a regression model. The disadvantage of these
methods is that such a global feature descriptor has difficulty
in retaining the local temporal information. In [29], modulated
complex lapped transform (MCLT) coefficients are computed
from audio samples and pass two-layer oriented PCA to gen-
erate summaries for audio segments. In [5], a multi-probe
histogram (MPH) is computed from the sequence of chroma
features. A histogram, over a set of predefined music concepts
represented by audio words, is suggested in [30]. Local tem-
poral information is retained in the summarization in these
methods, but music knowledge is not exploited.
Organizing Music Database via LSH: The first LSH-based

CBMIR system was MACSIS proposed by Yang [1]. STFT is
calculated from each signal and used as the basic feature, from
which hash keys are computed. Hough transform, after the in-
dexing procedure, is performed to rank matched results in terms
of sequence detection. In [31], log frequency cepstral coeffi-
cients (LFCCs) and pitch class profiles are used to represent
music signals. Audio shingles, concatenating adjacent features
into a high-dimensional vector, are arranged in a LSH table to
support a fast, approximate nearest neighbor search. Similar re-
sults, applying random linear functions in realizing LSH, were
studied in [28], [29], [32]. A sequence of consecutive pitch notes
is used as a hash index in [33]. Potential errors in pitch recogni-
tion are taken into account. But this technique cannot be directly
used to retrieve polyphonic songs. In [5], a two-stage LSH al-
gorithm is exploited to improve the reliability and scalability of
CBMIR systems. Besides exploiting LSH in summarizing audio
signals in the first stage, MPHs are organized in the LSH table
in the second stage, based on the order-statistics information.

E. Key Differences to State-of-the-Art Work

In this paper we apply musical knowledge to refine music
content representation, aiming to improve both reliability and

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

4 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 0, NO. , 2013

TABLE I
TABLE OF NOTATIONS

scalability of searching relevant songs in a large data set. In
comparison with previous work, the overall benefits of our al-
gorithm are described as follows:
• Exploiting CPs in summarizing audio signals. This heavily
depends on CP recognition. But state-of-the-art algorithms
[13]–[18] cannot ensure a high recognition accuracy. We
solve this problem by introducing multi-probing in the
SVM recognition, and further compute a robust
mid-level feature—chord progression histogram (CPH).
In this way, the summary computed by the proposed
method is more accurate compared with previous works
on music summarization [5], [27]–[29].

• Organizing songs in the tree-structure LSH table by using
dominant CPs as hash keys. Although previous schemes
[1], [7], [28], [29], [31] usually require multiple parallel
hash instances, our LSH scheme only requires one hash
table. Satisfactory retrieval performance is achieved by
multi-probing in the search stage. We further define av-
erage degradation of ranks to refine this probing.

Multi-probing is performed in the CP recognition so as to
compensate for otherwise inaccurate CPs due to the low recog-
nition accuracy. The computed CPH is strongly associated with
musical knowledge and capturesmost-frequent CPs, where like-
lihood information of each probed CP is associated with its
own rank. In addition, organizing CPHs in the tree-structure
LSH table according to their dominant CPs ensures that fea-
tures in the same bucket are highly similar, which facilitates
multi-probing in the search stage.

III. CHORD PROGRESSION-BASED RETRIEVAL ALGORITHM

In this section, we present the main retrieval algorithm.
First, we describe the CBMIR framework in Section III-A,
introducing the main components of the retrieval system. Di-
rectly computing the similarity between sequences of low-level
features is computationally prohibitive in a large database.
Therefore, we exploit CPs to compute a mid-level feature. The
model used for recognizing CPs from chroma sequences and the
multi-probing procedure for improving recognition accuracy
are discussed in Section III-B. To avoid directly comparing two
chord sequences while retaining chord progressions, we further
explain how to compute a chord progression histogram (CPH)
in Section III-C, focusing on how to probe CPs. Based on a
similarity analysis in terms of CPs, dominant CPs are used as
hash keys to design a tree-structure LSH table in Section III-D.
Finally, the effect of CP recognition on LSH performance is
theoretically analyzed in Section III-E. Some frequently used
symbols are listed in Table I.

Fig. 2. Framework for a scalable CBMIR system.

A. Framework Overview

Fig. 2 shows our framework for a scalable CBMIR system. It
consists of four main parts: chord model training, CP recogni-
tion, CPH computation, and hash table organization. Different
classification methods are compared in [34] and SVMs showed
mostly good performances. Therefore, for the training part, we
use the SVM model [35], which considers both the spectral
structure in each feature and CP embedded in adjacent features.
With the trainedmodel, CP recognition is performed for all songs
in the database. Their CPHs are computed and organized in the
hash table, where the set of dominant CPs of each song is used
as its hash key. With a query as input, its CPs are recognized and
its CPH is computed.With its hash key, relevant songs are found
from the associated buckets. Finally, relevant songs are returned
to the user in a ranked list as the retrieval results.
A sequence of -dimensional chroma-related features

is extracted from audio signal and is to be transcribed to a
chord sequence. We will apply the proposed method together
with several state-of-the-art features: CENS (Muller et al.
[20],), CRP (Muller et al. [21],), BSIF
chroma (Ellis et al. [4],), and CompFeat (Ellis et
al. [16],). Distinguishing all possible chords is
quite complicated. For many applications, e.g., retrieval in this
paper, it is enough to use a subset of chords as the vocabulary.
Similar to previous work, we mainly consider the most frequent
chords: 12 major triads and 12 minor
triads . All other types of chords are re-
garded as one type . Altogether there are possible
chords, where are mapped to the numbers

respectively, so as to uniquely identify each chord.

B. -Best Chord Progression Recognition

Each chroma feature corresponds to a chord. In addition, the
composition rule of a song also places some constraints on ad-
jacent chords, which determines CP and is reflected in adjacent
features. We adopt the SVM model [35], SVM for per-fea-
ture chord recognition, and HMM for CP recognition.
The SVM model is described by (1) and explained as

follows: is a matrix used to convert a
feature to a vector of chord scores which correspond to
the likelihood of chords computed from the feature (the effect of
SVM). is a matrix describing the score of transiting
from one chord to another between adjacent features (the effect
of HMM). is a indicator vector that exactly has

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

YU et al.: SCALABLE CONTENT-BASED MUSIC RETRIEVAL USING CHORD PROGRESSION HISTOGRAM AND TREE-STRUCTURE LSH 5

only one entry set to 1 corresponding to a chord .
is a indicator matrix that only has one entry set to 1
corresponding to chord progression from to . With a fea-
ture sequence and a chord sequence

is the score (likelihood) that is matched
to chord . is the score that the local chord
sequence progresses from to . Consequently, the sum in
(1) represents the total score that the feature sequence is
matched to the chord sequence . In the end, the chord
sequence with the maximal total score is found.

(1)
Parameters and of the SVM model can be obtained
by training, using the public dataset “Beatles” which has been
manually annotated by Harte [36].
1) Chord Progression Recognition With Multi-Probing:

Chord progression recognition by (1) only returns the
chord sequence with the highest score. However, even with
state-of-the-art algorithms, the chord recognition accuracy is
still relatively low, which leads to a lower recognition accuracy
of CPs. This is partially due to the difficulty in detecting the
exact chord transition positions in music signals. When the
recognized chord sequence is used for retrieval, we argue that
besides the chord sequence with the highest score, other CPs
should also be probed as well, in order to improve the relia-
bility. Although new features may be suggested for improving
performance of CP recognition, the multi-probing method
suggested here will still work well.
The well-known Viterbi algorithm is usually used in optimal

sequence detection. It simplifies sequence detection by only
keeping track of one optimal path from starting point to each
state at time . It is also used in the SVM algorithm [35]
for chord progression recognition. We modified the Viterbi
algorithm shown in Algorithm 1 to realize local multi-probing,
not only probing chords per feature but also probing
CPs per transition. Actually the latter is more important in
computing CPH.

Algorithm 1 Chord progression recognition

1: procedure CHORDPROGRECOG
2:
3:
4: for do
5:
6:
7:
8: end for
9: top chords of
10: for do
11:
12: top chords of
13:
14: top CPs of
15: end for
16: return and
17: end procedure

Fig. 3. Chord progression recognition with multi-probing.

This modified Viterbi algorithm takes the feature sequence
as input, and outputs chord set and CP set . The

procedure is divided into two parts. The first part is a forward
process, where scores of all paths are computed.
is a vector which contains scores of all chords when
matched against . is a vector, each of which corre-
sponds to the optimal path from the beginning to a chord at .
At equals . When , scores of the paths
from the beginning to chord at are composed of three parts:
(1) , scores of the optimal paths to all chords at ,
(2) , scores of transiting from all chords at to chord
at , and, (3) , the score of chord when matched against
. Scores of these paths leading to the same chord at are

recorded in and scores of the optimal paths to chords
at are stored in .
The second part is the reverse process, where potential chords

and CPs are probed. At , the top chords of are
regarded as potential chords corresponding to the last feature.
When , there is a path from each chord
at to each of the chords in at . Scores of these

paths sharing the same chord at are added together and
saved in , from which the top chords are found as . The

CPs from chords at to chords in at
form a set , from which the top are probed. These CPs,
together with their ranks, are saved in .
Fig. 3 shows an example with 5 features. At the stage, the

feature is statistically classified to possible chords, where
the chord has a score of . The score of pro-
gressing from chord to equals to . Be-
sides the optimal chord sequence (3, 4, 5, 4, 4) with the maximal
score, there are other paths that may partly overlap with the op-
timal path, but with different chords and CPs somewhere. With
errors occurring in chord recognition, probing sub-optimal paths
becomes necessary. In Fig. 3, at each stage, chords and

CPs are probed.
2) An Example of Chords/Chord Progressions: Fig. 4 shows

some results of chord recognition with multi-probing, where
chords and CPs are probed per stage. The

beat-synchronous CompFeat feature [16] is used. The horizontal

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

6 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 0, NO. , 2013

Fig. 4. Effect of chord progression recognition (“A Hard Day’s Night” of the
album “A Hard Day’s Night” performed by “The Beatles” band).

axis is time and the vertical axis is the chord label. Solid points
are true chords by manual annotation, circle and square points
are recognized chords, and short lines are recognized CPs. Of
the eight CPs

, by recognition, one appears in
the 1 rank and five
appear in the 2 rank. From 50 sec to 53 sec, is recognized
as , and is recognized as because they have two out
of three tones in common. Correctly detecting the two chords
requires more probings.
The 15 sec audio signal in Fig. 4 contains 9 chords, or 8 CPs

according to annotation information. But there are many more
features than chords due to the following factor: In the feature
extraction stage, an audio signal is divided into short, overlap-
ping frames. Adjacent frames corresponding to the same beat
are aggregated to generate one beat-synchronous feature [16]
and used for chord progression recognition. But chord bound-
aries cannot always be accurately detected in this stage. As a
result, the same chord may span several adjacent features, e.g.,

spans 8 features. Then, CPs recognized from audio sig-
nals can be divided to two categories, inter-chord CPs (e.g.,

) where chords actually change, and intra-chord
CPs (e.g.,) where the chord is the same but divided
into multiple features. Only inter-chord CPs are associated with
melody information.

C. Chord Progression Histogram

The chord sequence recognized from the feature sequence is a
mid-level representation of an audio signal. Directly comparing
two chord sequences is faster than comparing two chroma se-
quences. But it still requires time-consuming dynamic program-
ming (DP), in order to account for potential mis-alignment. To
expedite the retrieval process with a more compact representa-
tion, the chord sequence can be further summarized into a chord
progression histogram.
Among CPs provided by Algorithm 1, each probed CP

is a triple. The progression from chord
to chord is mapped to a CPH bin . From the rank , a
weight is computed in a heuristic way so that a larger weight
is used for a higher rank. More specifically, weights

are used for ranks , respectively. Different

weight policies are tried and by experiments we find this simple
weight policy works well. The whole process is shown in (2).

(2)

In the ideal case, CPH should only include inter-chord CPs
to accurately reflect the melody information. But intra-chord
CPs do exist. Consider the case where two adjacent features
correspond to the same chord . By probing

chords probed from the former feature are while
chords probed from the latter feature are . The probed
CPs are (the ground truth intra-chord CP), (is
probed from the latter feature) and (is probed from the
former feature). Fig. 4 shows an example around 60 sec:

and (true chord is). In addition, there are
more intra-chord CPs than inter-chord CPs, e.g., in Fig. 4 only
8 CPs are inter-chord CPs and the other 25 are intra-chord CPs.
It is hard to distinguish inter-chord CPs from intra-chord CPs
without knowing chord annotation. Therefore, CPs are
removed, but CPs and remain. As a result, a CPH
is somewhat symmetric.

D. Tree-Structure LSH

Each song has its own CPs and two similar songs share many
CPs in common. Therefore, it is possible to use CPs in the hash
design. But it is necessary to first investigate to what extent two
relevantsongsaresimilar in termsof theirdominantCPs.Because
CPH is somewhat symmetric, we only consider CPs from to
where in the hash design in order to get more unique hash
keys. Altogether there are possible CPs.
Let the top CPsof two relevant songs and be and ,

respectively. The top CPs of song appear in ’s CP list with
ranks . Due to errors in CP recognition,
someofthe top CPsofsong mightnotappear in the top CPsof
song . Instead, their rankswillbedegraded.Fig.5showsasimple
example, where the top 5 CPs (ranks) of song
appear in the CP list of song with ranks .
To evaluate how much two songs are similar to each other in
terms of their dominant CPs, we define the average degradation
of ranks (ADR) between two songs as follows:

(3)

In the ideal case, , and equals 0. When
the top CPs of appear in the CP list of with ranks being

, ADR equals to . Therefore, ADR is an
average degradation of ranks of CPs.
ADR can be used to assess the similarity of two songs in

terms of their dominant CPs. We investigated ADR for relevant
songs over a small testset. The CDF (cumulative distribution
function) of ADR with are shown in Fig. 6.
ADR is relatively small in most cases. In the above analysis, a
CP of a song may be in any rank of its relevant songs. Usually
it is only necessary to consider ranks in the top CP list. By
experiment, we find that setting provides good
performance. This can be used to design hash tables. If a song

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

YU et al.: SCALABLE CONTENT-BASED MUSIC RETRIEVAL USING CHORD PROGRESSION HISTOGRAM AND TREE-STRUCTURE LSH 7

Fig. 5. Rank relationship between dominant CPs of similar songs.

Fig. 6. Distribution of average degradation of ranks among similar songs.

Fig. 7. Tree-structure LSH, using dominant CPs as variable-length hash keys.

has its top CPs in the top CP list of , they are regarded as
being roughly similar to each other. To further ensure a degree
of similarity, must be less than a pre-determined
threshold, which is decided by ensuring that CDF is greater than
a value, e.g., 0.98.
In the database, of a song is used as its hash key and

is stored in the associated bucket. But an investigation
shows that the top CPs are not evenly distributed. Most items
are located in just a few buckets, which degrade the hashing
efficiency. In this design, a large bucket is further divided into
sub-buckets by using more CPs as the hash keys. For example,
for a bucket with the key length being , the key length of its
sub-bucket will be extended to . Sub-buckets belonging to the
same bucket share the same prefix composed of CPs, and are
distinguished by the remaining CPs. In this way, the hash
table is divided into levels, and the lengths of hash keys equal
to , respectively. Fig. 7 shows an example where

. Dashed boxes are internal nodes representing buckets
that are further divided into sub-buckets. CPHs are stored in
solid boxes which correspond to leaf buckets. The longer the
hash key of a leaf bucket is, the more similar songs in the same
bucket will be.
The tree-structure is a little similar to the LSH forest scheme

in [7]. However, the hash functions are quite different. General

randomhashfunctions, , areused in [7],without
exploiting statistical properties of features. We investigated the
energydistributionofCPHand found that energy isdominatedby
atmost20majorbins.Usinggeneral randomhash functions,most
coefficients of will not work. Therefore, many parallel hash ta-
bles are required to achieve a satisfactory recall. In our scheme,
CPs are used to construct hash keys. Songs in the same bucket
share the same dominant CPs. Organizing CPHs in this way en-
sures high similarity of songs in the same bucket. Therefore, sat-
isfactory retrieval performance can be achieved with only one
hash table, by using multi-probing [26] in the search stage.

Algorithm 2 Store CPH features in the LSH table

1: procedure STORECPH
2: Find top CPs
3: Find the bucket with longest key that matches
4: if bucket is found at level then
5: if does not contain any sub-bucket then
6: Put in bucket
7: if #items in a threshold then
8: DivideBucket
9: end if
10: else
11: Create a new sub-bucket with the key
12: Put in the sub-bucket
13: end if
14: else is not found
15: Create a new bucket with the key
16: Put in the new bucket
17: end if
18: end procedure
19: Procedure DIVIDEBUCKET
20: for Each in bucket do
21: Compute top CPs
22: Put in sub-bucket associated with
23: end for
24: end procedure

The organization of a LSH table is described by Algorithm 2.
To store in the hash table, at first its top CPs
are found. Then, the bucket which has the longest key matching
the one determined by is found. Fast algorithms for
searching network addresses with the longest prefix [37] can be
exploited here. There are three cases: (i) This bucket exists and
does not contain any sub-buckets. is stored in the bucket.
If the number of items in the bucket gets greater than a pre-deter-
mined threshold, this bucket is divided into sub-buckets using
longer hash keys. (ii) A bucket is found, which is further com-
posed of sub-buckets. But the target sub-bucket does not exist
yet. A new sub-bucket is created and is stored there. (iii)
The bucket is not found. Then a new bucket is created at the first
level and is stored there.
Retrieval with the tree-structure LSH is described by Algo-

rithm 3, for searching songs relevant to a query , whose CPH is
computed as . Initially, the candidate set is cleared to
be empty. Starting from the hash level with longest hash keys,
at a hash level , from all possible out of the top CPs
of the query, the ones with less than a threshold are

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

8 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 0, NO. , 2013

kept, and used as hash keys for probing. CPHs in the associ-
ated buckets are found and added to . Then, the similarity
between and CPHs in is computed, and the set of
relevant songs is returned as .

Algorithm 3 Retrieve items relevant to by LSH

1: procedure QUERYWITHCPH

2: is cleared to be empty
3:
4: for Search each LSH level
5: for all CPs of top CPs of query do
6: if ADR of CPs a threshold then
7: Use CPs as hash key to probe buckets
8: Clear if buckets are found
9: Get CPHs from buckets and add to
10: end if
11: end for
12: if is false then
13: Stop searching other hash levels
14: end if
15: end for
16: Comp. similarity between and CPHs in
17: return the set of songs as whose similarity degree
18: with is greater than a threshold.
19: end procedure

1) Computation Cost of the Retrieval: Music composition
rules constrain the possible CPs and their combinations. As-
sume, without loss of generality, that there are typical
CPs, , with probabilities . Of the
songs in the database, are stored in a -level

bucket with the hash key . The max-
imal number of songs in a bucket is limited to a threshold ,
i.e., . To this end, a large bucket is split into
sub-buckets which are assigned longer hash keys (more CPs) so
that the probability product, , is no more than .
With a song as a query, the CPs used as the hash key of

a -level bucket appear in the query’s CP list with ranks
, where are the de-

graded ranks. According to (3), this bucket is probed under the
following condition where is the ADR threshold.

(4)

The number of possible combinations of , deter-
mines the maximal number of probing in the level. On the
other hand, the maximal number of buckets in the level
is . Therefore, the retrieval cost under LSH, normalized
by the cost of exhaustive search, is limited to be no more than

.

E. Performance Analysis

In this section, we give an analysis of the effect of CP recogni-
tion on the LSH design. To get a closed-form, we only consider
the simple case without using different weights. Assume the
false negative probability of CP recognition is , with which
a CP is falsely recognized as other CPs. A false recognition

of CP also causes a false positive event, with a probability
under the assumption that a false CP is

uniformly distributed among the other CPs. Consider
a song with CPs. Assume without loss of generality that the
countsof under theground truthequal

in thedecreasingorder.Their actual
counts by recognition equal . As for ,

(5)

where is the number of falsely recognized as other
CPs and is the number of other CPs falsely recognized
as . can be modeled by a binomial distribution [38]

and approximated by a normal distribution
. Similarly, can be modeled by

a binomial distribution and approximated by a
normal distribution

.
Therefore, approximately follows a normal distribution in

(6) where and are operations of expectation and vari-
ance respectively.

(6)

In a similar way, we can find the distribution of . Then,
also follows a normal distribution

(7)

In the LSH design, assume top CPs are used as hash keys.
Without probing, two similar songs should have their hash keys
exactly the same. Then, the recognition result of their top
CPs should also be correct. In other words, all top CPs of
the ground truth results should remain top after recognition.
This can be approximated by requiring (
will be greater than with a higher probability), and ex-
pressed in a simple form by the often-used function

as follows,

(8)

A simple probing policy is to require that top CPs of a song
appear in the top CPs of its relevant audio tracks,

(9)

and
. Then, because is a decreasing func-

tion. In other words, probing improves the retrieval recall of
LSH when using dominant CPs as the hash keys.

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

YU et al.: SCALABLE CONTENT-BASED MUSIC RETRIEVAL USING CHORD PROGRESSION HISTOGRAM AND TREE-STRUCTURE LSH 9

The above simple probing policy can be further refined by
setting a threshold for the ADR metric so as to only probe the
most likely buckets.

IV. EVALUATION

In this section we evaluate the retrieval algorithm suggested
in Section III with extensive simulation evaluations. We first
investigate how to select the training set for CP recognition.
Then, with a small database, we examine the effects of probing
on both CP recognition and retrieval, and determine the optimal
parameters. Finally, we present the overall evaluation results.

A. Selecting a Training Set

State-of-the-art chord recognition algorithms, evaluated in
MIREX [39], all are trained and tested on the Beatles sets [36].
About 3/4 of the 180 songs are used for training and the other
1/4 for testing. With such a policy, the trained model may be
over fitted to the training set and does not generalize well to
other databases.
Different from a Gaussian model which heavily depends on

the size of the training set, the power of SVM comes from the
support vectors themselves. The training set would work well
if all typical support vectors are included. Instead of chords,
we are more interested in CPs. We use the MRR1 metric to
measure the performance of CP recognition.MRR1 is defined as
the mean reciprocal rank of the correct CP in the probed CP list,
which identifies both the recognition accuracy and the quality of
CPs in times of probing. To avoid over-fitting and remove some
features specific to training songs, we select a small training set
from Beatles and use others as the testing set. We wish to find a
small training set that contains most typical support vectors and
maximizes MRR1 on the testing set with more songs so that the
trained model can be better generalized to other datasets.

Algorithm 4 Find the optimal training set

1: procedure FINDTRAINSET

2: Equally divide into groups ,
each with songs

3: for do
4: Use as the training set and train a model
5: Test the model with , compute
6: end for
7: Sort , in the decreasing
order, accordingly becomes

8: Use the last groups as the common testing set .
9: and train a model
10: Test it with and set its to
11: for do
12: Use as a temporary training set
13: Train a model and test it with
14: Compute its as
15: if then
16:
17:
18: end if
19: end for
20: return as the selected training set.
21: end procedure

Fig. 8. Effect of multi-probing in chord-progression recognition (inter-chord
CPs).

Fig. 9. Effect of multi-probing in chord-progression recognition (intra-chord
CPs).

The heuristic algorithm for selecting a training set is shown
in Algorithm 4, which takes as input all 180 Beatles songs
with chord annotations, and outputs a training set . At first,
is divided into groups, , each with
songs. should be small enough so that there will be

some groups that do not contain support vectors specific to the
training set. should also be large enough so that a SVM
model can be trained. Using each group as the training set
and the other songs in as the testing set, is
computed. The obtained , is sorted in
decreasing order, and accordingly is re-arranged to .
Then, starting with and , a
new set of songs is used as a temporary training set
and its is evaluated on the common testing set , and
computed as . The set will be used as the
new training set if is greater than . For this
process, we used , and
the final training set contains 45 songs.

B. Effect of Probing

We investigated MRR1 of chord and CPs over a common
testing set, using four features referred to as Muller05 (CENS
[20]), Ellis07 (BSIF chroma [4]), Muller09 (CRP [21]),
and Ellis10 (CompFeat [16]). We applied the proposed
multi-probing method together with all features. The recog-
nition accuracy is usually referring to all chords. Here, we
distinguish inter-chord CPs from intra-chord CPs.
MRR1 results of inter-chord CPs and intra-chord CPs are

shown in Fig. 8 and Fig. 9, respectively. The two figures reveal
three points: (i) The proposed multi-probing method improves

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

10 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 0, NO. , 2013

Fig. 10. Effect of multi-probing in the CP recognition on the recall perfor-
mance of CBMIR.

CP recognition accuracy of all features. (ii) Intra-chord CPs are
recognized with a much higher accuracy than inter-chord CPs.
This is due to following factors: Spectrum within a chord is
stable and the recognition accuracy of intra-chord CPs is rel-
atively high. In contrast, spectrum near chord boundaries is not
stable, which leads to a low accuracy of inter-chord CPs. Under
almost all cases, the CompFeat (Ellis10) feature outperforms
other features in terms of inter-chord CP accuracy. (iii) Recog-
nition accuracy is improved by refining the training set. To-
gether with CompFeat, we further refined the training set and
another curve “RefineTS” is added to both figures, but the ef-
fect is different. For intra-chord CPs, the effect is limited be-
cause state-of-the-art algorithms already have a high perfor-
mance. However, its effect on inter-chord CP accuracy is ob-
vious. This justifies the necessity of refining the training set. The
CompFeat feature with the refined model (RefineTS) is used
hereafter. Further improvement of inter-chord CP recognition
accuracy is left as future work.
We tried different probing policies (and) in com-

puting CPHs and tested them on a small database by the
(-nearest neighbor) retrieval. The result of the often-used re-
call metric is shown in Fig. 10. This figure reveals three points:
(i) Under a fixed , recall first increases with and then
decreases, which indicates that a suitable can lead to a local
maximal recall. (ii) Increasing usually leads to a higher peak
recall. (iii) The effect of probing is large when and are
small. When there is no probing, and , recall
is only 0.665. Simply probing one more CP by using ,
the recall increases to 0.746. When probing chords,
the max recall reaches 0.806 at . This figure confirms
that multi-probing in the recognition is necessary in order to get
accurate music representations to improve the retrieval recall.
Hereafter, and are used.

C. Overall Results of Retrieval Experiment

In this section, we present the overall experimental results.
We use the 3 datasets shown in Table II, with a total of 74,055
audio tracks. Dataset I, Covers79, is the same as in [5] and con-
sists of 1072 audio variants of 79 songs.More specifically, audio
tracks in Covers79 are recordings of the same song sung by
different people over similar music accompaniments. The pro-
posed method can also be applied to search audio tracks with
similar melodies if only they share dominant CPs in common.

TABLE II
DATASET DESCRIPTION

Datasets II and III are used as background music. Since there
are no large databases publicly available for simulating scala-
bility of audio content retrieval, we collected audio tracks from
MIREX, Lastfm.com, and the music channel of YouTube.
In the experiments, each track is 30 s long in mono-channel

mp3 format and the sampling rate is 22.05 KHz. From thesemp3
files, CompFeat [16] is calculated. Then, CPs are recognized and
CPH is further computed.
We compare the proposed scheme—CPH with tree-structure

LSH , to CPH with ,
pitch histogram with , MPH with order-sta-
tistics LSH [5], and CPH with LSH forest
[7] . The LSH forest scheme is imple-
mented with 10 parallel hash tables, each hash table using at
most 20 hash functions. Its parameters (number of hash tables)
are tuned so that its retrieval accuracy almost equals that of

. We also perform a comparison with a method
based on the direct comparison of BSIF chroma sequences, de-
noted as . The task is to detect and retrieve mul-
tiple items relevant to a query and rank them in an ordered list.
In such tasks, recall, precision and F-measure are effective met-
rics. Here, relevance is assessed in terms of melody, or in other
words, chord progressions.
In the following, we evaluate the precision-recall relation-

ship, the effect of the query length and scalability with respect
to the database size. Unless stated otherwise, in the evaluation,
we use the following default setting: each of the 1072 tracks
in Covers79 is used as the query to retrieve its relevant tracks
from the datasets , which have 11,113 tracks; the excep-
tion is in the third experiment where dataset III is also used for
evaluating the effect of the database size. The query has the full
length as their relevant tracks, except in the second experiment
where the effect of the query length is evaluated. The number
of ranked results equals to that of relevant items determined by
the ground truth, except in the evaluation of the precision-recall
relationship.
1) Precision-Recall Curves: A retrieval algorithm should

make a good tradeoff between recall and precision. In this sub-
section we investigate this tradeoff by the classical precision-re-
call curves.
The number of output is changed and the pairs of recall

and precision achieved by different schemes are obtained and
plotted in Fig. 11. With more outputs, recall of all schemes
increases because the chance that relevant songs appear in the
ranked list gets larger. In contrast, precision decreases due
to more non-relevant tracks. lies between

and , and is much better than
. is better than

mainly because music knowledge via CP recognition is
exploited in CPH but not in MPH. also out-
performs . This is because the number of
hash tables in LSHForest is limited to 10. Improving recall

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

YU et al.: SCALABLE CONTENT-BASED MUSIC RETRIEVAL USING CHORD PROGRESSION HISTOGRAM AND TREE-STRUCTURE LSH 11

Fig. 11. Precision-recall curves of different schemes. A query audio track is
used to search its relevant tracks based on melody similarity. The number of
searched results is varied to get different recall-precision pairs.

Fig. 12. F-measure of different schemes. A query audio track is used to search
its relevant tracks based on melody similarity. The number of searched results
is varied to get different recall-precision pairs.

of LSHForest requires more hash tables. When precision
equals 0.6, recall, achieved by

, and
equal 0.5115, 0.6754, 0.7150, 0.7373, 0.7569

0.8143, respectively. Recall achieved by is
0.077 less than that of , but is 0.0223 greater
than that of and 0.062 greater than that of

.
Recall of is satisfactory, considering that

the retrieval speed is accelerated by both the summarization
and indexing. shortens the gap between

, previous efforts on global summarization
and indexing technique, and , which determines
the upper-bound via the exhaustive sequence comparison.
The performance of TSLSH is also superior to LSHForest by
exploiting the non-even distribution of CPs, not to mention its
much fewer hash tables. The performance difference between

and is due to three factors: (i)
errors in CP recognition, (ii) information loss when computing
CPH from a chord sequence, and, (iii) performance loss due to
approximate search by LSH. The first one is the main factor
and can be alleviated by exploring more advanced features in
CP recognition.
The tradeoff between precision and recall is better reflected

by the F-measure metric, which combines recall and precision
with the best value being 1. Fig. 12 clearly shows that the F-mea-
sure curve of lies between those of

and .

Fig. 13. Recall under different query lengths. A query audio track with a vari-
able length is used to search its relevant tracks based on melody similarity.

Fig. 14. Recall under different database sizes. A query audio track is used to
find its relevant tracks based on melody similarity. All audio tracks have the
same length. The database size is adjusted.

2) Effect of Query Lengths: In the last subsection, it is as-
sumed that each query has the same length as its references in
the database. However, due to various reasons, the query may be
shorter. In this section, we evaluate the effect of query lengths
on retrieval performance. The recall results are shown in Fig. 13,
with respect to normalized query lengths.
Recall decreases with query length in all schemes. The per-

formance is greatly degraded when the query length becomes
less than 0.5. For CPH, when the query length is greater than
0.5, the recall is still satisfactory (no less than 0.5). And it is
reasonable to require that the query length be no less than half
of the target song in order to reliably search the relevant songs.
3) Effect of Database Sizes: LSH usually applies to large

databases. By varying the database size from 11,113 to 74,055,
we evaluate recall, average precision and computation cost of

.
Recall decreases in all schemes with the increase of the data-

base size, as shown in Fig. 14. The recall difference between
and increases from 0.0546

(database) to 0.0748 (database),
indicating that CPH is more scalable with database sizes. The
average precision in Fig. 15 shows a similar trend, which con-
firms that CPH is more accurate in representing an audio se-
quence than MPH. When the database size equals 74,055, re-
call and average precision of equal to 0.681 and
0.878, respectively. The difference between and

is almost irrelevant of database sizes. This
is because both schemes use the same CPH feature.

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

12 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 0, NO. , 2013

Fig. 15. Average precision under different database sizes. A query audio track
is used to find its relevant tracks based on melody similarity. All audio tracks
have the same length. The database size is adjusted.

Fig. 16. Normalized computation cost in the retrieval. A query audio track is
used to find its relevant tracks based on melody similarity. All audio tracks have
the same length.

For the largest database size, the normalized computation, the
ratio of computation cost of to that of

, equals 0.091 when one-level LSH is used, it decreases
to 0.03 when two-level TSLSH is used, and further decreases to
0.026 when three-level TSLSH is used, as shown in Fig. 16. The
biggest gain of the tree-structure is reached when changing the
LSH table from one-level to two-level. Further dividing the LSH
table into three-level has little gain. This is because low-rank
CPs will be used as hash keys, but their accuracy is still limited
by the CP recognition algorithm. The normalized computation
cost of and is a little less
than that of . But achieves a
better tradeoff among retrieval accuracy (recall and precision),
computation cost and storage (number of hash tables).

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a novel method that improves accuracy
and scalability of CBMIR. We have designed our retrieval al-
gorithm by exploiting musical knowledge in training a chord
model. In particular, we exploited multi-probing in CP recogni-
tion via the modified Viterbi algorithm, which outputs multiple
likely CPs and increases the probability of finding the correct
one. A chord progression histogram is put forward to summa-
rize the probed CPs in a concise form, which is both efficient and
also retains local chord progressions. Average degradation of
ranks is suggested as a metric to assess similarity of two songs in
terms of their CPs. Hash keys are also based on CPs. By setting
an ADR threshold, it is possible to only probe buckets in which
songs are highly similar to the query, and the number of prob-
ings is controlled. In addition, the tree structure LSH enables

a more efficient organization of the database. After conducting
extensive experiments looking at recall/precision curves, effect
of query lengths, and scalability of database sizes, we confirmed
that is superior to previous work in terms of the
tradeoff between accuracy and efficiency over a large-scale real
web audio dataset.
Currently, the retrieval performance of is still

limited by the CP recognition accuracy. This could be solved
by improving the accuracy of inter-chord CPs and reducing the
negative effects of intra-chord CPs. This is left as future work.

REFERENCES
[1] C. Yang, “Efficient acoustic index for music retrieval with various de-

grees of similarity,” in Proc. ACM MM, 2002, pp. 584–591.
[2] W. H. Tsai, H. M. Yu, and H. M. Wang, “A query-by-example

technique for retrieving cover versions of popular songs with similar
melodies,” in Proc. ISMIR, 2005, pp. 183–190.

[3] R. Miotto and N. Orio, “A methodology for the segmentation and iden-
tification of music works,” in Proc. ISMIR, 2007, pp. 239–244.

[4] D. Ellis and G. Poliner, “Identifying cover songs with chroma features
and dynamic programming beat tracking,” in Proc. ICASSP, 2007, pp.
1429–1432.

[5] Y. Yu,M. Crucianu, V. Oria, and E. Damiani, “Combing multi-probing
histogram and order-statistics based LSH for scalable audio content
retrieval,” in Proc. ACM MM, 2010, pp. 381–390.

[6] T. E. Ahonen, “Combing chroma features for cover version identifica-
tion,” in Proc. ISMIR, 2010, pp. 165–170.

[7] M. Bawa, T. Condie, and P. Ganesan, “LSH forest: Self tuning indexes
for similarity search,” in Proc. WWW, 2005, pp. 651–660.

[8] M. Slaney and M. Casey, “Locality-sensitive hashing for finding
nearest neighbors,” IEEE Signal Process. Mag., vol. 25, no. 2, pp.
128–131, 2008.

[9] B. Cui, J. Shen, G. Cong, H. Shen, and C. Yu, “Exploring composite
acoustic features for efficient music similarity query,” in Proc. ACM
MM, 2006, pp. 634–642.

[10] I. Karydis, A. Nanopoulos, A. N. Papadopoulos, and Y.Manolopoulos,
“Audio indexing for efficient music information retrieval,” in Proc.
MMM, 2005, pp. 22–29.

[11] J. Shen, D. Tao, and X. Li, “QUC-tree: Integrating query context infor-
mation for efficient music retrieval,” IEEE Trans. Multimedia, vol. 11,
no. 2, pp. 313–323, 2009.

[12] N. Bertin and A. Cheveigne, “Scalable metadata and quick retrieval of
audio signals,” in Proc. ISMIR, 2005, pp. 238–244.

[13] T. Fujishima, “Realtime chord recognition of musical sound: A system
using common Lisp music,” in Proc. ICMC, 1999, pp. 464–467.

[14] K. Lee, “Automatic chord recognition from audio using enhanced pitch
class profile,” in Proc. ICMC, 2006.

[15] H.-T. Cheng, Y.-H. Yang, Y.-C. Lin, I.-B. Liao, and H. H. Chen, “Auto-
matic chord recognition for music classification and retrieval,” in Proc.
ICME, 2008, pp. 1505–1508.

[16] D. Ellis and A. Weller, “The 2010 LABROSA chord recognition
system,” in Proc. MIREX, 2010.

[17] T. Cho, R. J. Weiss, and J. P. Bello, “Exploring common variations in
state of the art chord recognition systems,” in Proc. Sound and Music
Computing Conf., 2010.

[18] M. McVicar, Y. Ni, T. D. Bie, and R. S. Rodriguez, “Leveraging noisy
online databases for use in chord recognition,” in Proc. ISMIR, 2011,
pp. 639–644.

[19] Y. Yu, R. Zimmermann, Y. Wang, and V. Oria, “Recognition and sum-
marization of chord progressions and their application to music infor-
mation retrieval,” in Proc. IEEE ISM, 2012, pp. 9–16.

[20] M. Muller, F. Kurth, and M. Clausen, “Audio matching via chroma-
based statistical features,” in Proc. ISMIR, 2005, pp. 288–295.

[21] M. Muller, S. Ewert, and S. Kreuzer, “Making chroma features more
robust to timbre changes,” in Proc. ICASSP, 2009, pp. 1877–1880.

[22] Chord. [Online]. Available: http://en.wikipedia.org/wiki/
Chord_(music).

[23] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality,” in Proc. ACM STOC, 1998.

[24] S. Poullot, M. Crucianu, and O. Buisson, “Scalable mining of large
video databases using copy detection,” in Proc. ACM MM, 2008, pp.
61–70.

[25] A. Joly and O. Buisson, “A posteriori multi-probe locality sensitive
hashing,” in Proc. ACM MM, 2008, pp. 209–218.

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

YU et al.: SCALABLE CONTENT-BASED MUSIC RETRIEVAL USING CHORD PROGRESSION HISTOGRAM AND TREE-STRUCTURE LSH 13

[26] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-probe
LSH: Efficient indexing for high-dimensional similarity search,” in
Proc. VLDB, 2007, pp. 950–961.

[27] J. Shen, J. Shepherd, and A. Ngu, “Towards effective content-based
music retrieval with multiple acoustic feature combination,” IEEE
Trans. Multimedia, vol. 8, no. 6, pp. 1179–1189, 2006.

[28] Y. Yu, J. S. Downie, L. Chen, K. Joe, and V. Oria, “Searching musical
datasets by a batch of multi-variant tracks,” in Proc. ACM MIR, 2008,
pp. 121–127.

[29] R. Cai, C. Zhang, L. Zhang, and W.-Y. Ma, “Scalable music recom-
mendation by search,” in Proc. ACM MM, 2007, pp. 1065–1074.

[30] J. Shen, H. Pang, M. Wang, and S. Yan, “Modeling concept dynamics
for large scale music search,” in Proc. ACM SIGIR, 2012, pp. 455–464.

[31] M. Casey, C. Rhodes, and M. Slaney, “Analysis of minimum distances
in high-dimensional spaces,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 16, no. 5, pp. 1015–1028, 2008.

[32] R. Miotto, “Content-based music access: an approach and its applica-
tions,” in Proc. FDIA, 2009, pp. 69–75.

[33] Z. Guo, Q. Wang, G. Liu, and J. Guo, “A query by humming system
based on locality sensitive hashing indexes,” Signal Process., 2012.
[Online]. Available: http://dx.doi.org/10.1016/j.sigpro.2012.09.006.

[34] D. Meyer, F. Leisch, and K. Hornik, “The support vector machine
under test,” Neurocomputing, vol. 55, no. 1–2, pp. 169–186, 2003.

[35] T. Joachims, T. Finley, and C.-N. Yu, “Cutting-plane training of struc-
tural SVMs,” Mach. Learn. J., vol. 77, no. 1, pp. 27–59, 2009.

[36] C. Harte andM. Sandler, “Automatic chord identification using a quan-
tized chromagrams,” in Proc. Convention Audio Engineering Society,
2005.

[37] M. A. R. Sanchez, E. Biersack, and W. Dabbous, “Survey and tax-
onomy of IP address lookup algorithms,” IEEE Netw. Mag., vol. 15,
no. 2, pp. 8–23, 2001.

[38] D. P. Bertsekas and J. N. Tsitsiklis, Introduction to Probability. Bel-
mont, MA: Athena Scientific, 2002.

[39] MIREX. [Online]. Available: http://www.music-ir.org/mirex/wiki/
2011:Audio_Chord_Estimation.

Yi Yu received the Ph.D. degree in computer science
in 2009 from Nara Womens University. She worked
at different institutions including New Jersey Insti-
tute of Technology, University of Milan and Nara
Womens University. She currently works at School
of Computing, National University of Singapore.
Her research interests include social interactions over
geo-aware multimedia streams, multimedia/music
signal processing, audio classification and tagging,
locality sensitive hashing-based music information
retrieval, and pest sound classification. She received

a best paper award from IEEE ISM 2012.

Roger Zimmermann (S’93–M’99–SM’07) received
the M.S. and Ph.D. degrees from the University of
Southern California (USC) in 1994 and 1998. He is
currently an associate professor in the Department
of Computer Science at the National University of
Singapore (NUS). He is also a deputy director with
the Interactive and Digital Media Institute (IDMI)
at NUS and a co-director of the Centre of Social
Media Innovations for Communities (COSMIC).
His research interests are in the areas of streaming
media architectures, distributed and peer-to-peer

systems, mobile and geo-referenced video management, collaborative environ-
ments, spatio-temporal information management, and mobile location-based
services. He has coauthored a book, six patents, and more than 150 conference
publications, journal articles, and book chapters. He is a member of ACM.

Ye Wang (M’99) is an Associate Professor in the
Computer Science Department at the National
University of Singapore (NUS) and NUS Graduate
School for Integrative Sciences and Engineering
(NGS). He established and directed the sound and
music computing (SMC) Lab. Before joining NUS
he was a member of the technical staff at Nokia
Research Center in Tampere, Finland for 9 years. His
research interests include sound analysis and music
information retrieval (MIR), mobile computing, and
cloud computing, and their applications in music

edutainment and e-Health, as well as determining their effectiveness via subjec-
tive and objective evaluations. His most recent projects involve the design and
evaluation of systems to support 1) therapeutic gait training using Rhythmic
Auditory Stimulation (RAS), and 2) Melodic Intonation Therapy (MIT). In
the academic year 2011–2012 he took his sabbatical leave at the School of
Computer Science of Fudan University and at Harvard Medical School.

Vincent Oria is an associate professor of computer
science at the New Jersey Institute of Technology.
His research interests include multimedia databases,
spatio-temporal databases and recommender sys-
tems. He has held visiting professor positions at
various institutions including National Institute of
Informatics (Tokyo, Japan), ENST (Paris, France),
Universit de Paris-IX Dauphine (Paris, France),
INRIA (Roquencourt, France), CNAM (Paris,
France), Chinese University of Hong Kong (Hong
Kong China) and the Universit de Bourgogne (Dijon,

France).

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 0, NO. , 2013 1

Scalable Content-Based Music Retrieval Using Chord
Progression Histogram and Tree-Structure LSH
Yi Yu, Roger Zimmermann, Senior Member, IEEE, Ye Wang, Member, IEEE, and Vincent Oria

Abstract—With more and more multimedia content made avail-
able on the Internet, music information retrieval is becoming a crit-
ical but challenging research topic, especially for real-time online
search of similar songs from websites. In this paper we study how
to quickly and reliably retrieve relevant songs from a large-scale
dataset of music audio tracks according to melody similarity. Our
contributions are two-fold: (i) Compact and accurate representa-
tion of audio tracks by exploiting music semantics. Chord progres-
sions are recognized from audio signals based on trained music
rules, and the recognition accuracy is improved by multi-probing.
A concise chord progression histogram (CPH) is computed from
each audio track as a mid-level feature, which retains the discrim-
inative capability in describing audio content. (ii) Efficient organ-
ization of audio tracks according to their CPHs by using only one
locality sensitive hash table with a tree-structure. A set of domi-
nant chord progressions of each song is used as the hash key. Av-
erage degradation of ranks is further defined to estimate the simi-
larity of two songs in terms of their dominant chord progressions,
and used to control the number of probing in the retrieval stage.
Experimental results on a large dataset with 74,055 music audio
tracks confirm the scalability of the proposed retrieval algorithm.
Compared to state-of-the-art methods, our algorithm improves the
accuracy of summarization and indexing, andmakes a further step
towards the optimal performance determined by an exhaustive se-
quence comparison.

Index Terms—Music-IR, audio computing, chord progression
histogram, tree-structure, locality sensitive hashing.

I. INTRODUCTION

W ITH an explosive growth of community-contributed
multimedia data, content-based music information

retrieval (CBMIR) on large-scale social websites has become
a timely and critical research topic. For example, many music
movie soundtracks, with the same or similar melody but sung
and recorded by different people, are uploaded to YouTube
every year. A melody is a linear succession of music tones.
CBMIR, in terms of melody similarity, has several novel
applications such as plagiarism analysis, near duplicate audio
detection, relevant song retrieval and recommendation, etc.
In typical scenarios, a user can find audio tracks similar to

Manuscript received September 22, 2012; revised January 06, 2013 and
March 14, 2013; accepted March 15, 2013. This work was supported by the
Singapore National Research Foundation under its International Research
Centre Singapore Funding Initiative and administered by the IDM Pro-
gramme Office. The associate editor coordinating the review of this manuscript
and approving it for publication was Chia-Wen Lin.
Y. Yu, R. Zimmermann, and Y. Wang are with the Department of Computer

Science, National University of Singapore, Singapore (e-mail: yuy@comp.nus.
edu.sg).
V. Oria is with the Department of Computer Science, New Jersey Institute of

Technology, Newark, NJ 07102 USA.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMM.2013.2269313

his favorite melody using an audio example, or music compa-
nies can recommend to users new music albums with similar
melodies according to listening records. These applications
need large-scale CBMIR techniques.
Scalable CBMIR is commonly related to two essential as-

pects: (i) Representing audio signals by compact features.Music
signals usually are described by sequences of low-level fea-
tures such as short-time Fourier transform (STFT) [1], pitch [2],
[3], mel-frequency cepstral coefficient (MFCC), and chroma
[4]–[6]. (ii) Organizing audio features in the database using an
indexable format. Locality sensitive hashing (LSH) [1], [5], [7],
[8], tree structure [9]–[11], and hierarchical structure [12] are
typical methods to music audio content indexing. These two
aspects need joint design so as to improve both accuracy and
efficiency of large-scale music retrieval. Unfortunately, music
audio content analyses and summarizations by means of low-
level features in previous works are insufficient for the scal-
able CBMIR task. This is because low-level feature descriptors
of audio signals are highly heterogeneous and do not generate
a robust description for music audio tracks. The performance
of summarizing audio signals without exploiting music knowl-
edge is limited. In contrast, mid-level features (chord [13]–[18],
rhythm, and instrument) represented as musical attributes are
able to better extract music structures from complex audio sig-
nals and retain semantic similarity. A chord sequence contains
rich music information related to tonality and harmony, which
is helpful for effectively distinguishing whether music audio
tracks are similar to each other or not. However, chord recogni-
tion accuracy is still relatively low in previous state-of-the-art
algorithms [13]–[18], which affects the performance of chord-
based music retrieval. Moreover, good scalability requires that
the retrieval complexity should be at most sub-linear with re-
spect to the number of songs in the database. These issues in-
spire us to make use of mid-level feature descriptors and orga-
nize them in an indexable structure affordable for large-scale
music audio content matching and retrieval.
In this paper we study chords—a harmony-related mid-level

feature—for the task of scalable CBMIR and exploit chord pro-
gressions (CPs) to realize accurate summarization of music con-
tent and efficient organization of the database. As for CPs, we
mainly consider transitions between adjacent chords. But it is
easy to extend the idea to longer chord progressions. The pro-
posed algorithm consists of three key components: (i) recog-
nizing CPs from a music audio track based on the trained music
rules, (ii) computing a summary of the track from the recog-
nized CPs, and (iii) organizing the summaries of audio tracks
in the database using an indexing structure. How to improve
CP accuracy was investigated in our previous work [19]. In this
paper we conduct more detailed analyses. Specifically, the CPs
are divided into two categories. Their recognition accuracy is

1520-9210/$31.00 © 2013 IEEE

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

2 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 0, NO. , 2013

investigated by using multiple chroma features and refining the
training set. In addition, summaries computed from CPs are or-
ganized in a refined LSH table in order to accelerate the retrieval
process. The effect of CP recognition on LSH design is also the-
oretically analyzed. Our major contributions are summarized as
follows:
• Compact and accurate representation of audio tracks via
CPs. Recognition accuracy of CPs is greatly improved
by exploiting multi-probing. More specifically, through a
modified Viterbi algorithm, -best CPs are locally probed,
which in terms of their ranks are further summarized into
a compact chord progression histogram (CPH). Combi-
nations of the proposed multi-probing technique with dif-
ferent chroma features and the effect of refining the training
set are also studied.

• Efficient organization of CPHs of audio tracks via LSH.
A satisfactory recall is achieved with only one hash table,
by using dominant CPs of audio tracks as hash keys and
exploiting multi-probing. Organizing songs in the lay-
ered tree-structure helps alleviate the potential imbalance
among buckets. Average degradation of ranks is further
defined to assess the similarity of two songs in terms of
their dominant CPs, and used to control the number of
probings in the retrieval stage.

By locally probing CPs among adjacent frames according to
their state transition probabilities, the computed CPH is an accu-
rate and powerful feature containing harmonic progression and
tonal structures of audio tracks. In addition, retrieval accuracy
of the LSH-based indexing is improved by multi-probing, and
the implementation of LSH is efficient by requiring only one
hash table. Our experiments, on real-world large-scale datasets
including 74,055 audio tracks, confirm that the proposed algo-
rithm achieves a nice tradeoff between retrieval accuracy and ef-
ficiency and demonstrate the feasibility of using CPs for music
content representation and scalable retrieval. Compared to pre-
vious schemes which address summarization and indexing, the
proposed algorithm makes a further step towards the optimal
performance determined by an exhaustive sequence compar-
ison. As melody is usually embodied in chord progressions, the
proposed CPH feature serves as a signature of an audio melody
and helps to accelerate similarity retrieval in terms of melody.
This work begins with a review of music background and re-

lated work on music representations, LSH, CBMIR, and a com-
parison with our retrieval method in Section II. Section III de-
scribes the proposed retrieval algorithm in detail, focusing on
how to realize multi-probing in recognizing CPs, how to sum-
marize the probed CPs into a CPH, and how to organize CPHs
in the LSH table. In Section IV, we discuss the effect of training
sets on CP recognition, the effect of multi-probing in CP recog-
nition and retrieval, and present overall experiment results. Fi-
nally, we conclude the paper with Section V.

II. BACKGROUND AND RELATED WORK

Conventionally, music retrieval on the Internet heavily de-
pends on tag information, both in the database and the query.
However, tag information of user-generated audio tracks might
be missing, ambiguous, or even misleading. In contrast, content
analysis and detection of audio tracks help improve retrieval
quality. However, scalability becomes a challenging issue as

Fig. 1. Music representation: from signal to chord.

multimedia music content has become prevalent on user-con-
tributed social websites. To provide real-time online content re-
trieval in a large-scale CBMIR system, approximate search is
usually adopted instead of the time-consuming exhaustive com-
parison and it can be described as follows: input a segment of a
music piece, perform index-based similarity search, and finally
return some relevant songs in a ranked list.

A. Representation of Music Information

An instrument-generated song can be represented at different
levels. At the high level, each song has its own score. At the
mid-level, at any moment, usually multiple notes are played
together which correspond to a chord. At the low level, the
acoustic signal of simultaneously played notes provides a spe-
cific music (spectral) perception to users.
Fig. 1 shows different levels of abstraction of music signals.

A music signal in Fig. 1(a) is a long sequence of samples in the
time domain. Directly comparing music signals is prohibitively
expensive and finding an appropriate representation is the key to
efficient music retrieval. Music signals are perceived by human
beings in terms of spectral components (Fig. 1(b)). In conse-
quence, most CBMIR algorithms rely on extracting spectral fea-
tures (e.g., STFT [1], MFCC) from acoustic signals. However, it
is also time-consuming to determine the similarity of two audio
signals in terms of feature sequences.
The frequency resolution of the human auditory system is

limited and non-linear. It is sufficient to divide the music fre-
quency band into 88 sub-bands in the log-scale, each corre-
sponding to a pitch note [2], [3], as shown in Fig. 1(c), where
adjacent pitches are spaced by a semitone. Due to the harmonic
nature of music instruments, a frequency appearing in the spec-
trum is often accompanied by its octave frequency. In addition,
multiple pitch components are generated simultaneously in a
polyphonic song. Therefore, it is relatively difficult to find the
exact pitches. Harmonic frequency components are perceptu-
ally similar. Accordingly, the energy of 88 pitch sub-bands can
be further grouped into 12 pitch class profiles, or the 12-dimen-
sion chroma feature [13], where energies of pitches in the same
harmonic family are added together.

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

YU et al.: SCALABLE CONTENT-BASED MUSIC RETRIEVAL USING CHORD PROGRESSION HISTOGRAM AND TREE-STRUCTURE LSH 3

Different methods have been suggested to compute chroma
features, e.g., chroma energy normalized statistics (CENS)
in [20] and chroma DCT-reduced log pitch (CRP) in [21],
where chroma is computed, smoothed and down-sampled.
Beat-synchronous chroma based on instantaneous frequency
(BSIF chroma) is suggested in [4], where chroma is computed
per-frame using the instantaneous frequency information.
Adjacent chroma features, corresponding to the same beat, are
aggregated into a single feature by computing their average.

B. Chord Progression Recognition

Mid-level features of music audio tracks are compact de-
scriptors transcribed from low-level features of acoustic sig-
nals by aid of signal processing, musical knowledge, machine
learning and pattern recognition. These features capture musical
attributes (e.g., chord, rhythm, and instrument) and better rep-
resent musical semantics than low-level features. They provide
a brief yet accurate enough representation of audio signals and
can be used as an alternative when high-level semantic features
are not available. They can serve as audio signatures and help
to accelerate music similarity retrieval, structure segmentation,
mood classification and genre recognition.
As a mid-level feature, a chord is a concise representation

of music signals. A chord [22] in music is a combination of
two or more notes initiated simultaneously. Chord progression
represents harmonic content and semantic structure of a music
work, and influences music melody. Hence, chord recognition
has attracted great interest and many efforts have been devoted
to transcribing chords from music signals [13]–[18]. Major
bins of a chroma feature are associated with a chord pattern,
e.g., the chroma in Fig. 1(d) corresponds to major triad C in
Fig. 1(e). The simplest way to chord recognition is template
matching [13], computing the correlation between the chroma
feature (Fig. 1(d)) and a target chord pattern (Fig. 1(e)). This,
however, does not always work well since unexpected com-
ponents sometimes may dominate chroma energy [14]. More
advanced chord recognition involves supervised training using
either a Gaussian model or a support vector machine (SVM).
Instead of simple chroma [4], [20], [21], BSIF chroma, together
with its quad terms, forms a compound feature with
dimensions and is used in chord recognition in [16]. In contrast
to per-frame recognition, a more effective policy is to consider
chord progression and exploit sequence detection by the hidden
Markov model (HMM) [18].

C. Locality Sensitive Hashing

LSH [23] is an index-based data organization structure, used
to quickly and approximately find items relevant to a given
query. Its retrieval speed usually is much faster than that of ex-
haustive search algorithms. Accordingly, LSH-based methods
have shown great impact on multimedia information retrieval
such as music content detection [1], duplicate video mining and
clustering [24], and large-scale image retrieval and searching.
Conceptually, the general idea behind LSH is very simple as

follows: if items are similar to each other in the original vector
space, after projecting these items into a new vector space by a
family of locality sensitive hashing functions, they remain sim-
ilar to each other with a high probability. In a LSH-based re-

trieval, at first buckets associated with the hash key determined
by the query are located. Then, with a post comparison, rele-
vant items are found and ranked according to their similarity to
the query. Distribution of features in buckets tend to be uneven.
This can be solved by splitting big buckets into sub-buckets [7].
Typically, many parallel LSH tables are required to achieve high
retrieval accuracy, which occupies a large space. The number of
hash tables can be greatly reduced by exploiting multi-probing
[25], [26].

D. Related CBMIR Systems

Aquick search in a large-scale music database needs a careful
tradeoff between accuracy and efficiency, where retrieval effi-
ciency can be greatly improved by summarization and LSH.
Efforts in Summarizing Audio Signals: In [27], principal

component analysis (PCA) is used to compute a summary
representation from typical audio features (timbre, rhythm and
pitch). With annotated class information, a multi-layer neural
network is trained. The activation value of each feature inside
the neural network is regarded as the most discriminative infor-
mation. This method is more suitable for music classification
than content-based retrieval. The most-frequently-used spectral
features (e.g., MFCC, chroma, and pitch) are combined into
a federated feature [28] by aid of assigning a set of weights
trained from a regression model. The disadvantage of these
methods is that such a global feature descriptor has difficulty
in retaining the local temporal information. In [29], modulated
complex lapped transform (MCLT) coefficients are computed
from audio samples and pass two-layer oriented PCA to gen-
erate summaries for audio segments. In [5], a multi-probe
histogram (MPH) is computed from the sequence of chroma
features. A histogram, over a set of predefined music concepts
represented by audio words, is suggested in [30]. Local tem-
poral information is retained in the summarization in these
methods, but music knowledge is not exploited.
Organizing Music Database via LSH: The first LSH-based

CBMIR system was MACSIS proposed by Yang [1]. STFT is
calculated from each signal and used as the basic feature, from
which hash keys are computed. Hough transform, after the in-
dexing procedure, is performed to rank matched results in terms
of sequence detection. In [31], log frequency cepstral coeffi-
cients (LFCCs) and pitch class profiles are used to represent
music signals. Audio shingles, concatenating adjacent features
into a high-dimensional vector, are arranged in a LSH table to
support a fast, approximate nearest neighbor search. Similar re-
sults, applying random linear functions in realizing LSH, were
studied in [28], [29], [32]. A sequence of consecutive pitch notes
is used as a hash index in [33]. Potential errors in pitch recogni-
tion are taken into account. But this technique cannot be directly
used to retrieve polyphonic songs. In [5], a two-stage LSH al-
gorithm is exploited to improve the reliability and scalability of
CBMIR systems. Besides exploiting LSH in summarizing audio
signals in the first stage, MPHs are organized in the LSH table
in the second stage, based on the order-statistics information.

E. Key Differences to State-of-the-Art Work

In this paper we apply musical knowledge to refine music
content representation, aiming to improve both reliability and

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

4 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 0, NO. , 2013

TABLE I
TABLE OF NOTATIONS

scalability of searching relevant songs in a large data set. In
comparison with previous work, the overall benefits of our al-
gorithm are described as follows:
• Exploiting CPs in summarizing audio signals. This heavily
depends on CP recognition. But state-of-the-art algorithms
[13]–[18] cannot ensure a high recognition accuracy. We
solve this problem by introducing multi-probing in the
SVM recognition, and further compute a robust
mid-level feature—chord progression histogram (CPH).
In this way, the summary computed by the proposed
method is more accurate compared with previous works
on music summarization [5], [27]–[29].

• Organizing songs in the tree-structure LSH table by using
dominant CPs as hash keys. Although previous schemes
[1], [7], [28], [29], [31] usually require multiple parallel
hash instances, our LSH scheme only requires one hash
table. Satisfactory retrieval performance is achieved by
multi-probing in the search stage. We further define av-
erage degradation of ranks to refine this probing.

Multi-probing is performed in the CP recognition so as to
compensate for otherwise inaccurate CPs due to the low recog-
nition accuracy. The computed CPH is strongly associated with
musical knowledge and capturesmost-frequent CPs, where like-
lihood information of each probed CP is associated with its
own rank. In addition, organizing CPHs in the tree-structure
LSH table according to their dominant CPs ensures that fea-
tures in the same bucket are highly similar, which facilitates
multi-probing in the search stage.

III. CHORD PROGRESSION-BASED RETRIEVAL ALGORITHM

In this section, we present the main retrieval algorithm.
First, we describe the CBMIR framework in Section III-A,
introducing the main components of the retrieval system. Di-
rectly computing the similarity between sequences of low-level
features is computationally prohibitive in a large database.
Therefore, we exploit CPs to compute a mid-level feature. The
model used for recognizing CPs from chroma sequences and the
multi-probing procedure for improving recognition accuracy
are discussed in Section III-B. To avoid directly comparing two
chord sequences while retaining chord progressions, we further
explain how to compute a chord progression histogram (CPH)
in Section III-C, focusing on how to probe CPs. Based on a
similarity analysis in terms of CPs, dominant CPs are used as
hash keys to design a tree-structure LSH table in Section III-D.
Finally, the effect of CP recognition on LSH performance is
theoretically analyzed in Section III-E. Some frequently used
symbols are listed in Table I.

Fig. 2. Framework for a scalable CBMIR system.

A. Framework Overview

Fig. 2 shows our framework for a scalable CBMIR system. It
consists of four main parts: chord model training, CP recogni-
tion, CPH computation, and hash table organization. Different
classification methods are compared in [34] and SVMs showed
mostly good performances. Therefore, for the training part, we
use the SVM model [35], which considers both the spectral
structure in each feature and CP embedded in adjacent features.
With the trainedmodel, CP recognition is performed for all songs
in the database. Their CPHs are computed and organized in the
hash table, where the set of dominant CPs of each song is used
as its hash key.With a query as input, its CPs are recognized and
its CPH is computed.With its hash key, relevant songs are found
from the associated buckets. Finally, relevant songs are returned
to the user in a ranked list as the retrieval results.
A sequence of -dimensional chroma-related features

is extracted from audio signal and is to be transcribed to a
chord sequence. We will apply the proposed method together
with several state-of-the-art features: CENS (Muller et al.
[20],), CRP (Muller et al. [21],), BSIF
chroma (Ellis et al. [4],), and CompFeat (Ellis et
al. [16],). Distinguishing all possible chords is
quite complicated. For many applications, e.g., retrieval in this
paper, it is enough to use a subset of chords as the vocabulary.
Similar to previous work, we mainly consider the most frequent
chords: 12 major triads and 12 minor
triads . All other types of chords are re-
garded as one type . Altogether there are possible
chords, where are mapped to the numbers

respectively, so as to uniquely identify each chord.

B. -Best Chord Progression Recognition

Each chroma feature corresponds to a chord. In addition, the
composition rule of a song also places some constraints on ad-
jacent chords, which determines CP and is reflected in adjacent
features. We adopt the SVM model [35], SVM for per-fea-
ture chord recognition, and HMM for CP recognition.
The SVM model is described by (1) and explained as

follows: is a matrix used to convert a
feature to a vector of chord scores which correspond to
the likelihood of chords computed from the feature (the effect of
SVM). is a matrix describing the score of transiting
from one chord to another between adjacent features (the effect
of HMM). is a indicator vector that exactly has

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

YU et al.: SCALABLE CONTENT-BASED MUSIC RETRIEVAL USING CHORD PROGRESSION HISTOGRAM AND TREE-STRUCTURE LSH 5

only one entry set to 1 corresponding to a chord .
is a indicator matrix that only has one entry set to 1
corresponding to chord progression from to . With a fea-
ture sequence and a chord sequence

is the score (likelihood) that is matched
to chord . is the score that the local chord
sequence progresses from to . Consequently, the sum in
(1) represents the total score that the feature sequence is
matched to the chord sequence . In the end, the chord
sequence with the maximal total score is found.

(1)
Parameters and of the SVM model can be obtained
by training, using the public dataset “Beatles” which has been
manually annotated by Harte [36].
1) Chord Progression Recognition With Multi-Probing:

Chord progression recognition by (1) only returns the
chord sequence with the highest score. However, even with
state-of-the-art algorithms, the chord recognition accuracy is
still relatively low, which leads to a lower recognition accuracy
of CPs. This is partially due to the difficulty in detecting the
exact chord transition positions in music signals. When the
recognized chord sequence is used for retrieval, we argue that
besides the chord sequence with the highest score, other CPs
should also be probed as well, in order to improve the relia-
bility. Although new features may be suggested for improving
performance of CP recognition, the multi-probing method
suggested here will still work well.
The well-known Viterbi algorithm is usually used in optimal

sequence detection. It simplifies sequence detection by only
keeping track of one optimal path from starting point to each
state at time . It is also used in the SVM algorithm [35]
for chord progression recognition. We modified the Viterbi
algorithm shown in Algorithm 1 to realize local multi-probing,
not only probing chords per feature but also probing
CPs per transition. Actually the latter is more important in
computing CPH.

Algorithm 1 Chord progression recognition

1: procedure CHORDPROGRECOG
2:
3:
4: for do
5:
6:
7:
8: end for
9: top chords of
10: for do
11:
12: top chords of
13:
14: top CPs of
15: end for
16: return and
17: end procedure

Fig. 3. Chord progression recognition with multi-probing.

This modified Viterbi algorithm takes the feature sequence
as input, and outputs chord set and CP set . The

procedure is divided into two parts. The first part is a forward
process, where scores of all paths are computed.
is a vector which contains scores of all chords when
matched against . is a vector, each of which corre-
sponds to the optimal path from the beginning to a chord at .
At equals . When , scores of the paths
from the beginning to chord at are composed of three parts:
(1) , scores of the optimal paths to all chords at ,
(2) , scores of transiting from all chords at to chord
at , and, (3) , the score of chord when matched against
. Scores of these paths leading to the same chord at are

recorded in and scores of the optimal paths to chords
at are stored in .
The second part is the reverse process, where potential chords

and CPs are probed. At , the top chords of are
regarded as potential chords corresponding to the last feature.
When , there is a path from each chord
at to each of the chords in at . Scores of these

paths sharing the same chord at are added together and
saved in , from which the top chords are found as . The

CPs from chords at to chords in at
form a set , from which the top are probed. These CPs,
together with their ranks, are saved in .
Fig. 3 shows an example with 5 features. At the stage, the

feature is statistically classified to possible chords, where
the chord has a score of . The score of pro-
gressing from chord to equals to . Be-
sides the optimal chord sequence (3, 4, 5, 4, 4) with the maximal
score, there are other paths that may partly overlap with the op-
timal path, but with different chords and CPs somewhere. With
errors occurring in chord recognition, probing sub-optimal paths
becomes necessary. In Fig. 3, at each stage, chords and

CPs are probed.
2) An Example of Chords/Chord Progressions: Fig. 4 shows

some results of chord recognition with multi-probing, where
chords and CPs are probed per stage. The

beat-synchronousCompFeat feature [16] is used. The horizontal

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

6 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 0, NO. , 2013

Fig. 4. Effect of chord progression recognition (“A Hard Day’s Night” of the
album “A Hard Day’s Night” performed by “The Beatles” band).

axis is time and the vertical axis is the chord label. Solid points
are true chords by manual annotation, circle and square points
are recognized chords, and short lines are recognized CPs. Of
the eight CPs

, by recognition, one appears in
the 1 rank and five
appear in the 2 rank. From 50 sec to 53 sec, is recognized
as , and is recognized as because they have two out
of three tones in common. Correctly detecting the two chords
requires more probings.
The 15 sec audio signal in Fig. 4 contains 9 chords, or 8 CPs

according to annotation information. But there are many more
features than chords due to the following factor: In the feature
extraction stage, an audio signal is divided into short, overlap-
ping frames. Adjacent frames corresponding to the same beat
are aggregated to generate one beat-synchronous feature [16]
and used for chord progression recognition. But chord bound-
aries cannot always be accurately detected in this stage. As a
result, the same chord may span several adjacent features, e.g.,

spans 8 features. Then, CPs recognized from audio sig-
nals can be divided to two categories, inter-chord CPs (e.g.,

) where chords actually change, and intra-chord
CPs (e.g.,) where the chord is the same but divided
into multiple features. Only inter-chord CPs are associated with
melody information.

C. Chord Progression Histogram

The chord sequence recognized from the feature sequence is a
mid-level representation of an audio signal. Directly comparing
two chord sequences is faster than comparing two chroma se-
quences. But it still requires time-consuming dynamic program-
ming (DP), in order to account for potential mis-alignment. To
expedite the retrieval process with a more compact representa-
tion, the chord sequence can be further summarized into a chord
progression histogram.
Among CPs provided by Algorithm 1, each probed CP

is a triple. The progression from chord
to chord is mapped to a CPH bin . From the rank , a
weight is computed in a heuristic way so that a larger weight
is used for a higher rank. More specifically, weights

are used for ranks , respectively. Different

weight policies are tried and by experiments we find this simple
weight policy works well. The whole process is shown in (2).

(2)

In the ideal case, CPH should only include inter-chord CPs
to accurately reflect the melody information. But intra-chord
CPs do exist. Consider the case where two adjacent features
correspond to the same chord . By probing

chords probed from the former feature are while
chords probed from the latter feature are . The probed
CPs are (the ground truth intra-chord CP), (is
probed from the latter feature) and (is probed from the
former feature). Fig. 4 shows an example around 60 sec:

and (true chord is). In addition, there are
more intra-chord CPs than inter-chord CPs, e.g., in Fig. 4 only
8 CPs are inter-chord CPs and the other 25 are intra-chord CPs.
It is hard to distinguish inter-chord CPs from intra-chord CPs
without knowing chord annotation. Therefore, CPs are
removed, but CPs and remain. As a result, a CPH
is somewhat symmetric.

D. Tree-Structure LSH

Each song has its own CPs and two similar songs share many
CPs in common. Therefore, it is possible to use CPs in the hash
design. But it is necessary to first investigate to what extent two
relevantsongsaresimilar in termsof theirdominantCPs.Because
CPH is somewhat symmetric, we only consider CPs from to
where in the hash design in order to get more unique hash
keys. Altogether there are possible CPs.
Let the top CPsof tworelevant songs and be and ,

respectively. The top CPs of song appear in ’s CP list with
ranks . Due to errors in CP recognition,
someof thetop CPsofsong mightnotappear inthe top CPsof
song . Instead, their rankswillbedegraded.Fig.5showsasimple
example, where the top 5 CPs (ranks) of song
appear in the CP list of song with ranks .
To evaluate how much two songs are similar to each other in
terms of their dominant CPs, we define the average degradation
of ranks (ADR) between two songs as follows:

(3)

In the ideal case, , and equals 0. When
the top CPs of appear in the CP list of with ranks being

, ADR equals to . Therefore, ADR is an
average degradation of ranks of CPs.
ADR can be used to assess the similarity of two songs in

terms of their dominant CPs. We investigated ADR for relevant
songs over a small testset. The CDF (cumulative distribution
function) of ADR with are shown in Fig. 6.
ADR is relatively small in most cases. In the above analysis, a
CP of a song may be in any rank of its relevant songs. Usually
it is only necessary to consider ranks in the top CP list. By
experiment, we find that setting provides good
performance. This can be used to design hash tables. If a song

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

YU et al.: SCALABLE CONTENT-BASED MUSIC RETRIEVAL USING CHORD PROGRESSION HISTOGRAM AND TREE-STRUCTURE LSH 7

Fig. 5. Rank relationship between dominant CPs of similar songs.

Fig. 6. Distribution of average degradation of ranks among similar songs.

Fig. 7. Tree-structure LSH, using dominant CPs as variable-length hash keys.

has its top CPs in the top CP list of , they are regarded as
being roughly similar to each other. To further ensure a degree
of similarity, must be less than a pre-determined
threshold, which is decided by ensuring that CDF is greater than
a value, e.g., 0.98.
In the database, of a song is used as its hash key and

is stored in the associated bucket. But an investigation
shows that the top CPs are not evenly distributed. Most items
are located in just a few buckets, which degrade the hashing
efficiency. In this design, a large bucket is further divided into
sub-buckets by using more CPs as the hash keys. For example,
for a bucket with the key length being , the key length of its
sub-bucket will be extended to . Sub-buckets belonging to the
same bucket share the same prefix composed of CPs, and are
distinguished by the remaining CPs. In this way, the hash
table is divided into levels, and the lengths of hash keys equal
to , respectively. Fig. 7 shows an example where

. Dashed boxes are internal nodes representing buckets
that are further divided into sub-buckets. CPHs are stored in
solid boxes which correspond to leaf buckets. The longer the
hash key of a leaf bucket is, the more similar songs in the same
bucket will be.
The tree-structure is a little similar to the LSH forest scheme

in [7]. However, the hash functions are quite different. General

randomhashfunctions, , areused in[7],without
exploiting statistical properties of features. We investigated the
energydistributionofCPHand found that energy isdominatedby
atmost20majorbins.Usinggeneral randomhashfunctions,most
coefficients of will not work. Therefore, many parallel hash ta-
bles are required to achieve a satisfactory recall. In our scheme,
CPs are used to construct hash keys. Songs in the same bucket
share the same dominant CPs. Organizing CPHs in this way en-
sures high similarity of songs in the same bucket. Therefore, sat-
isfactory retrieval performance can be achieved with only one
hash table, by using multi-probing [26] in the search stage.

Algorithm 2 Store CPH features in the LSH table

1: procedure STORECPH
2: Find top CPs
3: Find the bucket with longest key that matches
4: if bucket is found at level then
5: if does not contain any sub-bucket then
6: Put in bucket
7: if #items in a threshold then
8: DivideBucket
9: end if
10: else
11: Create a new sub-bucket with the key
12: Put in the sub-bucket
13: end if
14: else is not found
15: Create a new bucket with the key
16: Put in the new bucket
17: end if
18: end procedure
19: Procedure DIVIDEBUCKET
20: for Each in bucket do
21: Compute top CPs
22: Put in sub-bucket associated with
23: end for
24: end procedure

The organization of a LSH table is described by Algorithm 2.
To store in the hash table, at first its top CPs
are found. Then, the bucket which has the longest key matching
the one determined by is found. Fast algorithms for
searching network addresses with the longest prefix [37] can be
exploited here. There are three cases: (i) This bucket exists and
does not contain any sub-buckets. is stored in the bucket.
If the number of items in the bucket gets greater than a pre-deter-
mined threshold, this bucket is divided into sub-buckets using
longer hash keys. (ii) A bucket is found, which is further com-
posed of sub-buckets. But the target sub-bucket does not exist
yet. A new sub-bucket is created and is stored there. (iii)
The bucket is not found. Then a new bucket is created at the first
level and is stored there.
Retrieval with the tree-structure LSH is described by Algo-

rithm 3, for searching songs relevant to a query , whose CPH is
computed as . Initially, the candidate set is cleared to
be empty. Starting from the hash level with longest hash keys,
at a hash level , from all possible out of the top CPs
of the query, the ones with less than a threshold are

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

8 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 0, NO. , 2013

kept, and used as hash keys for probing. CPHs in the associ-
ated buckets are found and added to . Then, the similarity
between and CPHs in is computed, and the set of
relevant songs is returned as .

Algorithm 3 Retrieve items relevant to by LSH

1: procedure QUERYWITHCPH

2: is cleared to be empty
3:
4: for Search each LSH level
5: for all CPs of top CPs of query do
6: if ADR of CPs a threshold then
7: Use CPs as hash key to probe buckets
8: Clear if buckets are found
9: Get CPHs from buckets and add to
10: end if
11: end for
12: if is false then
13: Stop searching other hash levels
14: end if
15: end for
16: Comp. similarity between and CPHs in
17: return the set of songs as whose similarity degree
18: with is greater than a threshold.
19: end procedure

1) Computation Cost of the Retrieval: Music composition
rules constrain the possible CPs and their combinations. As-
sume, without loss of generality, that there are typical
CPs, , with probabilities . Of the
songs in the database, are stored in a -level

bucket with the hash key . The max-
imal number of songs in a bucket is limited to a threshold ,
i.e., . To this end, a large bucket is split into
sub-buckets which are assigned longer hash keys (more CPs) so
that the probability product, , is no more than .
With a song as a query, the CPs used as the hash key of

a -level bucket appear in the query’s CP list with ranks
, where are the de-

graded ranks. According to (3), this bucket is probed under the
following condition where is the ADR threshold.

(4)

The number of possible combinations of , deter-
mines the maximal number of probing in the level. On the
other hand, the maximal number of buckets in the level
is . Therefore, the retrieval cost under LSH, normalized
by the cost of exhaustive search, is limited to be no more than

.

E. Performance Analysis

In this section, we give an analysis of the effect of CP recogni-
tion on the LSH design. To get a closed-form, we only consider
the simple case without using different weights. Assume the
false negative probability of CP recognition is , with which
a CP is falsely recognized as other CPs. A false recognition

of CP also causes a false positive event, with a probability
under the assumption that a false CP is

uniformly distributed among the other CPs. Consider
a song with CPs. Assume without loss of generality that the
countsof under theground truthequal

in thedecreasingorder.Their actual
counts by recognition equal . As for ,

(5)

where is the number of falsely recognized as other
CPs and is the number of other CPs falsely recognized
as . can be modeled by a binomial distribution [38]

and approximated by a normal distribution
. Similarly, can be modeled by

a binomial distribution and approximated by a
normal distribution

.
Therefore, approximately follows a normal distribution in

(6) where and are operations of expectation and vari-
ance respectively.

(6)

In a similar way, we can find the distribution of . Then,
also follows a normal distribution

(7)

In the LSH design, assume top CPs are used as hash keys.
Without probing, two similar songs should have their hash keys
exactly the same. Then, the recognition result of their top
CPs should also be correct. In other words, all top CPs of
the ground truth results should remain top after recognition.
This can be approximated by requiring (
will be greater than with a higher probability), and ex-
pressed in a simple form by the often-used function

as follows,

(8)

A simple probing policy is to require that top CPs of a song
appear in the top CPs of its relevant audio tracks,

(9)

and
. Then, because is a decreasing func-

tion. In other words, probing improves the retrieval recall of
LSH when using dominant CPs as the hash keys.

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

YU et al.: SCALABLE CONTENT-BASED MUSIC RETRIEVAL USING CHORD PROGRESSION HISTOGRAM AND TREE-STRUCTURE LSH 9

The above simple probing policy can be further refined by
setting a threshold for the ADR metric so as to only probe the
most likely buckets.

IV. EVALUATION

In this section we evaluate the retrieval algorithm suggested
in Section III with extensive simulation evaluations. We first
investigate how to select the training set for CP recognition.
Then, with a small database, we examine the effects of probing
on both CP recognition and retrieval, and determine the optimal
parameters. Finally, we present the overall evaluation results.

A. Selecting a Training Set

State-of-the-art chord recognition algorithms, evaluated in
MIREX [39], all are trained and tested on the Beatles sets [36].
About 3/4 of the 180 songs are used for training and the other
1/4 for testing. With such a policy, the trained model may be
over fitted to the training set and does not generalize well to
other databases.
Different from a Gaussian model which heavily depends on

the size of the training set, the power of SVM comes from the
support vectors themselves. The training set would work well
if all typical support vectors are included. Instead of chords,
we are more interested in CPs. We use the MRR1 metric to
measure the performance of CP recognition.MRR1 is defined as
the mean reciprocal rank of the correct CP in the probed CP list,
which identifies both the recognition accuracy and the quality of
CPs in times of probing. To avoid over-fitting and remove some
features specific to training songs, we select a small training set
from Beatles and use others as the testing set. We wish to find a
small training set that contains most typical support vectors and
maximizes MRR1 on the testing set with more songs so that the
trained model can be better generalized to other datasets.

Algorithm 4 Find the optimal training set

1: procedure FINDTRAINSET

2: Equally divide into groups ,
each with songs

3: for do
4: Use as the training set and train a model
5: Test the model with , compute
6: end for
7: Sort , in the decreasing
order, accordingly becomes

8: Use the last groups as the common testing set .
9: and train a model
10: Test it with and set its to
11: for do
12: Use as a temporary training set
13: Train a model and test it with
14: Compute its as
15: if then
16:
17:
18: end if
19: end for
20: return as the selected training set.
21: end procedure

Fig. 8. Effect of multi-probing in chord-progression recognition (inter-chord
CPs).

Fig. 9. Effect of multi-probing in chord-progression recognition (intra-chord
CPs).

The heuristic algorithm for selecting a training set is shown
in Algorithm 4, which takes as input all 180 Beatles songs
with chord annotations, and outputs a training set . At first,
is divided into groups, , each with
songs. should be small enough so that there will be

some groups that do not contain support vectors specific to the
training set. should also be large enough so that a SVM
model can be trained. Using each group as the training set
and the other songs in as the testing set, is
computed. The obtained , is sorted in
decreasing order, and accordingly is re-arranged to .
Then, starting with and , a
new set of songs is used as a temporary training set
and its is evaluated on the common testing set , and
computed as . The set will be used as the
new training set if is greater than . For this
process, we used , and
the final training set contains 45 songs.

B. Effect of Probing

We investigated MRR1 of chord and CPs over a common
testing set, using four features referred to as Muller05 (CENS
[20]), Ellis07 (BSIF chroma [4]), Muller09 (CRP [21]),
and Ellis10 (CompFeat [16]). We applied the proposed
multi-probing method together with all features. The recog-
nition accuracy is usually referring to all chords. Here, we
distinguish inter-chord CPs from intra-chord CPs.
MRR1 results of inter-chord CPs and intra-chord CPs are

shown in Fig. 8 and Fig. 9, respectively. The two figures reveal
three points: (i) The proposed multi-probing method improves

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

10 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 0, NO. , 2013

Fig. 10. Effect of multi-probing in the CP recognition on the recall perfor-
mance of CBMIR.

CP recognition accuracy of all features. (ii) Intra-chord CPs are
recognized with a much higher accuracy than inter-chord CPs.
This is due to following factors: Spectrum within a chord is
stable and the recognition accuracy of intra-chord CPs is rel-
atively high. In contrast, spectrum near chord boundaries is not
stable, which leads to a low accuracy of inter-chord CPs. Under
almost all cases, the CompFeat (Ellis10) feature outperforms
other features in terms of inter-chord CP accuracy. (iii) Recog-
nition accuracy is improved by refining the training set. To-
gether with CompFeat, we further refined the training set and
another curve “RefineTS” is added to both figures, but the ef-
fect is different. For intra-chord CPs, the effect is limited be-
cause state-of-the-art algorithms already have a high perfor-
mance. However, its effect on inter-chord CP accuracy is ob-
vious. This justifies the necessity of refining the training set. The
CompFeat feature with the refined model (RefineTS) is used
hereafter. Further improvement of inter-chord CP recognition
accuracy is left as future work.
We tried different probing policies (and) in com-

puting CPHs and tested them on a small database by the
(-nearest neighbor) retrieval. The result of the often-used re-
call metric is shown in Fig. 10. This figure reveals three points:
(i) Under a fixed , recall first increases with and then
decreases, which indicates that a suitable can lead to a local
maximal recall. (ii) Increasing usually leads to a higher peak
recall. (iii) The effect of probing is large when and are
small. When there is no probing, and , recall
is only 0.665. Simply probing one more CP by using ,
the recall increases to 0.746. When probing chords,
the max recall reaches 0.806 at . This figure confirms
that multi-probing in the recognition is necessary in order to get
accurate music representations to improve the retrieval recall.
Hereafter, and are used.

C. Overall Results of Retrieval Experiment

In this section, we present the overall experimental results.
We use the 3 datasets shown in Table II, with a total of 74,055
audio tracks. Dataset I, Covers79, is the same as in [5] and con-
sists of 1072 audio variants of 79 songs.More specifically, audio
tracks in Covers79 are recordings of the same song sung by
different people over similar music accompaniments. The pro-
posed method can also be applied to search audio tracks with
similar melodies if only they share dominant CPs in common.

TABLE II
DATASET DESCRIPTION

Datasets II and III are used as background music. Since there
are no large databases publicly available for simulating scala-
bility of audio content retrieval, we collected audio tracks from
MIREX, Lastfm.com, and the music channel of YouTube.
In the experiments, each track is 30 s long in mono-channel

mp3 format and the sampling rate is 22.05KHz. From thesemp3
files, CompFeat [16] is calculated. Then, CPs are recognized and
CPH is further computed.
We compare the proposed scheme—CPH with tree-structure

LSH , to CPH with ,
pitch histogram with , MPH with order-sta-
tistics LSH [5], and CPH with LSH forest
[7] . The LSH forest scheme is imple-
mented with 10 parallel hash tables, each hash table using at
most 20 hash functions. Its parameters (number of hash tables)
are tuned so that its retrieval accuracy almost equals that of

. We also perform a comparison with a method
based on the direct comparison of BSIF chroma sequences, de-
noted as . The task is to detect and retrieve mul-
tiple items relevant to a query and rank them in an ordered list.
In such tasks, recall, precision and F-measure are effective met-
rics. Here, relevance is assessed in terms of melody, or in other
words, chord progressions.
In the following, we evaluate the precision-recall relation-

ship, the effect of the query length and scalability with respect
to the database size. Unless stated otherwise, in the evaluation,
we use the following default setting: each of the 1072 tracks
in Covers79 is used as the query to retrieve its relevant tracks
from the datasets , which have 11,113 tracks; the excep-
tion is in the third experiment where dataset III is also used for
evaluating the effect of the database size. The query has the full
length as their relevant tracks, except in the second experiment
where the effect of the query length is evaluated. The number
of ranked results equals to that of relevant items determined by
the ground truth, except in the evaluation of the precision-recall
relationship.
1) Precision-Recall Curves: A retrieval algorithm should

make a good tradeoff between recall and precision. In this sub-
section we investigate this tradeoff by the classical precision-re-
call curves.
The number of output is changed and the pairs of recall

and precision achieved by different schemes are obtained and
plotted in Fig. 11. With more outputs, recall of all schemes
increases because the chance that relevant songs appear in the
ranked list gets larger. In contrast, precision decreases due
to more non-relevant tracks. lies between

and , and is much better than
. is better than

mainly because music knowledge via CP recognition is
exploited in CPH but not in MPH. also out-
performs . This is because the number of
hash tables in LSHForest is limited to 10. Improving recall

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

YU et al.: SCALABLE CONTENT-BASED MUSIC RETRIEVAL USING CHORD PROGRESSION HISTOGRAM AND TREE-STRUCTURE LSH 11

Fig. 11. Precision-recall curves of different schemes. A query audio track is
used to search its relevant tracks based on melody similarity. The number of
searched results is varied to get different recall-precision pairs.

Fig. 12. F-measure of different schemes. A query audio track is used to search
its relevant tracks based on melody similarity. The number of searched results
is varied to get different recall-precision pairs.

of LSHForest requires more hash tables. When precision
equals 0.6, recall, achieved by

, and
equal 0.5115, 0.6754, 0.7150, 0.7373, 0.7569

0.8143, respectively. Recall achieved by is
0.077 less than that of , but is 0.0223 greater
than that of and 0.062 greater than that of

.
Recall of is satisfactory, considering that

the retrieval speed is accelerated by both the summarization
and indexing. shortens the gap between

, previous efforts on global summarization
and indexing technique, and , which determines
the upper-bound via the exhaustive sequence comparison.
The performance of TSLSH is also superior to LSHForest by
exploiting the non-even distribution of CPs, not to mention its
much fewer hash tables. The performance difference between

and is due to three factors: (i)
errors in CP recognition, (ii) information loss when computing
CPH from a chord sequence, and, (iii) performance loss due to
approximate search by LSH. The first one is the main factor
and can be alleviated by exploring more advanced features in
CP recognition.
The tradeoff between precision and recall is better reflected

by the F-measure metric, which combines recall and precision
with the best value being 1. Fig. 12 clearly shows that the F-mea-
sure curve of lies between those of

and .

Fig. 13. Recall under different query lengths. A query audio track with a vari-
able length is used to search its relevant tracks based on melody similarity.

Fig. 14. Recall under different database sizes. A query audio track is used to
find its relevant tracks based on melody similarity. All audio tracks have the
same length. The database size is adjusted.

2) Effect of Query Lengths: In the last subsection, it is as-
sumed that each query has the same length as its references in
the database. However, due to various reasons, the query may be
shorter. In this section, we evaluate the effect of query lengths
on retrieval performance. The recall results are shown in Fig. 13,
with respect to normalized query lengths.
Recall decreases with query length in all schemes. The per-

formance is greatly degraded when the query length becomes
less than 0.5. For CPH, when the query length is greater than
0.5, the recall is still satisfactory (no less than 0.5). And it is
reasonable to require that the query length be no less than half
of the target song in order to reliably search the relevant songs.
3) Effect of Database Sizes: LSH usually applies to large

databases. By varying the database size from 11,113 to 74,055,
we evaluate recall, average precision and computation cost of

.
Recall decreases in all schemes with the increase of the data-

base size, as shown in Fig. 14. The recall difference between
and increases from 0.0546

(database) to 0.0748 (database),
indicating that CPH is more scalable with database sizes. The
average precision in Fig. 15 shows a similar trend, which con-
firms that CPH is more accurate in representing an audio se-
quence than MPH. When the database size equals 74,055, re-
call and average precision of equal to 0.681 and
0.878, respectively. The difference between and

is almost irrelevant of database sizes. This
is because both schemes use the same CPH feature.

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

12 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 0, NO. , 2013

Fig. 15. Average precision under different database sizes. A query audio track
is used to find its relevant tracks based on melody similarity. All audio tracks
have the same length. The database size is adjusted.

Fig. 16. Normalized computation cost in the retrieval. A query audio track is
used to find its relevant tracks based on melody similarity. All audio tracks have
the same length.

For the largest database size, the normalized computation, the
ratio of computation cost of to that of

, equals 0.091 when one-level LSH is used, it decreases
to 0.03 when two-level TSLSH is used, and further decreases to
0.026 when three-level TSLSH is used, as shown in Fig. 16. The
biggest gain of the tree-structure is reached when changing the
LSH table fromone-level to two-level. Further dividing the LSH
table into three-level has little gain. This is because low-rank
CPs will be used as hash keys, but their accuracy is still limited
by the CP recognition algorithm. The normalized computation
cost of and is a little less
than that of . But achieves a
better tradeoff among retrieval accuracy (recall and precision),
computation cost and storage (number of hash tables).

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a novel method that improves accuracy
and scalability of CBMIR. We have designed our retrieval al-
gorithm by exploiting musical knowledge in training a chord
model. In particular, we exploited multi-probing in CP recogni-
tion via the modified Viterbi algorithm, which outputs multiple
likely CPs and increases the probability of finding the correct
one. A chord progression histogram is put forward to summa-
rize the probed CPs in a concise form, which is both efficient and
also retains local chord progressions. Average degradation of
ranks is suggested as a metric to assess similarity of two songs in
terms of their CPs. Hash keys are also based on CPs. By setting
an ADR threshold, it is possible to only probe buckets in which
songs are highly similar to the query, and the number of prob-
ings is controlled. In addition, the tree structure LSH enables

a more efficient organization of the database. After conducting
extensive experiments looking at recall/precision curves, effect
of query lengths, and scalability of database sizes, we confirmed
that is superior to previous work in terms of the
tradeoff between accuracy and efficiency over a large-scale real
web audio dataset.
Currently, the retrieval performance of is still

limited by the CP recognition accuracy. This could be solved
by improving the accuracy of inter-chord CPs and reducing the
negative effects of intra-chord CPs. This is left as future work.

REFERENCES
[1] C. Yang, “Efficient acoustic index for music retrieval with various de-

grees of similarity,” in Proc. ACM MM, 2002, pp. 584–591.
[2] W. H. Tsai, H. M. Yu, and H. M. Wang, “A query-by-example

technique for retrieving cover versions of popular songs with similar
melodies,” in Proc. ISMIR, 2005, pp. 183–190.

[3] R. Miotto and N. Orio, “A methodology for the segmentation and iden-
tification of music works,” in Proc. ISMIR, 2007, pp. 239–244.

[4] D. Ellis and G. Poliner, “Identifying cover songs with chroma features
and dynamic programming beat tracking,” in Proc. ICASSP, 2007, pp.
1429–1432.

[5] Y. Yu, M. Crucianu, V. Oria, and E. Damiani, “Combing multi-probing
histogram and order-statistics based LSH for scalable audio content
retrieval,” in Proc. ACM MM, 2010, pp. 381–390.

[6] T. E. Ahonen, “Combing chroma features for cover version identifica-
tion,” in Proc. ISMIR, 2010, pp. 165–170.

[7] M. Bawa, T. Condie, and P. Ganesan, “LSH forest: Self tuning indexes
for similarity search,” in Proc. WWW, 2005, pp. 651–660.

[8] M. Slaney and M. Casey, “Locality-sensitive hashing for finding
nearest neighbors,” IEEE Signal Process. Mag., vol. 25, no. 2, pp.
128–131, 2008.

[9] B. Cui, J. Shen, G. Cong, H. Shen, and C. Yu, “Exploring composite
acoustic features for efficient music similarity query,” in Proc. ACM
MM, 2006, pp. 634–642.

[10] I. Karydis, A. Nanopoulos, A. N. Papadopoulos, and Y.Manolopoulos,
“Audio indexing for efficient music information retrieval,” in Proc.
MMM, 2005, pp. 22–29.

[11] J. Shen, D. Tao, and X. Li, “QUC-tree: Integrating query context infor-
mation for efficient music retrieval,” IEEE Trans. Multimedia, vol. 11,
no. 2, pp. 313–323, 2009.

[12] N. Bertin and A. Cheveigne, “Scalable metadata and quick retrieval of
audio signals,” in Proc. ISMIR, 2005, pp. 238–244.

[13] T. Fujishima, “Realtime chord recognition of musical sound: A system
using common Lisp music,” in Proc. ICMC, 1999, pp. 464–467.

[14] K. Lee, “Automatic chord recognition from audio using enhanced pitch
class profile,” in Proc. ICMC, 2006.

[15] H.-T. Cheng, Y.-H. Yang, Y.-C. Lin, I.-B. Liao, and H. H. Chen, “Auto-
matic chord recognition for music classification and retrieval,” in Proc.
ICME, 2008, pp. 1505–1508.

[16] D. Ellis and A. Weller, “The 2010 LABROSA chord recognition
system,” in Proc. MIREX, 2010.

[17] T. Cho, R. J. Weiss, and J. P. Bello, “Exploring common variations in
state of the art chord recognition systems,” in Proc. Sound and Music
Computing Conf., 2010.

[18] M. McVicar, Y. Ni, T. D. Bie, and R. S. Rodriguez, “Leveraging noisy
online databases for use in chord recognition,” in Proc. ISMIR, 2011,
pp. 639–644.

[19] Y. Yu, R. Zimmermann, Y. Wang, and V. Oria, “Recognition and sum-
marization of chord progressions and their application to music infor-
mation retrieval,” in Proc. IEEE ISM, 2012, pp. 9–16.

[20] M. Muller, F. Kurth, and M. Clausen, “Audio matching via chroma-
based statistical features,” in Proc. ISMIR, 2005, pp. 288–295.

[21] M. Muller, S. Ewert, and S. Kreuzer, “Making chroma features more
robust to timbre changes,” in Proc. ICASSP, 2009, pp. 1877–1880.

[22] Chord. [Online]. Available: http://en.wikipedia.org/wiki/
Chord_(music).

[23] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality,” in Proc. ACM STOC, 1998.

[24] S. Poullot, M. Crucianu, and O. Buisson, “Scalable mining of large
video databases using copy detection,” in Proc. ACM MM, 2008, pp.
61–70.

[25] A. Joly and O. Buisson, “A posteriori multi-probe locality sensitive
hashing,” in Proc. ACM MM, 2008, pp. 209–218.

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

YU et al.: SCALABLE CONTENT-BASED MUSIC RETRIEVAL USING CHORD PROGRESSION HISTOGRAM AND TREE-STRUCTURE LSH 13

[26] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-probe
LSH: Efficient indexing for high-dimensional similarity search,” in
Proc. VLDB, 2007, pp. 950–961.

[27] J. Shen, J. Shepherd, and A. Ngu, “Towards effective content-based
music retrieval with multiple acoustic feature combination,” IEEE
Trans. Multimedia, vol. 8, no. 6, pp. 1179–1189, 2006.

[28] Y. Yu, J. S. Downie, L. Chen, K. Joe, and V. Oria, “Searching musical
datasets by a batch of multi-variant tracks,” in Proc. ACM MIR, 2008,
pp. 121–127.

[29] R. Cai, C. Zhang, L. Zhang, and W.-Y. Ma, “Scalable music recom-
mendation by search,” in Proc. ACM MM, 2007, pp. 1065–1074.

[30] J. Shen, H. Pang, M. Wang, and S. Yan, “Modeling concept dynamics
for large scale music search,” in Proc. ACM SIGIR, 2012, pp. 455–464.

[31] M. Casey, C. Rhodes, and M. Slaney, “Analysis of minimum distances
in high-dimensional spaces,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 16, no. 5, pp. 1015–1028, 2008.

[32] R. Miotto, “Content-based music access: an approach and its applica-
tions,” in Proc. FDIA, 2009, pp. 69–75.

[33] Z. Guo, Q. Wang, G. Liu, and J. Guo, “A query by humming system
based on locality sensitive hashing indexes,” Signal Process., 2012.
[Online]. Available: http://dx.doi.org/10.1016/j.sigpro.2012.09.006.

[34] D. Meyer, F. Leisch, and K. Hornik, “The support vector machine
under test,” Neurocomputing, vol. 55, no. 1–2, pp. 169–186, 2003.

[35] T. Joachims, T. Finley, and C.-N. Yu, “Cutting-plane training of struc-
tural SVMs,” Mach. Learn. J., vol. 77, no. 1, pp. 27–59, 2009.

[36] C. Harte and M. Sandler, “Automatic chord identification using a quan-
tized chromagrams,” in Proc. Convention Audio Engineering Society,
2005.

[37] M. A. R. Sanchez, E. Biersack, and W. Dabbous, “Survey and tax-
onomy of IP address lookup algorithms,” IEEE Netw. Mag., vol. 15,
no. 2, pp. 8–23, 2001.

[38] D. P. Bertsekas and J. N. Tsitsiklis, Introduction to Probability. Bel-
mont, MA: Athena Scientific, 2002.

[39] MIREX. [Online]. Available: http://www.music-ir.org/mirex/wiki/
2011:Audio_Chord_Estimation.

Yi Yu received the Ph.D. degree in computer science
in 2009 from Nara Womens University. She worked
at different institutions including New Jersey Insti-
tute of Technology, University of Milan and Nara
Womens University. She currently works at School
of Computing, National University of Singapore.
Her research interests include social interactions over
geo-aware multimedia streams, multimedia/music
signal processing, audio classification and tagging,
locality sensitive hashing-based music information
retrieval, and pest sound classification. She received

a best paper award from IEEE ISM 2012.

Roger Zimmermann (S’93–M’99–SM’07) received
the M.S. and Ph.D. degrees from the University of
Southern California (USC) in 1994 and 1998. He is
currently an associate professor in the Department
of Computer Science at the National University of
Singapore (NUS). He is also a deputy director with
the Interactive and Digital Media Institute (IDMI)
at NUS and a co-director of the Centre of Social
Media Innovations for Communities (COSMIC).
His research interests are in the areas of streaming
media architectures, distributed and peer-to-peer

systems, mobile and geo-referenced video management, collaborative environ-
ments, spatio-temporal information management, and mobile location-based
services. He has coauthored a book, six patents, and more than 150 conference
publications, journal articles, and book chapters. He is a member of ACM.

Ye Wang (M’99) is an Associate Professor in the
Computer Science Department at the National
University of Singapore (NUS) and NUS Graduate
School for Integrative Sciences and Engineering
(NGS). He established and directed the sound and
music computing (SMC) Lab. Before joining NUS
he was a member of the technical staff at Nokia
Research Center in Tampere, Finland for 9 years. His
research interests include sound analysis and music
information retrieval (MIR), mobile computing, and
cloud computing, and their applications in music

edutainment and e-Health, as well as determining their effectiveness via subjec-
tive and objective evaluations. His most recent projects involve the design and
evaluation of systems to support 1) therapeutic gait training using Rhythmic
Auditory Stimulation (RAS), and 2) Melodic Intonation Therapy (MIT). In
the academic year 2011–2012 he took his sabbatical leave at the School of
Computer Science of Fudan University and at Harvard Medical School.

Vincent Oria is an associate professor of computer
science at the New Jersey Institute of Technology.
His research interests include multimedia databases,
spatio-temporal databases and recommender sys-
tems. He has held visiting professor positions at
various institutions including National Institute of
Informatics (Tokyo, Japan), ENST (Paris, France),
Universit de Paris-IX Dauphine (Paris, France),
INRIA (Roquencourt, France), CNAM (Paris,
France), Chinese University of Hong Kong (Hong
Kong China) and the Universit de Bourgogne (Dijon,

France).

