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Location-based Spatial Query Processing in
Wireless Broadcast Environments

Wei-Shinn Ku, Member, IEEE, Roger Zimmermann, Senior Member, IEEE and Haixun Wang, Member, IEEE

Abstract—Location-based spatial queries (LBSQs) refer to spatial queries whose answers rely on the location of the inquirer. Efficient
processing of LBSQs is of critical importance with the ever-increasing deployment and use of mobile technologies. We show that
LBSQs have certain unique characteristics that traditional spatial query processing in centralized databases does not address. For
example, a significant challenge is presented by wireless broadcasting environments, which have excellent scalability but often exhibit
high-latency database access. In this paper, we present a novel query processing technique that, while maintaining high scalability
and accuracy, manages to reduce the latency considerably in answering location-based spatial queries. Our approach is based on
peer-to-peer sharing, which enables us to process queries without delay at a mobile host by using query results cached in its
neighboring mobile peers. We demonstrate the feasibility of our approach through a probabilistic analysis, and we illustrate the
appeal of our technique through extensive simulation results.

Index Terms—Broadcast disks, mobile computing, mobile environments, location-dependent and sensitive.

I. INTRODUCTION

Spatial query processing is becoming an integral part of
many new mobile applications. Recently, there has been a
growing interest in the use of location-based spatial queries
(LBSQs), which represent a set of spatial queries that retrieve
information based on mobile users’ current locations [2], [29].

User mobility and data exchange through wireless com-
munication give LBSQs some unique characteristics that
traditional spatial query processing in centralized databases
does not address. Novel query processing techniques must be
devised to handle the following new challenges.

� Mobile Query Semantics. In a mobile environment, a
typical LBSQ is of the following form: “find the top-
three nearest hospitals.” The result of the query depends
on the location of its requester. Caching and sharing of
query results must take into consideration the location of
the query issuer.

� High Workload. The database resides in a centralized
server, which typically serves a large mobile user com-
munity through wireless communication. Consequently,
bandwidth constraints and scalability become the most
important design concern of LBSQ algorithms [2].

� Query Promptness and Accuracy. Due to users’ mo-
bility, answers to an LBSQ will lose their relevancy if
there is a long delay in query processing or in com-
munication. For example, answers to the query “find the
top-three nearest hospitals” received after five minutes of
high-speed driving will become meaningless. Instead, a
prompt, albeit approximate, answer – telling the user right
away the approximate top-three nearest hospitals – may
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serve the user much better. This is an important issue, as
a long latency in a high workload wireless environment
is not unusual.

The wireless environment and the communication con-
straints play an important role in determining the strategy for
processing LBSQs. In the simplest approach, a user establishes
a point-to-point communication with the server so that her
queries can be answered on demand. However, this approach
suffers from several drawbacks. First, it may not scale to
very large user populations. Second, to communicate with the
server, a client must most likely use a fee-based cellular-type
network to achieve a reasonable operating range. And third,
users must reveal their current location and send it to the
server, which may be undesirable for privacy reasons [19]. A
more advanced solution is the wireless broadcast model [1],
[15], [30]. It can support an almost unlimited number of
mobile hosts (MH) over a large geographical area with a single
transmitter. With the broadcast model, mobile hosts do not
submit queries – instead they tune in to the broadcast channel
for information which they desire. Hence, the user’s location
is not revealed. One of the limitations of the broadcast model
is that it restricts data access to be sequential. Queries can
only be fulfilled after all the required on-air data arrives. This
is why in some cases, a five-minute delay to the query “find
the top-three nearest hospitals” would not be unusual.

Alleviating this limitation, we propose a scalable and low
latency approach for processing location-based spatial queries
in broadcast environments. Our approach leverages ad-hoc
networks to share information among mobile clients in a
peer-to-peer (P2P) manner [17], [18]. The rationale for our
approach is based on the following observations.

• As mentioned previously, when a mobile user launches a
nearest neighbor query, in many situations, she would
prefer an approximate result that arrives with a short
response time rather than an accurate result with a long
latency.

• The results of spatial queries often exhibit spatial locality.
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For example, if two mobile hosts are close to each
other, the result sets of their spatial queries may overlap
significantly. Query results of a mobile peer are valuable
for two reasons: i) they can be used to answer queries of
the current mobile host directly; and ii) they can be used
to dramatically reduce the latency for the current mobile
host relative to on-air information.

• P2P approaches can be valuable for applications where
the response time is an important concern. Through
mobile cooperative caching [7] of the result sets, query
results can be efficiently shared among mobile clients.

1NN Candidate
1NN

1NN

Communication range

1NN Candidate

q

p′1

p1

p′2

p2

o1

o2

o3

o4

Fig. 1. Nearest neighbor P2P result sharing.

An example is shown in Figure 1. At a given time instance, a
mobile host q can establish contact with two other mobile hosts
within its communication range: p′1 and p′2. In the past, both
p′1 and p′2 executed nearest neighbor queries for a certain type
of POI (point of interest) when they were located at p1 and
p2, respectively1. The results that they obtained and cached are
<o2, p1> and <o4, p2>. These two tuples represent candidate
solutions for q’s own 1NN query. Through a local verification
process q can determine whether one of the solutions obtained
from its neighbors is indeed its own nearest POI. Note that
the current locations of the neighboring hosts, p′1 and p′2,
have no specific significance, as long as they are within the
communication range of q.

In this paper, we concentrate on two common types of spa-
tial searches, namely, k nearest neighbor queries and window
queries. The contributions of our study are as follows.
a) We identify certain characteristics of LBSQs that enable

the development of effective sharing methods in broadcast
environments.

b) We introduce a set of algorithms that verify whether data
received from neighboring clients are complete, partial,
or irrelevant answers to the posed query.

c) We utilize a P2P based sharing method to improve the
current approaches in answering on-air k nearest neighbor
queries and window queries.

d) We evaluate our approach through a probabilistic analy-
sis of the hit ratio in sharing. Also, through extensive
simulation experiments, we evaluate the benefits of our
approach with different parameter sets.

1In our notation we use the object identifier to represent its position
coordinates.

The rest of the paper is structured as follows. Section II
surveys the related work of the wireless broadcast model,
spatial queries, and cooperative caching. Our own approach
is detailed in Section III and the experimental results are
presented in Section IV. Finally, Section V concludes the paper
and outlines future research directions.

II. BACKGROUND AND RELATED WORK

In this section, we introduce some background information
with respect to the support of spatial queries in a wireless
broadcast system.

A. Wireless data broadcast

In general, there are two approaches for mobile data access.
One is the on-demand access model and the other is the
wireless broadcast model. For the on-demand access model,
point-to-point connections are established between the server
and the mobile clients, and the server processes queries which
the clients submit on demand. For the wireless broadcast
model, the server repeatedly broadcasts all the information in
wireless channels and the clients are responsible for filtering
the information. An example of such a system is the Microsoft
DirectBand Network. The advantage of the broadcast model
over the on-demand model is that it is a scalable approach.
However, the broadcast model has large latency, as clients have
to wait for the information they need in a broadcasting cycle.
If a client misses the packets which it needs, it has to wait for
the next broadcast cycle.
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Fig. 2. The data and index organization of the (1, m) indexing scheme with
sample tuning time and access latency.

To facilitate information retrieval on wireless broadcast
channels, the server usually transmits an index structure along
with data objects. A well known broadcast index structure is
the (1, m) indexing allocation method [15]. As we can see
from Figure 2, the whole index is broadcast preceding every
1/m fraction of the data file. Because the index is available
m times in one cycle, it allows a mobile client easy access to
the index, so that it can predict the arrival time of its desired
data in a timely manner, and once it knows the arrival time, it
only needs to tune into the broadcast channel when the data
bucket arrives. This mechanism is important for battery-based
devices.

Thus, the general access protocol for retrieving data on a
wireless broadcast channel involves three main steps [15]:

• The initial probe A client tunes into the broadcast
channel and determines when the next index segment will
be broadcast.
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• Index search The client accesses a sequence of pointers
in the index segment to figure out when to tune in to the
broadcast channel to retrieve the required data.

• Data retrieval The client tunes into the channel when
packets containing the required data arrive and then
downloads all the required information.

Two parameters, access latency and tuning time, charac-
terize the broadcast model. The access latency represents the
time duration from the point that a client requests its data
to the point that the desired data is received. The tuning
time is the amount of time spent by a client listening to the
broadcast channel, which proportionally represents the power
consumption of the client [15].

However, nearly all the existing spatial access methods
are designed for databases with random access disks. These
existing techniques cannot be used effectively in a wireless
broadcast environment, where only sequential data access is
supported. Zheng et al. [31] proposed to index the spatial data
on the server by a space-filling curve. The Hilbert curve [16]
was chosen for this purpose because of its superior locality.
The index values of the data packets represent the order in
which these data packets are broadcast. For example, the
Hilbert curve in Figure 3 tries to group data of close values
so that they can be accessed within a short interval when they
are broadcast sequentially. The mobile hosts use on-air search
algorithms [31] to answer location-based spatial queries (k
nearest neighbor and window queries) over data that arrives
in the order prescribed by the Hilbert curve.

2

1

3

0 1

0 14

2

2

3

74

5 6 9 10

8 11

13 12

15

1

3

0

Fig. 3. The Hilbert-curve based index structure. The numbers represent index
values.

B. Spatial Queries

We focus on two common types of spatial queries, namely k
nearest neighbor queries and window queries. With R-tree [10]
based spatial indices, depth-first search (DFS) [25] and best-
first search (BFS) [13] have been the prevalent branch-
and-bound techniques for processing nearest neighbor (NN)
queries. The DFS method recursively expands the index nodes
for searching nearest neighbor candidates. At each newly
visited non-leaf node, DFS computes the ordering metrics for
all its child nodes and applies pruning strategies to remove
unnecessary branches. When a leaf node is reached, the data
objects are retrieved and the nearest neighbor candidates are
updated. Comparatively, the BFS technique utilizes a priority
queue to store nodes to be explored through the search process.
The nodes in the queue are sorted according to their minimum
distance (MINDIST) to the query point. During search, the

BFS repeatedly dequeues the top entry in the queue and
enqueues its child nodes with their MINDIST into the queue.
When a data entry is dequeued, it is inserted into the result
set.

For window queries that find objects within a specified
area, the R-tree families [3], [26] provide efficient access
to disk-based databases. Basically, an R-tree structure groups
objects close to each other into a minimum bounding rectangle
(MBR), and a range query only visits the MBRs that overlap
with the query area.

C. Cooperative Caching

Caching is a key technique to improve data retrieval per-
formance in widely distributed environments [14], [21], [22].
Hara et al. proposed three data replica allocation methods in
ad hoc networks by considering the access frequency from
mobile hosts to each data item and the status of the network
connection [12]. With the increasing deployment of new P2P
wireless communication technologies (e.g., IEEE 802.11b/g
and Bluetooth), peer-to-peer cooperative caching becomes an
effective sharing alternative [6], [11], [28]. With this technique,
mobile hosts communicate with neighboring peers in an ad hoc
manner for information sharing, instead of relying solely on
the communication between remote information sources. Yin
et al. [28] proposed three schemes, CachePath, CacheData,
and HybridCache for cooperative caching in ad hoc networks.
With CachePath, mobile nodes cache the data path and use it
to redirect prospective requests to a neighboring node which
has the data instead of fetching data from the remote data
center. With CacheData, intermediate nodes cache the data to
serve prospective queries. The HybridCache approach further
improves performance by taking advantage of both CacheData
and CachePath while avoiding their weaknesses. Peer-to-peer
cooperative caching can bring about several distinctive benefits
to a mobile system: improved access latency, reduced server
workload, and alleviated point-to-point channel congestion.
In this research, we leverage the P2P caching technique to
alleviate the inherent access latency limitation in wireless
broadcast environments.

III. SYSTEM DESIGN

In this section, we describe our approach for supporting
LBSQs in a wireless broadcast environment. The fundamental
idea behind our methodology is to leverage the cached re-
sults from prior spatial queries at reachable mobile hosts for
answering future queries at the local host.

A. Overview

The wireless data broadcast model has good scalability for
supporting an almost unlimited number of clients [15]. Its
main limitation lies in its sequential data access; the access
latency becomes longer as the number of data items increases.
If we can provide (approximate) answers to spatial queries
before the arrival of the related data packets, we will overcome
the limitation of the broadcast model.

A novel component in our methodology is a verification
algorithm that verifies whether a data item from neighboring



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 7, NO. 1, JANUARY 2008 4

Data Station

Mobile Host

Wireless Broadcast
Channel

Spatial Database

Mobile Host
Transmission Range

Mobile Host

Peer-to-Peer
Channel

Fig. 4. System environment.

peers is part of the solution set to a spatial query. Even if
the verified results constitute only part of the solution set, in
which case the query client needs to wait for the required
data packets to get the remaining answers, the partial answer
can be utilized by many applications that do not need exact
solutions but require a short response time (for example, the
query “What are the top three nearest hospitals?” issued by a
motorist on a highway).

In this study we detail how k nearest neighbor (kNN)
queries and window queries can be processed by cooperating
mobile hosts to improve the performance of on air spatial
queries. We apply the spatial query algorithms proposed
in [31] to illustrate our techniques. However, our sharing based
solution can be a common method for any broadcast system.

B. Assumed Infrastructure

Figure 4 depicts our operating environment with two main
entities: a remote wireless information server and mobile
hosts. We are considering mobile clients, such as vehicles,
that are instrumented with global positioning systems (GPS)
for continuous position information. Furthermore, we assume
that the wireless information server broadcasts information in
a wireless channel periodically and the channel is open to
the public. In addition, there are short-range networks that
allow ad hoc connections with neighboring mobile clients.
Technologies that enable ad hoc wide band communication
include, for example, IEEE 802.11b/g. Benefiting from the
power capacities of vehicles, we assume that each mobile host
has a significant transmission range and virtually unlimited
power lifetime [5]. The architecture also supports hand-held
mobile devices.

In Figure 4, when a mobile host p issues a spatial query,
it tunes into the broadcast channel and waits for the data. In
the meantime, p can collect cached spatial data from peers to
harvest existing results in order to complete its own spatial
query. Because memory space is scarce in mobile devices, we
assume that each mobile host p caches a set of POIs in an
MBR related to its current location. Since the POIs located
inside the MBR were obtained from the wireless information
server, we define the area bounded by the MBR as a verified
region, p.V R, with regard to p’s location.
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Fig. 5. An on air kNN query example. The numbers represent index values.

C. Sharing Based Nearest Neighbor Queries

Figure 5 shows an example of an on air kNN query based on
a Hilbert curve index structure [31]. At first, by scanning the
on air index, the kth nearest object to the query point is found
and a minimal circle centered at q and containing all those
k objects is constructed. The MBR of that circle, enclosing
at least k objects, serves as the search range. Consequently,
q has to receive the data packets that covers the MBR from
the broadcast channel for retrieving its k nearest objects. As
shown in Figure 5, the related packets span a long segment in
the index sequence – between 5 and 58, which will require a
long retrieval time. The other problem of this search algorithm
is that the indexing information has to be replicated in the
broadcast cycle to enable twice-scanning. The first scan is for
deciding the kNN search range and the second scan is for
retrieving k objects based on the search range [31].

TABLE I
SYMBOLIC NOTATIONS.

Symbol Meaning

q A query mobile host
P The set of all the peers that respond the query issued by q

p.O The cached POI set of a mobile host p where p ∈ P

p.V R The verified region of a mobile host p
MV R The merged verified region

es The edge of MV R which has the shortest distance to q
oi A nearest neighbor element in p.O
H A heap for storing SBNN query results. Its verified and un-

verified elements are defined as H .verified and H .unverified,
respectively.

O The set of all the received POIs from peers
|A| The number of elements in set A

||a, b|| The Euclidean distance between objects a and b

Therefore, we propose a sharing based nearest neighbor
(SBNN) query approach to improve the preceding on air
kNN query algorithm. The SBNN algorithm attempts to verify
the validity of k objects by processing results obtained from
several peers. Table I summarizes the symbolic notations used
throughout this section.

1) Nearest Neighbor Verification (NNV): When a mobile
host q executes SBNN, it first broadcasts a request to all
its single-hop peers for their cached spatial data. Each peer
that receives the request returns the verified region MBR and
the cached points of interest to q. Then, q combines the
verified regions of all the replying peers, each bounded by



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 7, NO. 1, JANUARY 2008 5

its MBR, into a merged verified region MV R (the polygon
in Figure 6). The merging process is carried out by the
MapOverlay algorithm [8] (line 4 of Algorithm 1). The core
of SBNN is the nearest neighbor verification (NNV) method,
whose objective is to verify whether a POI oi obtained from
peers is a valid (i.e., top k) nearest neighbor of the mobile
host q.

Let P denote the data collected by q from j peers p1, · · · , pj .
Consequently, the merged verified region MV R can be repre-
sented as:

MV R = p1.V R ∪ p2.V R ∪ · · · ∪ pj .V R.

Suppose the boundary of MV R consists of k edges, E

= {e1, e2, . . . , ek} and there are l points of interest, O =
{o1, o2, . . . , ol}, inside the MV R. Let es ∈ E be the edge
that has the shortest distance to q. An example is given in
Figure 6, where k = 10, and e1 has the shortest distance to q.

Lemma 3.1: Let ̂O = {ô1, ô2, . . . , ôv} be a set of POIs each
of which is closer to q than es and q is inside MV R. Then,
ô1, ô2, . . . , ôv are the top v nearest neighbors of q.
Proof:

Assume om is one of the top v nearest neighbors of q, but
om /∈ ̂O. Then, ||q, om|| < ||q, ôv|| and ||q, om|| < ||q, es||.
Since ||q, om|| < ||q, es||, om must be inside MV R and om ∈
O. Based on the definition of ̂O, om must be a member of
̂O. However, this contradicts the assumption that om /∈ ̂O.
Therefore, ̂O must cover the top v nearest neighbors of q.

Merged
Verified Region

q

o1

|| q, o1 ||

|| q, e1 ||

o2

e1

o3

o4

o5

Fig. 6. Because e1 has the shortest distance to q and ||q, o1|| ≤ ||q, e1||,
POI o1 is verified as a valid NN of mobile host q.

In Figure 6, according to Lemma 3.1, the POI o1 can be
verified as the nearest neighbor of q and is termed a verified
nearest neighbor, because the Euclidean distance between o1

and q is no greater than the Euclidean distance between e1

and q. Figure 7 demonstrates a counter example. Since we are
not sure if there is any POI within the unverified regions, o4

cannot be verified as a top kNN of q. Note that there could
be unverified regions inside the merged verified region.

The NNV method uses a heap H to maintain the entries
of verified and unverified points of interest discovered so far
(Table II). Initially H is empty. The NNV method inserts POIs
to H as it verifies objects from mobile hosts in the vicinity
of q. The heap H maintains the POIs in an ascending order
in terms of their Euclidean distances to q. Unverified objects

Merged
Verified Region
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o1
|| q, o4 ||

|| q, e1 ||

o2

e1

o3

o4

o5

Unverified
Region

Fig. 7. Because of some unverified regions, o4 cannot be verified as a top
k NN of q.

TABLE II
THE DATA STRUCTURE OF THE HEAP H.

POI verified? distance correctness surpassing
to q [miles] probability distance (r′ − r)

o1 yes 2 100% -
o5 yes 3 100% -
o4 no 5 55% 2
o3 no 6 40% 3

are kept in H only if the number of verified objects is lower
than requested by the query. The nearest neighbor verification
method is formalized in Algorithm 1. Since the verified
region merging process dominates the algorithm complexity,
the NNV method can be computed in O(n log n+i log n) time,
where n is the total edge number of the two merged polygons
and i is the number of intersection points.

Algorithm 1 NNV (q, H , k)
1: P ← peer nodes responding the query request issued from

q.
2: MV R ← ∅
3: for ∀p ∈ P do
4: MV R ∪ = p.V R and O ∪ = p.O
5: end for
6: ∀oi ∈ O, sort according to ||q, oi||
7: Compute ||q, es|| where edge es has the shortest distance

to q among all the edges of MV R

8: i = 1
9: while |H| < k and i ≤ |O| do

10: if ||q, oi|| ≤ ||q, es|| then
11: H .verified ∪ = oi

12: else
13: H .unverified ∪ = oi

14: i++
15: end if
16: end while
17: return H

If k elements in H are all verified by NNV, the kNN query
is fulfilled. There will be cases when the NNV method cannot
fulfill a kNN query. Hence a set which contains unverified
elements is returned. If the response time is critical, a user
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may agree to accept a kNN data set with unverified elements,
where the objects are not guaranteed to be the top k nearest
neighbors. However, the correctness of these approximate
results can be estimated and will be discussed in the next
section. If the result quality is the most important concern,
the client has to wait until it receives all the required data
packets from the broadcast channel. Nevertheless, the partial
results in H can be used to decrease the required data packets
and thus speed up the on air data collection (more details on
this in Section III-C3).

2) Approximate Nearest Neighbor: We calculate the proba-
bility that an unverified i-th nearest neighbor o of a query point
q is actually the true i-th nearest neighbor of q. The reason
why o cannot be verified is because there is a region which is
not covered by q’s neighboring peers. As long as a POI exists
in the region, then o cannot be q’s i-th nearest neighbor. We
denote such a region as o’s unverified region. Figure 8 shows
an example. POI o4 is the unverified 3rd nearest neighbor of
q because there is a possibility that another POI may exist in
the shaded unverified region.

q

e1

x+1

Unverified
Region

r

r

o3

o4

o1

o2

o5

Ci

Co

Merged
Verified Region

Fig. 8. The correctness probability of the unverified POI o4 can be estimated
based on the size of its unverified region.

We assume the POIs are Poisson distributed in our envi-
ronment based on our experiments of several common POI
types (gas stations, grocery stores, etc.) with chi-square (χ2)
tests [20], [24]. The probability of finding another POI in the
unverified region Ui of an unverified POI oi can be calculated
with respect to the area of Ui. We formulate the correctness of
an unverified POI based on probability model in Lemma 3.2.

Lemma 3.2: Assume the POIs in an area E are Poisson
distributed. Let q be a query mobile host which has retrieved
x verified and y unverified NN from MV R for a kNN query.
If the unverified region Uj of an unverified POI oj of q covers
the area of u square units, then the probability that oj is the
jth NN of q is e−λu where λ denotes the average number of
POI per square unit.
Proof: Let ||q, oj || = r′ and the circle C is defined by center
point q with radius r′. According to the definition of the
Poisson distribution, we have:

P{N(t + s)−N(s) = n} = e−λt (λt)n

n!
, n = 0, 1, . . . (1)

With the memoryless property of the Poisson distribution,
we map t to the unverified region Uj within C and s to the

verified region within C. N(t) represents the total number of
POIs that are located inside Uj . Since we know the area of
the unverified region of oj is u square units, the probability
of no POI in u square units is e−λu .

Figure 8 shows an example. Suppose we obtain the average
number of POIs per square unit as 0.3 (the value of λ) and
the unverified region of o4 covers 2 square units. We can then
calculate the accuracy ratio of o4 as the true third nearest POI
of q as e−0.6 ≈ 0.5488. Therefore, the probability that o4 is
the true third nearest POI of q is 55%.

In addition, the distance relationship between the last veri-
fied POI olv and an unverified POI ou is also a useful metric as
demonstrated in Figure 8. We name the metric the surpassing
distance of the different between ||q, ou|| and ||q, olv|| based
on the Euclidean distance. For example, if a motorist decides
to take o4 in the heap H (Table II) as his destination, in the
worst case (o4 is not the true third NN and the true third NN
is a little bit further than o5) he has to drive approximately
two more miles.

The correctness probability and the surpassing distance of
these unverified POIs are also memorized in the heap H and
they can be utilized by applications with different result quality
requirements.

3) Broadcast Channel Data Filtering: Under most con-
ditions there are verified and unverified entries in H when
the NNV method cannot totally fulfill a kNN query. For
applications which require accurate NN information, we can
utilize the partial results to calculate data packet search bounds
from the entries in heap H to speed up the on air NN search
process. The heap H is in one of six different states after
a mobile host has executed the NNV mechanism without
retrieving k verified objects:

• State 1: H is full and contains both verified and unverified
entries.

• State 2: H is full and contains only unverified entries.
• State 3: H is not full and contains both verified and

unverified entries.
• State 4: H is not full and contains only verified entries.
• State 5: H is not full and contains only unverified entries.
• State 6: H contains no entries.

In State 1 there may exist some POIs which are closer to q
compared with the last element in H . Hence, we can consider
the last entry of H as the final candidate nearest neighbor
in the NN search and utilize its distance as the search upper
bound. In addition, the distance attribute dv of the last verified
entry can be another bound, the search lower bound. Since we
are certain about the POIs within the circle region Ci with
radius dv and center point q, q does not have to receive any
data packet which contains objects completely covered by Ci.
Conversely, when H is full and contains just unverified entries,
we can infer only the upper bound (State 2). In States 3 and
4 after the mobile host performed the NNV algorithm, there
have been merely less than k POIs found. Therefore, we can
only infer the lower bound from the distance attribute of the
last verified element in H . In the last two states, H is not
full and contains only unverified entries or no entry at all.
Consequently we cannot infer any search bounds from them.
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Based on the discussion in Sections III-C1, III-C2,
and III-C3, the complete procedure of SBNN is presented in
Algorithm 2.

Algorithm 2 SBNN (q, H , k)
1: H = NNV(q, H , k)
2: if (|H.verified| = k) or (|H| = k and accept = true)

then
3: return H

{if k verified NN have been retrieved, or the heap is
full and q accepts approximate results.}

4: end if
{if H is not full or q disallows any approximate results,
utilize the search upper and lower bounds to improve the
on air query efficiency.}

5: H ∪ kNN query results returned from the updated on air
NN query.

6: return H

D. Sharing Based Window Queries

As proposed in [31], the basic idea for a mobile host to
process a window query w based on a space-filling curve index
is to decide a candidate set of points along the curve. The
candidate set includes all the points that fall within the query
window of w. Then the MH retrieves the related packets and
filters out data objects which are located outside of the query
window. As illustrated in Figure 9, the dashed-line rectangle
represents the query window of w. We can find a first point a
and a last point b according to the order in which they occur
on the Hilbert curve. Consequently, all the points inside this
query window must lie on the Hilbert curve segmented by
points a and b.

430

1 2 7 6 57 56 61 62

5 58 59 60 63

14 13 8 9 54 55 50 49

15 12 11 10 53 52 51 48

21 22 25 26 37 38 41 42

20 23 24 27 36 39 40 43

19

16

18 29 28 35 34 45 44

17 30 31 32 33 46 47
w

a b

Retrieved
irrelevant data

Retrieved
relevant data

Fig. 9. A window query on the Hilbert-curve index structure.

Although the algorithm proposed in [31] can find entry and
exit bounding points on a Hilbert curve index to decrease the
number of candidate points, the access latency is still very
long. As shown in the example, the required data packets span
between index value 9 and 54 and cover around 70% of the
whole data file (the shaded area in Figure 9). Although a search
space partition technique was proposed in [31] for improving
the performance, it still cannot mitigate the overhead of access
latency. Therefore, we propose a Sharing Based Window Query

(SBWQ) method to improve the current on air window query
algorithm.

For SBWQ, a mobile host q has to merge peer verified
regions (p.V R) and collect related POI data from peers. Then
q computes the spatial relationship between the query window
of w and the merged verified region MV R. If w can be
totally covered by MV R, the window query can be fulfilled.
Otherwise, the whole or part of the query window must be
solved as an on air window query. However, under the latter
conditions we may be able to reduce the query window.

1) Window Query Verification: The MH q first broadcasts a
request to all its single-hop peers for requesting their cached
spatial data. Then it combines the returned verified regions
p.V R, each bounded by its MBR, into a merged verified region
MV R. Next q computes the spatial relationship between the
query window w and MV R. If w falls entirely inside MV R,
SBWQ will return the POIs which overlap with w (e.g., WQ1
in Figure 10).

o1

o2
o4

o5o3

w'

WQ2
WQ1

w'

Fig. 10. POI o1 and o4 are the query results of the sharing based window
query WQ1.

2) Broadcast Channel Data Filtering: There will be cases
when the SBWQ algorithm can provide only a partial result to
a window query (e.g., WQ2 in Figure 10). Consequently one
(or several) updated (i.e., reduced) query window(s) w′ will be
utilized to decide the new search bound on the Hilbert curve
index. Hence the on air window query algorithm is executed
for solving w′. Since w′ is much smaller than w in many cases,
the access latency can be markedly decreased. The SBWQ
algorithm is formalized in Algorithm 3.

E. The Relationship Between the Verified Region Size and
Query Window Size

Since the efficiency of our techniques is mainly based on
the cached previous query results, we are interested in the
relationship between the verified region size and the query
window size. We defined a metric, access time saving ratio
(ATSR), for evaluating the relationship between the verified
region size and the query window size. The ATSR is calculated
by comparing the access latency with a certain verified area
in cache versus the access latency without any verified region
using the same query window size. Figure 11 demonstrates
an example. The merged verified region of a mobile host
q covers broadcast cells 30, and 31 and the query window
(w) overlaps with cells 10, 11, 30, and 31. Assume that the
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Algorithm 3 SBWQ(q, w)
1: P ← peer nodes responding the query request issued from

q.
2: for ∀p ∈ P do
3: MV R ∪ = p.V R and O ∪ = p.O
4: end for
5: WQ← ∀o ∈ O which overlap with w
6: if w ⊂MV R then
7: return WQ
8: else
9: WQ ∪ query results returned from the on air window

query with w′.
{if w 	⊂ MV R, utilize w′ to compute the new search
bounds and results.}

10: return WQ
11: end if

broadcast starts from cell 0. The mobile host q has to wait
until the communication channel finishes the broadcasting of
cell 31 before it can answer the query. However with the aid
of the verified region, q only needs to wait until the end of the
cell 11 transmission. Consequently, the mobile host can save
62.5% (32−12

32 ) of the access latency in this example. Note that
the verified region size represents only around 3.1% ( 2

64 ) of
the whole search space and the cached data is collected from
numerous neighboring peers. In our experiments we explore
how much data a mobile host has to collect to achieve an
ideal (maximum savings given a specific cache size) access
time saving ratio.

430

1 2 7 6 57 56 61 62

5 58 59 60 63

14 13 8 9 54 55 50 49

15 12 11 10 53 52 51 48

21 22 25 26 37 38 41 42

20 23 24 27 36 39 40 43

19

16

18 29 28 35 34 45 44

17 30 31 32 33 46 47

w

Fig. 11. The access latency of the window query (WQ) can be largely
decreased by the cached data.

Figure 12 illustrates the relationship between the verified
region size and the query window size with the average values
of ten thousand experiments. In Figure 12a., we increased the
verified region size from 1% to 20% of the whole search space
with a fixed query window size (2% of the whole search space)
and the ATSR increasing from 3% to 70%. As demonstrated
in the figure if the verified region is around 5% of the whole
search space, we can save more than 50% access latency. In
addition, we also enlarged the query window size from 1% to
20% with a constant verified region size (6%) and the saved
access latency becomes very limited when the query window
size is larger than 10% as shown in Figure 12b. However, we

usually have relatively small query windows in most location-
based service applications [27].

IV. SIMULATION PERFORMANCE EVALUATION

To evaluate the performance of our approach we have
implemented the sharing based spatial query algorithms within
a simulator. In addition to enabling efficient and decentralized
applications, the objective of our peer-to-peer design is to
decrease access latency in two dimensions. First, the access
latency can be reduced as queries are answered directly by
peers. Second, for the remaining queries that require packets
from the broadcast channel, our technique diminishes the
required number of packets by providing search bounds for
the spatial query algorithms. Consequently, the focus of our
simulations is to quantify the access latency variations as a
function of two main parameters, the Peer Query Fulfilling
Rate (PQFR) and Broadcast Packet Access Rate (BPAR).
PQFR quantifies what percentage of the client spatial query
requests are fulfilled by peers, and BPAR denotes how many
broadcast data packet are required compared with the solution
in [31] for a sequence of queries with partial results from
sharing based queries. Our experiments were performed with
both synthetic and real-world parameter sets.

A. Simulator Implementation

Our simulator consists of two main modules, the mobile host
module and the base station module. The mobile host mod-
ule generates and controls the movements and query launch
patterns of all mobile hosts (MH). Each mobile host is an
independent object which decides its movement autonomously.
The base station module operates a broadcast channel for
continuously sending data packets to MHs. Spatial data index-
ing is provided with the well known Hilbert curve [16]. We
implemented our SBNN and SBWQ algorithms in the mobile
host module.

TABLE III
PARAMETERS FOR THE SIMULATION ENVIRONMENT.

Parameter Description

POINumber The number of point of interest in the system
MHNumber The number of mobile hosts in the simulation area

CSize The cache capacity per data type of each mobile host
λQuery The mean number of queries per minute

TxRange The wireless transmission range of a mobile host
λkNN The mean number of queried nearest neighbors

λWindow The mean size of query windows
λDistance The mean distance between a query MH and the center

point of its query window
Texecution The length of a simulation run

Each mobile host is implemented as an independent ob-
ject that encapsulates all its related parameters such as the
movement velocity MV elocity , the cache capacity CSize, the
wireless transmission range TxRange, etc. All MHs move
inside a geographical area, measuring 15 miles by 15 miles.
Additionally, user adjustable parameters are provided for the
simulation such as execution length, the number of MHs and
their query frequency, the number of POIs, etc. Table III lists
all of the simulation parameters.
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Fig. 12a. Verified region size. Fig. 12b. Query window size.

Fig. 12. The analytical results of various verified region size and query window size.

The simulation is initialized by randomly choosing a starting
location for each mobile host within the simulation area.
The movement generator then produces trajectories with an
underlying road network. We employed the random waypoint
model [4] as our mobility model. Each MH selects a random
destination point inside the simulation area and progresses
towards it. Upon reaching that location, it pauses for a random
interval and decides on a new destination for the next travel
period. This process repeats for all MHs until the end of the
simulation.

Every simulation has numerous intervals (whose lengths are
Poisson distributed) and during each interval, the simulator
selects a random subset of the mobile hosts to launch spatial
queries (the query intervals are also based on a Poisson
distribution). The subset size is controlled via the λQuery

parameter (e.g., 1,000 queries per minute). These mobile hosts
then execute the SBNN or the SBWQ algorithm by interacting
with their peers. A mobile host will first attempt to answer
each spatial query via the sharing based approach. If this
is unsuccessful, the query will be solved by listening to the
broadcast channel. Each mobile host manages its local query
result cache with a combination of the following two policies:

1) A MH stores all the verified POIs and their minimum
bounding boxes. The cache replacement policy is based
on the current moving direction and the data distance
between the current location of the MH and the location
of a data object [23].

2) If a spatial query must be solved by listening to the
broadcast channel, the MH will store as many received
POIs as its cache capacity allows (e.g., for a 5-NN query,
if the downloaded broadcast packets contain 15 POIs and
the cache capacity is 30 POIs for each data type, the MH
will store all of them and their collective MBR).

The sharing based nearest neighbor query algorithm is
implemented according to the method detailed in Section III-C.
Multiple, potentially overlapping MBRs must be combined to
provide the verified region. The simulator sequentially merges
peer returned MBRs into a merged verified region MV R by
performing the MapOverlay algorithm and also combines the
returned POIs into a candidate list O. Afterwards, a MH
sequentially verifies the objects in O with our verification
technique based on MV R. Similarly, we implemented the

sharing based window query algorithm (Section III-D) in the
simulator.

1) Simulation Parameter Sets: To obtain results that closely
correspond to real world conditions we obtained our simula-
tion parameters from public data sets, for example, car and gas
station densities in urban areas. We term the two parameter
sets based on these real-world statistics the Los Angeles City
parameter set and the Riverside County parameter set.

• Points of Interest: We obtained information about the
density of interest objects (e.g., gas stations, restaurants,
hospitals, etc.) in Southern California from two online
sites: GasPriceWatch.com2 and CNN/Money. Because
gas stations are commonly the target of spatial queries, we
use them as the sample POI type for our simulations. The
peer query fulfilling rate of other POI types are expected
to be very similar.

• Mobile Hosts: We collected vehicle statistics of Southern
California from the Federal Statistics web site. The data
provide the number of registered vehicles in the Los An-
geles City and Riverside County (1,092,939 and 944,645,
respectively). In our simulations we assume that about
10% of these vehicles are on the road during non-peak
hours according to the traffic information from Caltrans3.
We further obtained the land area of each region to
compute the average vehicle density per square mile.

The Los Angeles City and the Riverside County parameter
sets represent a very dense, urban area and a low-density,
more rural area. Hence, for comparison purposes we blended
the two real parameter sets to generate a third, synthetic set.
The synthetic data set demonstrates vehicle and interest object
densities in-between Los Angeles City and Riverside County,
representing a suburban area. Table IV lists the three parameter
sets.

B. Performance of the kNN Query

We utilized all three simulation parameter sets to evaluate
our peer sharing techniques for solving kNN queries. We
varied the following parameters to observe their effects on
the system performance: the wireless transmission range, the

2http://www.gaspricewatch.com
3http://www.dot.ca.gov/hq/traffops/saferesr/trafdata/
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TABLE IV
THE SIMULATION PARAMETER SETS.

Parameter Los Angeles City Riverside County Synthetic Suburbia Units

POINumber 2750 1450 2100
MHNumber 93300 9700 51500

CSize 50 50 50
λQuery 6220 650 3440 min−1

TxRange 200 200 200 m
λkNN 5 5 5

λwindow 3 3 3 %
λDistance 1 1 1 mile
Texecution 10 10 10 hr
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Fig. 13a. Los Angeles City. Fig. 13b. Synthetic Suburbia. Fig. 13c. Riverside County.

Fig. 13. The percentage of resolved queries as a function of the wireless transmission range.
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Fig. 14a. Los Angeles City. Fig. 14b. Synthetic Suburbia. Fig. 14c. Riverside County.

Fig. 14. The percentage of resolved queries as a function of the mobile host cache capacity.
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Fig. 15a. Los Angeles City. Fig. 15b. Synthetic Suburbia. Fig. 15c. Riverside County.

Fig. 15. The percentage of resolved queries as a function of k.

cache capacity, and the nearest neighbor number k. The perfor-
mance metric in the mobile host module was PQFR. The key
difference between the three parameter sets is their vehicle and
their POI density. Hence, we utilized the simulation to evaluate
the applicability of our design to different geographical areas.

All simulation results were recorded after the system model
reached steady state.

1) Transmission Range Experiments: We first varied the
mobile host wireless transmission range from 10 meters to 200
meters, with all the other parameters unchanged. Although the
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reliable coverage range for IEEE 802.11b/g in open space with
good antennas can be more than 300 meters [9], obstacles such
as buildings could diminish the range to 200 meters or less
in urban areas. Therefore, we chose 200 meters as a practical
transmission upper limit. Figure 13 demonstrates the percent-
age of queries that can be resolved by SBNN, approximate
SBNN (with POI correctness probability higher than 50%), or
the broadcast channel with the three experimental parameter
sets. As the transmission range extends, an increasing number
of queries can be answered by surrounding peers. Because of
its high vehicle density, the effect is most prominent with the
Los Angeles City parameter set. With a 200 meter transmission
range, less than 20% of the queries must be solved by listening
to the broadcast channel for exact results.

2) Cache Capacity Experiments: Next we tested the impact
of various mobile host cache capacities, which denote how
many POI objects a mobile host can store. Figure 14 illustrates
the increase of the cache capacity from 6 to 30 with the
three parameter sets. Even though the total number of interest
objects is much larger than the maximum cache capacity, we
observe a remarkable increase of queries solved by SBNN
with a higher mobile host cache capacity in Figures 14a and
b.

3) Nearest Neighbor Number k Experiments: To see the
effect of varying the number of requested nearest neighbors,
i.e., k, we altered k in the range from 3 to 15 as the mean
number for each query. As shown in Figure 15, the solved
queries by the broadcast channel for the Los Angeles City
parameter set increased 28% when we raised k from 3 to 15.
The solved queries for the Riverside County parameter set
increased by only 21%, because its starting level was much
higher. Not surprisingly our technique is much more effective
for small values of k.

C. Performance of Window Queries

Similar to Section IV-B, we utilized all three experimental
parameter sets to evaluate our peer sharing techniques for solv-
ing window queries. We varied three parameters: the wireless
transmission range, the cache capacity, and the query window
size to observe their influence on the system performance.

1) Transmission Range Experiments: In this experiment we
varied the mobile host wireless transmission range from 10
meters to 200 meters, with all the other parameters unchanged.
Figure 16 demonstrates the proportion of window queries that
can be resolved by SBWQ or the broadcast channel with the
three parameter sets. The trend of the simulation results is
similar to the kNN case. With increasing transmission range,
more queries can be fulfilled by surrounding peers.

2) Cache Capacity Experiments: We studied the effect of
various mobile host cache capacity by enlarging the cache
capacity from 6 to 30 with the three parameter sets and
the results are shown in Figure 17. We observed that with
the increase of cache capacity, more window queries can be
fulfilled by peers. Therefore, mobile hosts can have a shorter
access latency with a higher cache capacity.

3) Query Window Size Experiments: We examined the
effect that varying the query window size would have on the

system performance. In our experiment we varied the query
window size from 1% to 5% of the whole search space.
The center location of the query window is randomly chosen
with a distance to the query mobile host based on a normal
distribution. Figure 18 illustrates the results. With a relatively
small query window (less than 3%), over 50% of the window
queries can be fulfilled through our sharing mechanism.

From all the performed experiments we observed that the
mobile host density has a considerable impact on system
performance. Consequently if more mobile hosts travel in a
specific area, each mobile host has a higher opportunity to
fulfill its spatial queries by peers and hence to decrease the
access latency.

D. Experimental Results of the Broadcast Packet Access Rate

In order to evaluate the spatial query search bounds of
Section III-C and III-D, we extended the on air spatial query
(OASQ) algorithms proposed in [31] with search bounds. The
performance metric for comparing the extended on air spatial
query (denoted by EOASQ) and OASQ is broadcast packet
access rate. For each spatial query which cannot be fulfilled
by our sharing based mechanism, the mobile host module
executes both OASQ and EOASQ algorithms to compare the
performance improvement with respect to packet access of the
broadcast channel. We examined the behavior of the original
and our extended solutions as the number of k and query
window size increase. Because spatial queries are generated
by randomly selected mobile hosts, query points are uniformly
distributed over the simulation area.

Since EOASQ usually requests fewer data packets than
OASQ, we believe that our search bounds can decrease the
access latency and tuning time. During the simulation process
the mobile host module counts the number of data packet
accesses which correspond to both access latency and tuning
time. As shown in Figure 19, the EOASQ algorithm performs
consistently better than OASQ with various number of k
and query window size. We conclude that the search bound
technique can effectively decrease the number of broadcast
packet accesses. We varied the number of k from 3 to 15 with
the three parameter sets and the EOASQ algorithm accesses
66% to 14% fewer packets than OASQ. Similarly, the EOASQ
accesses 51% to 12% fewer packets than OASQ when we
increased the query window size from 1% to 5%.

We conclude from all the performed experiments that the
mobile host density has a considerable impact on the peer
query fulfilling rate. As a result, if more mobile hosts travel in
a specific area, each MH has a higher opportunity to fulfill its
spatial queries by peers. Furthermore, the spatial query search
bounds also have a significant positive effect on the broadcast
packet access rate and successfully decrease the access latency
and tuning time.

E. Energy Cost Analysis of the Proposed Approach

Although in this research we applied our approach to
vehicles which have virtually unlimited power lifetime, we
measured the number of message transmissions to analyze
the energy related cost of our approach. As illustrated in
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Fig. 16a. Los Angeles City. Fig. 16b. Synthetic Suburbia. Fig. 16c. Riverside County.

Fig. 16. The percentage of resolved queries as a function of the wireless transmission range.
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Fig. 17a. Los Angeles City. Fig. 17b. Synthetic Suburbia. Fig. 17c. Riverside County.

Fig. 17. The percentage of resolved queries as a function of the mobile host cache capacity.
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Fig. 18a. Los Angeles City. Fig. 18b. Synthetic Suburbia. Fig. 18c. Riverside County.

Fig. 18. The percentage of resolved queries as a function of query window size.
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Fig. 19. The packet access comparison between EOASQ and OASQ. We normalized the required packet number of EOASQ to OASQ.

Figure 20a, we utilized the three parameter sets to observe
the increase in communication messages between a mobile

host and its peers when extending the wireless transmission
range from 10 meters to 200 meters. Since a mobile user
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Fig. 20. The energy cost analysis of the proposed approach.

always broadcasts data requests, the message counts represent
the average total response messages from peers for a spatial
query. Because the transmission range of a mobile host covers
a two dimensional area, the message count grows quadratically
with all the three parameter sets. Similarly, we can see a
steady message count increase when the mobile host density
per square mile is raised from 100 to 500 in Figure 20b
(with a fixed 200-meter transmission range). Consequently,
as illustrated through the experimental results the energy cost
for solving a query will expand when we extend the wireless
transmission range. In addition, the mobile user density also
has a significant influence on the energy consumption.

V. CONCLUSION

This paper presented a novel approach for reducing the
spatial query access latency by leveraging results from nearby
peers in wireless broadcast environments. Significantly, our
scheme allows a mobile client to locally verify whether
candidate objects received from peers are indeed part of its
own spatial query result set. The experiment results indicate
that our method can reduce the access to the wireless broadcast
channel by a significant amount, for example up to 80% in
a dense urban area. This is achieved with minimal caching
at the peers. By virtue of its peer-to-peer architecture, the
method exhibits great scalability: the higher the mobile peer
density, the more queries can be answered by peers. Therefore,
the query access latency can be markedly decreased with the
increase of clients.
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