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Abstract

The Area Of Interest (AOI) model is a simple and popular technique used in many applications to determine the region which
needs to be considered and processed for each entity (e.g., user). One example application is object visibility determination around
user-representing avatars in virtual environments or networked games. There exist a number of variations of the AOI model and
in our prior work we have demonstrated how object-oriented visibility determination is more suitable for networked virtual envi-
ronments than conventional user-oriented visibility determination. Here we extend our work to study a unified and comprehensive
analytical model that reveals fundamental properties about the different visibility determination techniques under a variety of virtual
environment settings. We also present what the best operational scenarios are for each different approach. Although our discussion
and analytical results are focused on the visibility domain, the arguments and conclusions can be extended to various applications
or services where spatial attributes are required.
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1. Introduction

In computer graphics, visibility determination, i.e., the elimi-
nation of visibly irrelevant geometry objects from a huge ob-
ject database, has been extensively studied. Many well–versed
efficient algorithms such as view–frustum culling, back-face
culling, and occlusion culling algorithms [1] are, however, ap-
plicable only for local rendering applications, assuming all ob-
jects are stored locally.

If geometry objects are stored on a remote node, a client
will receive objects to be rendered from the remote node [2]. In
such a streaming approach, existing visibility algorithms are no
longer serviceable. Due to the simple design and low compu-
tational complexity, Area-Of-Interest (AOI) filtering has been
adopted in remote rendering applications - i.e., a type of Mas-
sively Multi-player Online Game (MMOG) where a user down-
loads objects on demand within her view frustum from a server [3,
4].

Although user-centric AOI filtering is popular, it can lead
to undesirable artifacts. For example, Second Life, one of the
most successful client-server based MMOG systems, employs
an AOI-filtering based visibility determination model but it some-
times suffers from “object popping” discontinuities, as illus-
trated in Fig. 1. In the left image, a house outside the user’s
visible area is not rendered at the present time t. As the user
moves forward, the house enters into the user’s AOI and then
appears unexpectedly, hence likely disrupting the user’s nav-
igational experience. This visual abberation is caused by the
inherent properties of user-centric AOI filtering, which in this

Email addresses: beomjoo90@gmail.com (Beomjoo Seo),
rogerz@comp.nus.edu.sg (Roger Zimmermann)

case neglected the spatial contribution of a large in-world object
in order to reduce the search scope and improve performance.

To mitigate such problems, several virtual reality systems
have amended user-centric AOI filtering by additionally taking
the “visual scope” of target objects into account during their
visibility determination [5, 6, 7]. In these enhanced AOI al-
gorithms, an object is determined to be visible to an observer
only when its visual scope is inside the observer’s visual scope.
Although these models identify more relevant objects than the
original AOI model, they are exposed to several challenging
issues. First, their intersection-of-scope based visibility deter-
mination does not reflect physical visibility properties correctly.
The reason is that these models were originally designed to de-
tect collisions between spatial objects and then the collision
was intuitively extended to other spatial relationships such as
interest detection and visibility determination. Second, these
algorithms are computationally very expensive, since they do
not effectively narrow the search scope to the extent that the
user-centric AOI model does. Thus, they are impractical for
real-time environments.

Because of these limitations we earlier investigated an al-
ternative approach, called the object model [8], which accounts
for the spatial scope of target objects and therefore exhibits
certain advantages over the existing user-centric AOI filtering
paradigm. In our prior work we successfully demonstrated the
superiority of the object model by quantifying its determina-
tion results in a static environment, where all users and objects
are stationary. Additionally, we investigated the real-time capa-
bility of the object model by proposing an efficient spatial in-
dexing technique based on the latest grid-based sub-partitioning
method. The simulation results showed that our indexing ap-

Preprint submitted to Visual Communication and Image Representation June 14, 2011



Figure 1: An illustration of the visual artifact caused by AOI filtering in Second
Life. (Image courtesy of Linden Lab)

proach can determine visibly relevant objects among one hun-
dred thousand moving objects for ten thousand moving users in
less than two seconds.

Although we verified the real-time capabilities of the object
model in a simulation environment with moving objects, the
theoretical analysis of the previous work was only valid for sta-
tionary environments. Moreover, we did not clearly associate
the visibility determination models with physical phenomena.
In this study, we present systematic and comprehensive ana-
lytical results of the features and limitations of three different
AOI management models: the traditional user AOI model, the
recently introduced object AOI model, and a combined hybrid
AOI model. To compare the optimality of each determination
algorithm, we also present a very simple, yet effective, visibil-
ity distance model.

Even though our study focuses on the analysis of the visi-
bility determination, it has implications in various spatial areas
where spatial relationships among objects are of importance,
such as audibility determination or the detection of mobile de-
vices in the wireless coverage area of an access point.

This study results in the following important contributions
related to the spatial (especially, in terms of visibility aware-
ness) interaction among users and objects in networked virtual
environments:

• We provide a mathematical foundation of different AOI
filtering methodologies that associates spatial relation among
users and target objects. Although all the analyses and
evaluations in this study are focused on visibility aware-
ness problem in networked environments, their conclu-
sions can be extended to any type of spatial properties
which are transformable to a measurable quantity.

• We establish a new evaluation methodology that quan-
tifies the retrieval quality of static (or moving) search
queries in static or moving environments in terms of vis-
ible relevance among users and objects. While our meth-
ods are based on the traditional definitions of Precision/Recall
metrics, their extensions allow measuring the search qual-
ity of static or moving queries. We also show that they
can account for the effect of the use of client-resident lo-
cal storage.

• We present the fundamental limitation of the user–centric

AOI filtering mechanism. That is, it cannot achieve op-
timality search results in terms of visible relevance. In
other words, the user–centric AOI model inevitably re-
trieves visibly irrelevant objects and not all visibly rele-
vant objects are retrieved. This results in unwanted vi-
sual artifacts (object popping problem) in a client/server-
based object streaming domain.

• We propose a new filtering methodology that achieves
optimality. We also discuss its potential limitations and
justify its practicality in real environments through the
extensive analyses and experiments. Additionally, we
present its optimal usage scenario.

• Finally, we present accurate analytical AOI filtering mod-
els, which reflect the performance characteristics of indi-
vidual filtering approaches. Therefore, system adminis-
trators who may choose one of the filtering mechanisms
can easily evaluate them without any experimentation.

The organization of this article is as follows. Section 2 in-
troduces background information and presents the target visibil-
ity determination models that will be compared. In subsequent
sections we provide analytical results of the visibility determi-
nation algorithms for three different cases: a stationary user in
a static environment (Section 3); a moving user in a static envi-
ronment (Section 4); and a stationary user in a moving environ-
ment (Section 5). In Section 6, we present the evaluation results
of the analytical models and discuss their implications. Finally,
Section 7 summarizes the conclusions of this study.

2. Background

Our analysis targets client/server-based game applications, where
a game server stores a large number of virtual entities and trans-
mits visible entities to their associated client nodes continu-
ously. In this section, we review a useful visible distance model
that is associated with visible relevance and classify visible de-
termination models into three categories. For the remainder we
use the term object entity (or shortly object) to refer to an ordi-
nary moving or stationary object (or player), while we use user
entity (or shortly user) to denote one specific player.

2.1. Modelling Visible Distance

Quantifying the degree of visibility of an object is a very
broad research topic. The research goes back to the early 18th
century when scientists first studied visibility such as the Beer-
Lambert-Bouguer Law1. In this article, since covering all vi-
sual effects caused by various atmospheric conditions is an ex-
tremely challenging problem, we do not attempt to use an om-
nipotent visibility model that accounts for such physical phe-
nomena.

Instead, we use a simplified model, called Visual Acuity
Model, that has been acknowledged in several virtual reality

1It approximately derives the travelling distance of a light through the atmo-
sphere from its absorption coefficient and scattering of radiation.
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Figure 2: Illustration of visual acuity model. In this model, the visible condition
between a user and a target object is determined by three parameters : the width
of the target w; the distance between the two D; and the angle subtended at the
user’s eye by the target θ.

systems [9, 10]. In this model, the visual acuity number of a
user (A), a comparative measure of the user’s ability to identify
a given spatial pattern at a given distance, is defined as the ratio
of the user’s maximum visible distance (V) to that of an ordi-
nary user with normal vision (Vnorm) – i.e., A = V/Vnorm [11].
As illustrated in Fig. 2, Vnorm is computed from the length of
a target object W and its visual angle of one minute of arc
(1MOA) threshold angle θnorm - i.e., Vnorm =

W
2 cot θnorm

2 . There-
fore, if a user’s visual acuity number is given, V can be obtained
by A and W (Eq. 1). 2

V = C · A ·W, where C =
1
2

cot
θnorm

2
(1)

Note that this model is valid under the following assump-
tions. First, we assume that the threshold visual angle, θnorm, is
applicable to every object. Thus, if a user’s subtended angle to
a target is greater than θnorm, the target will be perceived by the
user. Second, the user’s visual sensitivity is assumed to be con-
stant regardless of target size.3 It means that a user can equally
identify target objects as long as they are within the range of
θnorm.

2.2. Visibility Determination Algorithms

To begin with, we briefly sketch a sample virtual space and
useful notations. First, imagine the following two–dimensional
disk of radius D, as illustrated in Fig. 3. In the space, a user
of interest (shown as a black square) is centered and objects
(dashed circles) are evenly dispersed; a specially chosen object
among the objects is shown as a bigger dashed circle. In the
figure, the visible range of the user is drawn as a dotted circle
(left), which is associated with user’s visual acuity A, and that
of the object, derived from object size W, is depicted as the
dotted circle (right).

Then we introduce three random variables, X, Y, and Z. X is
a distance metric that represents the visible range of an object.
In Fig. 3, it corresponds to the radius of the right dotted circle.
Y denotes the Euclidean distance between a user and an object.
The Z distance metric symbolizes the visible range of the user,
depicted as the radius of the left dotted circle. Their probability

2In this equation, we neglect the effect of scaling correction according to the
video resolution of a display device [10].

3In fact, the visual sensitivity of target size is not always constant. It de-
grades after a specific distance [10]. Thus, far–away objects tend to be less
accurately perceived by ordinary human.
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Figure 3: A sample 2D space where one thousand sample objects are uniformly
distributed around a user at center.

density functions are denoted as fX , fY , and fZ , accordingly. For
convenience purposes, we assume that every random variable
has a maximum value, whose symbolic notations are DX ,DY ,
and DZ . From a user’s standpoint, D and DY are functionally
identical, since the distance of the farthest object from the user
(DY ) does not exceed the user’s search domain (D) and any ob-
jects beyond the domain do not contribute to any improvements
on search quality, while increasing the search scope unneces-
sarily. To include all visibly relevant objects, DY should be
large enough to cover any combinations of X and Z. At the
same time, the domain scope should be carefully chosen to be
as compact as possible, such as not to extend more than re-
quired. During our analysis, a user’s visual range z ∈ Z will
be chosen arbitrarily, but won’t exceed the search scope. Oth-
erwise, it may lead to over–estimation, resulting in significant
quality degradation. The side–effect of such over–estimation
will be fully discussed later.

Now, we introduce an indicator function, IS (Y), which sim-
plifies spatial relevance between a user and a target object. It is
defined on a set of Euclidean distance (Y) between two virtual
entities, IS : Y → {0, 1}, where S is a distance unit. For any
given actual distance y ∈ Y , it is formally defined as

IS (y) =
{

1 : y ≤ S
0 : otherwise. (2)

If the given distance is smaller than S , the indicator function
will return one; otherwise, it will return zero.

2.2.1. Classification
Existing visibility algorithms can be classified by different

usage conventions of the following visibility mapping func-
tions, ϕA and ϕW . They define how a user’s visual acuity num-
ber A and an object length W are mapped to distance met-
rics, Z and X, respectively. Intuitively, these are regarded as
non-decreasing functions. For example, a user who possesses
a higher visual acuity number can distinguish farther objects.
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Table 1: Summary of visibility mapping conventions of different visibility determination types.
transform functions visible when

user’s visual scope (ϕA) object’s visual scope (ϕW )
user model A→ z (3) W → 0 (4) Y ≤ z (5)
object model A→ 1 (6) W → C ·W (7) Y ≤ C ·W = C · Anorm ·W = C ·W (8)
hybrid model A→ CA · A (9) W → CW ·W (10) Y ≤ X + Z = z +CW ·W (11)

Similarly, bigger objects can easily be perceived by the user at
a farther distance. Using the different conventions (summarized
in Table 1), we categorize the algorithms into three types: user,
object, and hybrid model. In the rest of this article, we may
omit AOI for simplicity when referring to these models.

User AOI Model
This type of application determines viewable objects inside

a user-centered visible area (Eq. 3), while ignoring the visual
attribute of objects (Eq. 4). Due to its simplicity, it has been
popularly used by many location-based service applications to
process nearest neighbor queries, where the number of objects
is typically larger than that of users, so it appears that the user
model is a reasonable choice to lower the system load.

In the model, the visible condition of an object is defined
as the spatial condition that the Euclidean distance of the object
location from the user location is less than or equal to a given
distance value (z ∈ Z) that is specific to a user (Eq. 5). In the
rest of the article, the given distance is termed the user’s visible
threshold, or shortly threshold. Its normalized value z′ = z

DZ
is

called threshold ratio.

Object AOI Model
In this model, users are simplified as points and objects pos-

sess their proprietary viewable region (Eq. 7). Without loss of
generality, every user’s visual acuity number is assumed to be
one, meaning that the user has normal vision (Eq. 6). 4 An ob-
ject is determined to be visible to a user if the user is inside the
visible range of the object (Eq. 8).

Hybrid AOI Model
The hybrid model uses two visual scopes stemming from

users and objects. Existing methods such as the Aura and Nim-
bus model [5] and CyberWalk [7], however, fail to provide any
specific mapping rules to assign the visible scope of objects and
users. To analyze them, we employed linear mapping conven-
tions shown in Eqs. 9 and 10 by constant factors CA and CW ,
respectively. That is, the visual scope of a user is proportional
to the user’s visual strength and that of an object also propor-
tional to its size. With this model, an object is computed to be
visible to a user if two visible scopes intersect with each other
(Eq. 11).

4It does not mean that every user has no visual strength, but that every user
possesses equal sight vision.

In the following sections, we present our analytical models
of each type that quantitatively estimate the search quality un-
der different object distribution patterns. To make the analysis
solvable, we narrow the problem scope by constraining the den-
sity pattern on Y , assuming that two objects that are equidistant
from an observer have the same density probability – i.e., the
uniform density function of Y is fY (Y = y) = 2y

D2
Y
. The uniform

distribution is one example of such distribution patterns. This
assumption, although not reflecting all real–world phenomena,
is powerful enough to express different degrees of crowdedness.

While fY (y) is limited to a uniform distribution, fX(x) still
remains undetermined. Therefore, the prediction model of each
visibility determination approach is presented as a function of
fX(x) and fY (y).

In the next section, we start with presenting a simple anal-
ysis model for a static user in a static environment. We then
continue to cover a more complicated case (a moving user in
the same static environment) and end with discussing its reverse
case (a static user in a dynamically moving environment).

3. A Stationary User in a Stationary Environment

In this section, we evaluate the performance of three differ-
ent types of visibility models in a stationary environment whose
behavioral scenario is as follows:

Scenario: A stationary user of interest is located at the
center and surrounded by n stationary objects, which are uni-
formly distributed in a two–dimensional virtual space, a disk of
radius DY . Assuming that every user possesses the same visible
strength (A=1), the optimal visible distance between the user
and an object i is denoted by Vi and then computed as C · Wi,
where Wi is the size of object i.

3.1. Performance Metrics

For quantitative evaluations, we use two well-known per-
formance metrics Precision (P) and Recall (R). They, respec-
tively, estimate the degree of accuracy and comprehensiveness
of the search results [12]. P is the ratio of visibly relevant items
among retrieved items. A lower P means that an algorithm
computes visibly irrelevant objects more often. R is the ratio
of retrieved items among visibly relevant items. An algorithm
with a low R score neglects visibly relevant objects falsely, lead-
ing to object popping more frequently.

P =
relevant and retrieved

retrieved
, R =

relevant and retrieved
relevant
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In addition to P and R metrics, we use a standardized single-
valued query estimation metrics that combines P and R, called
E-measure [12]. The E-measure is defined as:

E = 1 − (β2 + 1)PR
β2P + R

,

where β is the relative importance of P or R. If β is equal to 1,
P and R are equally important. If β is less than 1, P becomes
more important and vice versa. A lower E-measure value im-
plies that a tested visibility algorithm has a higher determina-
tion quality. The best E-measure value is 0 where P and R are
both 1. Throughout the rest of the article, we use the E-measure
parameter of β = 1.

To compute these metrics, we analyze three probabilistic
quantities: the expected number of retrieved objects; the ex-
pected number of visibly relevant objects; and the expected
number of retrieved and visibly relevant objects.

3.2. Analysis of User AOI Model
In the user model, every user only recognizes objects within

its visible threshold z, regardless of the different visible prop-
erties of individual objects. The expected number of retrieved
items by the user model (Retu) is the cardinality of the set of ob-
jects whose Euclidean distance to the user is less than or equal
to z. Assuming Yi is the Euclidean distance between the user
and an object i, the number of retrieved items is expressed as
the sum of the binomial indicator function Iz(Yi).

Retu =
n∑

i=1

Iz(Yi)

The above equation is then finally converted to its equiva-
lent probabilistic form.

n∑
i=1

Iz(Yi) = n · E[Iz(Y)] = n · Pr(Y ≤ z) = n · FY (z) (12)

The expected number of visibly relevant items (Relu) is for-
mulated as the number of items whose Euclidean distance to
the user is less than or equal to its optimal visible distance Vi,
which is expressed as Yi ≤ Vi for a given object i. Thus, it is the
sum of IVi (Yi). Since Vi is set to Xi, its probabilistic expression
is then

Relu =
n∑

i=1

IXi (Yi) = n · Pr(Y ≤ X).

Using the total probability theorem, we expand the proba-
bilistic model as an integral of X, resulting in

Relu = n
∫

X
fX(x) FY (x) dx. (13)

The expected number of relevant items among retrieved items
(Ret ∩ Relu) is the sum of the probability that an object is not
only within the user’s visible threshold but also that its distance
to the user is within the optimal visible distance. The proba-
bility can also be similarly expanded as the sum of two disjoint
cases: X ≤ z and X > z:

∫ z

0
fX(x) Pr(Y ≤ z,Y ≤ x) dx +

∫ DX

z
fX(x) Pr(Y ≤ z, Y ≤ x) dx

The left term is further simplified as
∫ z

0 fX(x) Pr(Y ≤ x) dx,
since the given x belonging to the first case is always less than z.
Likewise, the right term is reduced to

∫ DX

z fX(x) Pr(Y ≤ z) dx.
As a result, the final form of Ret ∩ Relu is obtained as

Ret ∩ Relu = n ·
(∫ z

0
fX(x) FY (x) dx +

∫ DX

z
fX(x) FY (z) dx

)
. (14)

If we apply uniform distribution patterns of X and Y , the
precision and recall metrics are expressed as a function of the
normalized visible threshold z′ = z

DX
. Fig. 4(a) illustrates the

prototypical performance trend of the user model: as the user’s
visible threshold increases, the recall increases rapidly at the
beginning and decreases later, while the precision decreases
linearly. The E–measure curve depicts the combined effect of
the two metrics; as the user increases his visible region, the E–
measure value moves downwards to reach a local minima and
then increases afterwards. Therefore, the optimum usage sce-
nario of the user model is when the user’s visible threshold is
set to 68 % of the maximum distance DX . Nevertheless, the
user model cannot achieve any optimality, i.e., a value of zero.

3.3. Analysis of Object AOI Model

The object model is designed to identify all visibly relevant
objects by mapping the visible distance of every object to its
ideal visible distance, so that its performance metrics is natu-
rally guaranteed to achieve optimality.

In this analysis, we further investigate a potential issue of
the object model – how much an incorrect mapping on the visi-
ble distance influences the performance of a system. To do this,
we first introduce two notations that represent different aspects
of the visible distance of an object i: one configured by an ac-
tual system Xi and the other by an ideal method Vi. The ratio of
Xi to Vi is termed visual ratio and denoted as r = X

V .
A system, if underestimating the ideal visible distance (r <

1), retrieves visibly relevant objects later than the ideal system,
thus leading to frequent object poppings. An overestimating
system (r > 1), on the other hand, retrieves objects earlier than
the ideal, meaning that it may retrieve visibly irrelevant objects
more often.

The expected number of retrieved items by the object model
(Reto) is computed as the sum of binomial indicator functions
of individual objects, counting the number of objects whose ap-
proximated visible region covers a user – i.e., Yi ≤ Xi. For fair
comparisons, we transforms all X values to their corresponding
ideal value Xopt5, which is invariant of different visual ratios.

Reto =

n∑
i=1

IXi (Yi) =
n∑

i=1

IrXopt
i

(Yi)

= n
∫

Xopt
fX(x) FY (rx) dx (15)

5Actually, it is equal to V . For clarity purpose, it is expressed as a function
of X.
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Figure 4: Precision, Recall, and E–measure trends of (a) user model as a function of user’s visible threshold ratio and of (b) object model as a function of object’s
visual ratio under uniform distributions of X and Y , where users and objects are all stationary.

The expected number of relevant items (Relo) is the number
of objects whose ideal visible distance is greater than or equal
to the Euclidean distance to a user (Yi ≤ Xopt

i ). Since the visi-
bly relevant items are identical regardless of different visibility
algorithms, they will be the same as for the user model (shown
in Eq. 13).

Relo = Relu (16)

The expected number of retrieved and relevant items (Ret∩
Relo) is the cardinality of the intersection set of Reto and Relo.
When r < 1, it is equivalent to Reto. Otherwise, it is Relo.

Ret ∩ Relo = min(Reto,Relo) (17)

Fig. 4(b) depicts the performance trend of the object model
when uniform distributions of X and Y are applied. If the visi-
ble distance is configured correctly (r = 1), the object model re-
mains in an optimal condition. If the visible distance is overesti-
mated, irrelevant objects will be unnecessarily retrieved (lower
P), while all relevant objects retrieved (R = 1); and if underesti-
mated, all retrieved objects will be visibly relevant (P = 1), but
some visibly relevant objects will be missed (lower R). The fig-
ure also shows that slight overestimation or underestimation of
the object model outperform the user model by a sizeable mar-
gin. Hence, we conclude that the slightly approximated object
model is still preferable to the user model.

A concern may be that since the object model uses a fixed
visual ratio regardless of users’ heterogeneous visual strength,
it can not satisfy all different visual desires. For some users,
it would return the optimal results, while for others it would
return underestimated or overestimated results. In simulated
virtual environments however, every user is expected to pos-
sess the same sight vision since visual details are limited by
the display resolution. It is doubtful whether allowing differ-
ent visual strengths per user is practically meaningful in such
environments.

3.4. Analysis of Hybrid AOI Model
Here we assume that every object has a visible distance (X)

and a user has a visible threshold z, while the ideal visible dis-
tance between the object and the user is Xopt.

The expected number of retrieved items by the hybrid model
( Reth) is the sum of all binomial indicator functions of individ-
ual objects, IX(Y):

Reth =

n∑
i=1

IXi+z(Yi) = n Pr(Y ≤ rXopt + z)

= n
∫

Xopt
fX(x) FY (rx + z) dx (18)

The expected number of relevant items of the hybrid model
( Relh) is the same as that of the object model.

Relh = Relo = Relu (19)

And the expected number of relevant and retrieved items
(Ret ∩ Relh) is modelled as

Ret ∩ Relh = n Pr(Y ≤ rXopt + z, Y ≤ Xopt). (20)

Eq. 20 is subdivided into two cases when r < 1 and r ≥ 1.
For the former, there exists a crossing point xp ∈ Xopt of two
lines x and rx + z, i.e., xp =

z
1−r . If xp exceeds the range of the

sample space DX , Ret∩Relh will be Relh, since rx+ z is greater
than x. Otherwise, Pr(Y ≤ rXopt + z, Y ≤ Xopt) will be Pr(Y ≤
Xopt) when Xopt ≤ xp and Pr(Y ≤ rXopt + z) when Xopt > xp.
For the latter, the result becomes Relh, since rx + z > x.

As a result, the final form of Ret ∩ Relh is summarized as:


n ·

∫ z

1−r

0 fX(x) FY (x) dx

+
∫ DX

z
1−r

fX(x) FY (rx + z) dx

 : r<1,
z≤DX (1−r)

Relh : otherwise

(21)

Fig. 5 depicts how the visual ratio and user’s visible thresh-
old are co-related in terms of the determination quality of the
hybrid model. First, if the visible scope of every object is over-
estimated, any increase in the user’s visible threshold will sim-
ply worsen the quality. Second, if the visual ratio is under–
estimated (i.e., r = 1

2 ,
1
4 in the figure), there exists an optimal

user’s visible threshold that achieves the local minima of the
quality. Fig. 6 shows the trend of the local minima and its op-
timal user threshold value for each visual ratio. In the figure,
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as the underestimated visual ratio increases, the optimal visi-
ble threshold at the local minima monotonically decreases. If
the object’s visual scope is overestimated, the optimal thresh-
old value is then always zero. Therefore, a hybrid model-based
system should be carefully designed to use the optimal pair of
visual ratio and user’s threshold. Nevertheless, the best system
configuration is, as we suggest, to use the object model.

4. A Moving User in a Stationary Environment

In the previous section, the user model was unfairly treated,
since it couldn’t utilize local resources. If a user is allowed to
move in a space, the user model, especially, may take advan-
tage of using two aggressive strategies, caching and prefetch-
ing, while the object model has no benefit. The caching method
allows the user to reuse objects that were retrieved during pre-
vious rounds. The prefetching mechanism recognizes objects
that will be retrieved during the next rounds and fetches them
early.

On the other hand, if objects are allowed to move, such
caching and prefetching may be limited in how they can im-
prove the retrieval quality of the user model, since cached or
prefetched items are not guaranteed to be usable at a future
time. Thus, the best operation scenario for the user model

is when a user moves while objects are stationary. This im-
plies that the analysis of a moving user in a stationary envi-
ronment will depict the upper limit of the performance by the
user model. In this section, we analyze the following scenario,
quantifying how much the user model benefits from caching
and prefetching.

Scenario: A user moves from O1 to O2 in a space, where
all static objects were evenly distributed within a circle of radius
DY . Let the length of O1O2 be v.

4.1. Performance Metrics

In dynamically moving virtual environments, the traditional
definitions of Precision and Recall are inappropriate for quan-
tifying the performance characteristics of the visibility algo-
rithms, since some objects may contribute to the calculation
of the performance metrics unnecessarily. For example, if the
number of retrieved objects is associated with network delivery
cost, the objects, delivered and served during previous rounds,
and still being served at the current time, do not contribute to
the current network cost.

To exclude such cases, we modify the precision definition
that only quantifies the accuracy of “recently (or newly) re-
trieved objects”. Accordingly, the recall metric is redefined to

7



evaluate the comprehensiveness of “all retrieved objects” be-
cause of the following reasons. First, a client machine may
keep all retrieved objects in its cheap local storage medium for
future use. Second, the cost of local visibility determination
on the previously downloaded objects is much cheaper than the
transmission cost.

P =
relevant items among recently retrieved items

recently retrieved items

R =
relevant items among all retrieved items

relevant items

Before analyzing these performance metrics, we introduce
several useful lemmas and definitions. Imagine two arbitrary
circles C1 and C2 of radii r1 and r2 whose centers are separated
by a distance v. Without loss of generality, their centers, say
O1 and O2, are assumed to be located on a horizontal axis with
O1 < O2. We also assume that, for an arbitrary point P, the line
lengths to the centers O1P and O2P are denoted by Y1 and Y2,
respectively.

If the two circles overlap, the arc length of C1 inside C2 –
i.e., the size of the set of points on C1 that satisfy Y1 = r1, Y2 ≤
r2 – will be given by Lemma 1. The proof of the Lemma 1 is
straightforward and omitted here. The length of the arc of C2,
on which a point satisfies Y2 = r2, Y1 ≥ r1, is also derived in a

similar manner: 2r2 · arccos
(

r2
1−r2

2−v2

2vr2

)
.

Lemma 1. Let two overlapping circles C1 and C2 of radii r1
and r2 and centered at (0, 0) and at (v, 0) intersect in a region
shaped like a lens. The length of the arc of C1 in the lens is

given by 2r1 · arccos
(

v2+r2
1−r2

2
2vr1

)
.

We extend Lemma 1 to a more general case, where two ar-
bitrary circles are given. The circles may overlap, cover, or be
disjoint. To simplify such spatial relations, we introduce two
probability functions ℓr2

r1 (v) and ℜr1
r2 (v), which are formally de-

fined in Lemma 2 (see details in Appendix A).

Lemma 2. Let two arbitrary circles C1 and C2 with radii r1
and r2 be separated by a distance v and C1 be located at the
left side of C2. The probability that any point on a given C1 is
inside C2 is given by ℓr2

r1 (v), where

ℓr2
r1

(v) =



1 : r1 ≤ r2 − v
0 : r1 ≥ v + r2, r1 ≤ v − r2

arccos
(

r2
1+v2−r2

2
2r1v

)
/π : otherwise

(22)

The probability that any point on a given C2 is outside C1 is
given byℜr1

r2 (v), where

ℜr1
r2

(v) =



1 : r1 ≤ |v − r2|
0 : r1 ≥ v + r2

arccos
(

r2
1−r2

2−v2

2r2v

)
/π : otherwise

(23)

ℓr2
r1 (v) symbolizes the probability of a point on a given C1

that satisfies Y2 ≤ r2 – that is, Pr(Y2 ≤ r2|Y1 = r1, |O1O2| = v).
Similarly,ℜr1

r2 (v) abstracts the probability of a point on a given
C2 that satisfies Y1 ≥ r1. Its probabilistic model is then Pr(Y1 ≥
r1|Y2 = r2, |O1O2| = v).

In the remainder of this section, we use a notational con-
vention Yi that denotes the Euclidean distance to an object of a
user at time ti.

4.2. Analysis of User AOI Model
We start with the analysis of a simple scenario of the user

model, where it does not utilize any user–side resources. Later,
we explore more complex usage scenarios, where the user uses
caching and prefetching strategies. To distinguish different sets
of objects at a discrete time-slot, we use a superscript i on the
set which is associated with time ti. For example, Reti denotes
the number of retrieved objects at time ti.

4.2.1. A simple client
In this scenario, a server, running a user-centric visibility

determination model, computes objects who are within the vis-
ible threshold radius z of a client, and sends them to the client.
At the client’s side, the received objects are rendered and then
discarded after the rendering. At time t1, the user was at O1,
and then moved to O2 at time t2, where |O1O2| = v.

A newly transmitted stationary object, which is fixed at P,
was invisible at t1 and becomes visible at t2. Assuming that Y1

and Y2 are the distance of P to O1 and O2, respectively, then the
probability that an object is newly retrieved by the user model
is modelled as Pr(Y1 > z, Y2 ≤ z) and can be expanded by Y2,
using theℜ function.
∫ z

0
fY2 (Y2 = y) · fY2 (Y1 > z|Y2 = y) dy =

∫ z

0
fY2 (y)ℜz

y(v) dy.

It can be similarly expanded by Y1, i.e.,
∫ DY

z fY1 (y) ℓzy(v) dy.
The expected number of relevant items among newly re-

trieved items is given by n · Pr(Y2 ≤ z, Y1 > z, Y2 < X), which
is then expanded as a function of Y2:

n ·
∫ z

0
fY2 (Y2 = y) · Pr(Y1 > z, X ≥ Y2|Y2 = y) dy.

For a given value y ∈ Y2, the two events, X ≥ y and Y1 > z,
are independent. Thus, their joint probability function is ex-
pressed as the dot product of Pr(X ≥ y|Y2 = y) and Pr(Y1 >
z|Y2 = y). As a result, the above equation is rewritten as

n
∫ z

0
fY2 (y)ℜz

y(v) FX(y) dy.

Finally, the Precision metric of the user model is as follows:

(Ret1 − Ret0) ∩ Rel1

Ret1 − Ret0 =

∫ z
0 fY2 (y)ℜz

y(v)FX(y) dy∫ z
0 fY2 (y)ℜz

y(v) dy
.

The Recall metric of this scenario equals to that of a sta-
tionary user at t2, since the simple client does not cache any
retrieved objects after the rendering.

Fig. 7 reveals that, under uniform distributions of X and Y ,
the precision metric of a moving user by the user model de-
teriorates linearly as the user’s visible range increases and is
always worse than that of a stationary user. It also depicts that
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a slower user tends to retrieve visibly irrelevant objects more.
Such tendency also appears with a normal distribution of X.

From the analysis, we observe that a moving user with a
simple prefetching strategy experiences worse visual experi-
ence than the stationary user, indicating that the accuracy for
a static user is the upper bound of the performance for a mov-
ing user.

4.2.2. Single lookahead and caching
Consider a slightly advanced operation scenario illustrated

in Fig. 8(a). At time t0, a user with a visible threshold z was
located somewhere in 2D space. Then he moved to the current
position at time t1 and shall move to a new location at time t2.
Without loss of generality, the user locations at time t0, t1, and
t2 are assumed to be O0(−v, 0),O1(0, 0), and O2(v, 0), respec-
tively.

A client using a single lookahead and caching policy keeps
all collected items that were retrieved during a previous times-
lot (single caching) and fetches new items that will have been
identified by a next timeslot in advance ( single lookahead).
In other words, at t1, the user has the previous search results
(Ret0 ∪ Ret1) that were obtained at t0 and receives new search
result Ret2. If he moves to O2 at t2, Ret0 will be discarded from
the user’s local storage and Ret3 will be fetched. Therefore, all
the retrieved items at t1 are Ret0 ∪ Ret1 ∪ Ret2, while visibly
relevant items at t1 are Rel1. Finally, the modified Precision and
Recall measures by the single lookahead and caching policy are
expressed as

P =
(Ret2 − (Ret1 ∪ Ret0)) ∩ Rel1

Ret2 − (Ret1 ∪ Ret0)
, R =

Rel1 ∩ (Ret0 ∪ Ret1 ∪ Ret2)
Rel1 .

Newly retrieved items are among the prefetched objects that
have not been retrieved at t0 and t1. Their probabilistic form is
then n · Pr(Y2 ≤ z, Y1 > z, Y0 > z), where Y0, Y1, and Y2 are
O0P,O1P, and O2P for a given object location P, respectively.
Y2 ≤ z, Y1 > z, Y0 > z are then reduced to Y2 ≤ z, Y1 > z. The
expected number of newly retrieved objects is described by the

following integral form:

Ret2 − (Ret1 ∪ Ret0) = n Pr(Y2 ≤ z, Y1 > z)

= n
∫

Y1
Pr(Y1 = y,Y2 ≤ z) dy

= n
∫ v+z

z
fY1 (y) ℓzy(v) dy (24)

The expected number of relevant items at t1 (Rel1) is the
same as that of the user model in Eq. 13. It can also be equally
expressed as an integral of Y1. The probability Pr(X ≥ Y1)
is expanded by the total probability theorem. For a given ob-
ject distant at y ∈ Y1, the probability that its visible distance is
greater than or equal to the actual distance is Pr(X ≥ y), which
by definition is reduced to 1 − FX(y) or simply FX(y). Since X
and Y are independent, their joint density function is the prod-
uct of two individual density functions.

Rel1 = n
∫

Y1
fY1 (y) FX(y) dy

Since FX(y) is zero where y ≥ DX , the above equation is final-
ized as

Rel1 = n
∫ DX

0
fY1 (y) FX(y) dy. (25)

The number of relevant items among newly retrieved ob-
jects is the cardinality of (Ret2 − (Ret0 ∪Ret1))∩Rel1. Its prob-
abilistic form is written as an integral of Y1:

n
∫ DY

z
fY1 (y) · Pr(Y2 ≤ z, X ≥ Y1|Y1 = y) dy

Although two events, Y2 ≤ z and X ≥ Y1, are dependent on
Y1, they are independent of a chosen value y ∈ Y1. Thus, the
above expression is rewritten as the product of Pr(Y2 ≤ z|Y1 =
y) and Pr(X ≥ y). Using Lemma 2, we obtain the following
result:

(Ret2−(Ret1∪Ret0))∩Rel1 = n
∫ DX

z
fY1 (y) ℓzy(v) FX(y) dy (26)

The total number of retrieved items (Ret0 ∪ Ret1 ∪ Ret2) is
divided into three non–overlapping sets: Ret1,Ret0 − Ret1, and
Ret2 − Ret1. Due to the symmetric nature of object locations
in a uniform distribution of Y , Ret0 − Ret1 and Ret2 − Ret1 are
probabilistically identical. Thus, the total number of retrieved
items is the sum of Ret1 and 2·(Ret2−Ret1). As a result, relevant
items among all retrieved items are rewritten as a union of two
disjoint sets.

Rel1 ∩ (Ret0 ∪ Ret1 ∪ Ret2) = (Rel1 ∩ Ret1) + 2(Rel1 ∩ (Ret2 − Ret1))

The first term, Rel1∩Ret1, is the same as that of a stationary
user.

Ret1∩Rel1 = n·Pr(X ≥ Y1,Y1 ≤ z) = n
∫ z

0
fY1 (y)FX(y) dy (27)

The second term, 2 · (Rel1∩ (Ret2−Ret1)), is twice the num-
ber of relevant items among newly retrieved items. Its integral
form is easily derived from Eq. 26:

2·(Rel1∩(Ret2−Ret1)) = 2n
∫ DX

z
fY1 (y)ℓzy(v)FX(y) dy (28)
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Figure 8: A user’s moving scenario for (a) single and (b) multiple caching and prefetching policy. Every time interval ti+1 − ti, a user moves from Oi to Oi+1, while
caching data collected past t0 to tm−1 and prefetching next tm+1 to t2m.

Combining Eqs. 27 and 28, we obtain the expected number
of relevant items among all retrieved items as follows:

Rel1 ∩ (Ret0 ∪ Ret1 ∪ Ret2)

= n
(∫ z

0
fY (y)FX(y) dy + 2

∫ DX

z
fY (y)ℓzy(v)FX(y) dy

)
(29)

Summary
For a given user threshold z, the modified precision measure

of the user model with single lookahead and caching is obtained
from Eqs. 24 and 26.

P =

∫ DX

z fY (y)ℓzy(v)FX(y) dy
∫ v+z

z fY (y)ℓzy(v)dy
(30)

The modified recall measure is similarly obtained from Eqs. 25
and 29.

R =

(∫ z
0 fY (y)FX(y) dy + 2

∫ DX

z fY (y)ℓzy(v)FX(y) dy
)

∫ DX

0 fY (y)FX(y) dy
(31)

4.2.3. Multiple lookahead and caching
We further investigate a more aggressive caching and prefetch-

ing scheme: multiple lookahead and caching. It allows a user
machine to prefetch objects much farther in time than the sin-
gle look-ahead strategy and use all cached items that have been
stored so far.

A usage example is visualized in Fig. 8(b): there exist (2m+
1) non-concentric congruent circles of radius z, each of which
represents a user’s visible region at each time, and they are
equally spaced along the x–axis by v. At time tm−1, a user at
Om−1 has stored objects that had been recognized during the last
m timeslots and the future m timeslots - i.e., Ret−1∪· · ·Ret2m−1.
As the user moves to Om by tm, it drops Ret−1 and prefetches
new objects Ret2m − Ret2m−1.

The newly prefetched objects by the multiple lookahead
scheme, however, are less visibly relevant than those by the
single scheme, since they are located much farther away than
the user’s current location, leading to a much lower Precision
value. On the other hand, the Recall metric by the multiple
scheme is higher than by the single scheme, since all items,

Ret0 ∪ · · · ∪ Ret2m, contain more visibly relevant objects than
singly cached items. Eqs. 32 and 33, assuming all consecu-
tive circles overlap with each other, show the approximation of
the precision and recall metrics by the multiple lookahead and
caching method6.

P =

∫ p+z√
z2+pq

g(p)∆ −
∫ q+z√

z2+pq
g(q)∆

∫ p+z√
z2+pq

fY (y)g(p)dy −
∫ q+z√

z2+pq
fY (y)g(q)dy

(32)

R ≈

∫ z

0
∆ +
∫ √p2+z2

z
arccos

(√
1 − ( z

y )2
)
∆ +
∫ p+z√

p2+z2
g(p)∆

∫ DX

0
∆

,(33)

where p = mv, q = (m − 1)v, z ≥ p−q
2 , g(o) = arccos y2+o2−v2

2yo ,

and ∆ represents fY (y)FX(y)dy.
The derivation of the equations, although it is non–trivial to

present proofs, is omitted here, since it can be obtained straight-
forwardly.

4.3. Analysis of Object AOI Model

In Section 3, we concluded that the object model provides
the optimal solution for a stationary user in a static environ-
ment, as long as every user possesses the same sight vision and
the visible distance of an object is set to the ideal distance.

The object model, however, has one crucial practical is-
sue: the total number of visibly relevant objects fetched by this
model tends to be much larger than that by the user model. For
example, the expected number of retrieved items by the object
model is nD2

X

3D2
Y

if X and Y are uniformly distributed. It implies
that, if DX equals DY , the object model should retrieve “one
third” of all objects in a space.

If a user moves in a static environment, the object model
may utilize the local storage space of the user client. It means
that the user doesn’t have to retrieve all visibly relevant items
at once, because some of the items were retrieved during pre-
vious rounds. Since the object model is guaranteed to retrieve
only visibly relevant objects, we focus only on analyzing the
expected number of newly retrieved objects. We use the same
moving scenario presented in Section 4.2.1.

6Detailed proofs are omitted due to space limitation.
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Figure 9: A simple object’s moving scenario. The object with moving speed v
at P0(y, 0) may move to either inside user’s visible range (PA) or outside (PB).

A newly recognized object is one that was invisible when
a user was on O1 and becomes visible after the user moves to
O2. Thus, the probabilistic expression that an object is newly
visible is expressed as Pr(Y1 > X, Y2 ≤ X), which can easily be
expanded as double integral of X and Y1.

∫
X

fX(x)
∫ DY

x
fY1 (y)Pr(Y2 ≤ x|Y1 = y, |O1O2| = v) dy dx

After substituting Pr(Y2 ≤ x|Y1 = y, |O1O2| = v) with ℓxy (v),
we obtain the expected number of newly retrieved objects as
follows:

Ret1
o − Ret0

o = n · Pr(Y1 > X, Y2 ≤ X)

= n
∫ DX

0

∫ DY

x
fX(x) fY1 (y)ℓzy(v) dy dx.

5. A Stationary User in a Moving Environment

In this section, we present the performance model of the
visibility algorithms under the following scenario:

Scenario: A user stands at a fixed position O, while every
object with the same moving speed v moves randomly from one
place to another in a circle of radius DY . Let the object in the
circle be originally placed at P1 and be relocated to P2 after a
given time interval, where the length of P1P2 is v.

The performance metrics for this analysis reuse the same
definitions for the analyses of a moving user in a stationary en-
vironment.

5.1. Analysis of User AOI Model
As all objects in the sample space move randomly, any ag-

gressive caching and prefetching strategy cannot be applied in
this model. It may even hurt the system performance severely.
For example, the location of a cached object needs to be up-
dated regularly, which requires additional state update cost be-
tween a server and a client. Since such update cost is very ex-
pensive, we assume a minimal prefetching and caching policy,
which updates previously retrieved objects only once and dis-
poses them after a single reuse.

A user whose visible threshold is given by z is centered at O.
As exemplified in Fig. 9, an object that was initially positioned

outside the user’s visual scope (say, P0(y, 0)) moves to either
inside the user’s visible range (PA) or outside (PB). If entering
into the user’s region, it will be newly recognized by the user
model. Assuming Y and Y1 are the distances of the object at
P0 and PA (or PB) to the user, respectively, the probability that
the object is newly identified by the user model is expressed
as Pr(Y1 ≤ z, Y > z), which is then expanded as an integral
of all possible Y positions, which are located outside the user’s
scope. The portion of the arc length of the circle centered at P1
within the user’s scope can be derived from Lemma 2, where
r1, r2 and v, respectively, correspond to v, z, and y. As a result,
the probability is induced to

∫ v+z
z fY (y) ℓzv(y) dy and the expected

number of newly retrieved objects is computed as

n · Pr(Y > z, Y1 ≤ z) = n
∫ v+z

z
fY (y) ℓzv(y) dy. (34)

The probability that a newly retrieved object is also visi-
bly relevant after its movement is expressed as Pr(Y > z, Y1 ≤
z, X ≥ Y1). It is also expanded as the double integral of X and
Y . If X is less than z, the probabilistic condition Y1 ≤ X, Y1 ≤ x
will be dominated by Y1 ≤ X. Otherwise, it would be Y1 ≤ z.
Thus, the expected number of newly retrieved and visibly rele-
vant objects is

n · Pr(X ≤ z) · Pr(Y > z,Y1 ≤ X)

+ n · Pr(X > z) · Pr(Y > z,Y1 ≤ z)

= n
∫ z

0

∫ z+v

z
fX(x) fY (y)ℓx

v (y) dy dx

+ n
∫ DX

z

∫ z+v

z
fX(x) fY (y)ℓzv(y) dy dx

The relevant items when objects move to P1 are computed
from Rel1, whose probabilistic model was given in Eq. 13.

All retrieved items among relevant items are the sum of
the relevant items that are either retrieved or discarded after
objects’ movement : n · Pr(Y1 ≤ X, Y1 ≤ z) + n · Pr(Y1 ≤
X, Y1 > z, Y ≤ z). The left term (retrieved) is computed from
Eq. 14. The right term (discarded) is the expected number of
objects which were retrieved at the current position and then be-
come invisible at the next position. Although no longer in ser-
vice, the discarded objects can still be available from the user’s
local storage, thus being good candidates that can be reused
for the time being. Their visible distance needs to be larger
than z. Otherwise, they could not be visibly relevant, because
Y1 > z, z ≥ X ≡ Y1 > X. Therefore, the expected number
of visibly relevant but discarded objects after the movement is
computed as follows:

n · Pr(Y1 ≤ X, Y1 > z, Y ≤ z)

= n
∫ DX

z
fX(x) Pr(Y ≤ z, z < Y1 ≤ X|X > z) dx

= n
∫ DX

z
fX(x)

∫ z

0
fY (y) {ℜz

v(y) −ℜx
v(y)} dy dx

Using the above results, the modified P and R metrics of the
user model, where only objects move, are obtained as follows:

P =

∫ z
0

∫ z+v
z ℓxv (y)∆ +

∫ DX

z

∫ z+v
z ℓzv(y)∆

∫ v+z
z fY (y) ℓzv(y) dy
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R =

∫ z
0 fX(x)FY (x)dx +

∫ DX

z fX(x)FY (z)dx +�
∫ DX

0 fX(x)FY (x)dx
,

where ∆ = fX(x) fY (y) dy dx,� =
∫ DX

z fX(x)
∫ z

0 fY (y) {ℜz
v(y) −

ℜx
v(y)} dy dx.

5.2. Analysis of Object AOI Model
Newly retrieved objects by the object model are modelled

as Pr(Y > X, Y1 ≤ X). Expanded as an integral of Y , we have∫
X fX(x) · Pr(Y > x, Y1 ≤ x). For a given x, Pr(Y > x, Y1 ≤

x) can easily be induced from Eq. 34 by substituting z with x.
Finally, the expected number of retrieved objects is obtained as
follows: ∫ DX

0
fX(x)

∫ x+v

x
fY (y)ℓxv (y) dy dx

So far, we have presented the analytical models of the per-
formance metrics of individual AOI filtering approaches with
different settings. Such modelling results are analyzed for ac-
curately predicting the expected performance behaviors for dif-
ferent configuration settings by varying input parameters - i.e.,
the relative distance between a user and its target object, the in-
trinsic visible strength of an object, and the moving speed of a
moving user or object. In the following section, we report on
the detailed performance characteristics of the individual filter-
ing models.

6. Evaluation

To examine whether our analysis model predicts the perfor-
mance of the visibility models accurately, we compare predic-
tion results computed from our analytical models with simula-
tion results. During the simulations, we varied the number of
populated objects that are uniformly distributed, ranging from
ten thousand to one million and collected the performance re-
sults of individual visibility models. We also present the an-
alytical results and the simulation results for different distri-
butions of X (a uniform and a normal distribution). For the
normal distribution, we used the normalized mean value of 0.3
and the standard deviation of 0.05. It means that the average
visible distance of an object occupies 30 % of the side length
of the unit space. Overall, all the simulation results matched
their corresponding prediction results accurately and consis-
tently, which validates the correctness of our analytical mod-
els. To emphasize the variability of the simulation results, we
only show the simulation results with the medium-sized object
population (i.e., 100K).

6.1. A Stationary User in a Stationary Environment
Fig. 10(a) shows the E–measure distributions of the user

model. This figure reveals two typical performance trends of
the user model. First, there exists a local minima at non–zero
visible threshold of the user. It appears around (normal distribu-
tion) or after (uniform distribution) the average visible thresh-
old. Second, the given normal distribution shows a better per-
formance than the given uniform distribution. Moreover, its
local minima is comparable to the optimal condition.

Fig. 10(b) depicts the E–measure distributions of the ob-
ject/hybrid model, where the visible distance of an object is
configured as its ideal visible distance. Since the object model
always achieves the optimality of the determination quality, we
draw the results of the hybrid model by varying the user’s visi-
ble threshold. The figure validates that the ideal visible distance
of the object is the most crucial factor in the performance of the
hybrid model, while deferring the use of user’s visible thresh-
old. If the visible distance is configured longer than the ideal,
the figure reveals that there exists the most suitable user thresh-
old that achieves the local minima of the E-measure metrics,
which significantly improves the performance.

In summary, the object model achieves optimality only when
user’s visible strength is homogeneous, the visible distance of
an object is heterogeneous, and the ideal visible distance is
derivable. The user model tends to be inferior to the object
model, but it can achieve comparable performance under cer-
tain conditions. If the hybrid model is applied, the system de-
signer should estimate how accurately the visible distance is
approximated to its ideal. If determined overestimated or cor-
rectly, the system should not consider the user’s visible thresh-
old. Otherwise, it should use the threshold that matches the
local minima of the E-measure metrics.

6.2. A Moving User in a Stationary Environment
Fig. 11 depicts the E–measure values obtained by two vari-

ants of the user model. It shows similar performance tendencies
that we observed in the case where every user and object are
stationary: there exists a local minima of the performance and
it is typically worse than that by the user model in the station-
ary case, while its optimal user’s thresholds tend to be placed
ahead of those of the user model in the stationary case. These
observations indicate that newly retrieved objects by the user
model are less visibly relevant, thus hurting the Precision sig-
nificantly. The figure also reveals that the single lookahead and
caching scheme is generally superior to the multiple scheme at
the individual local minima.

As stated earlier, the object model has a crucial flaw in the
stationary case, requiring to retrieve an improbable number of
visibly relevant objects at once. In Fig. 12 however, we ob-
served that the object model newly retrieves a much smaller
number of visibly relevant objects, which is very practically
meaningful, although it does not surpass the user model all
the time. In reality, the moving speed of objects will be much
smaller than plotted in the figure, since the visible distance ex-
tends much farther than conventional distance ranges and the
speed is normalized by the maximum visible distance. Thus, if
objects move at most 1 - 2 % of the unit space per time unit, the
size of the actually retrieved objects will be much lower than 2
% of the whole object population size. Additionally, the figure
also demonstrates that the newly retrieved objects by the user
model are independent of the distribution of X, matching the
prediction of Eq. 24.

6.3. A Stationary User in a Moving Environment
Interestingly, the performance metrics (Fig. 13 for the E-

measure and Fig. 14 for the size of newly retrieved objects) of
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Figure 10: Analytical and simulation results of E-measure values of (a) user and (b) hybrid model. The curves are plotted as a function of normalized user’s visible
threshold in a uniform and normal distribution N(0.3, 0.052) of X.
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Figure 11: Analytical and simulation results of the E-measure values of the user model with different lookahead and caching policies. They are plotted as a function
of user’s visible threshold for uniform and normal distribution of X. During the simulation runs, the user moved 2 % of the given unit space.
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Figure 13: The E-measure metrics of user model for a stationary user with
moving objects that are assumed to move 2 % of the unit space.

both models follow the same tendencies depicted in Figs. 11
and 12. It is especially surprising that a minimal prefetching
and caching scheme for a stationary user with moving objects
is mimicking very similar results that the complicated prefetch-
ing and caching scheme of the user model for a moving user
achieved.

7. Discussion and Conclusions

In this article, we classify existing visibility determination
algorithms into three models : user, object, and hybrid model.
The user model assumes that only users have their own unique
visual strength (we interchangeably call it as “user’s visible
threshold”); the object model assumes that every user possesses
equal sight vision, while every object has a unique visible char-
acteristic stemming from its spatial attributes such as size; and
the hybrid model assumes every object and user have separate
visible criteria. Using the visual acuity model to derive the ideal
visible distance both from the user’s visual strength and from
the object size, we formally define their visible condition and
derive the analytical model of their performance metrics (Pre-
cision, Recall, and E-measure) in three distinct cases: (1) a sta-
tionary user in a stationary environment, (2) a moving user in
a stationary environment, and (3) a stationary user in a moving
environment. To embrace the dynamics of the last two cases,
we propose modified definitions of conventional precision and
recall metrics.

In case of a stationary user with stationary objects, the ob-
ject model achieves optimal performance, in which all visibly
relevant objects are retrieved and all retrieved objects are visibly
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Figure 12: Analytical and simulation results of the number of newly retrieved objects by (a) the user model with single scheme and (b) the object model are plotted
as a function of user’s moving speed (v).
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Figure 14: The normalized size of newly retrieved objects by both models for a stationary user with moving objects that are assumed to have a normalized moving
speed v. For clarity purposes, the user model plots the results under uniform distribution of X and Y , while the object model under two distributions of X and uniform
distribution of Y .

relevant. The determination quality of the user model depends
on user’s visible threshold and there exists a local minima at a
specific visible threshold value. But the local minima is still far
from the optimal point. The hybrid model suggests that (1) if
the visible distance of an object is over–estimated, the use of
the user’s visible threshold should not be used to avoid perfor-
mance degradation and (2) if underestimated, the user’s visible
threshold should be assigned to the value that satisfies the lo-
cal minima of the performance. In case of a moving user with
stationary objects, the user model has a worse performance than
that in the case of the stationary user, mainly due to the modified
definition of the performance metrics. Among several intelli-
gent policies for the user model, a single lookahead and caching
scheme has a slightly better local minima than others. In terms
of the number of newly retrieved objects, the object model re-
quires fewer objects than that in the case of the stationary user,
while it is comparable to that of the user model. Lastly, in case
of a stationary user with moving objects, the user and the object
models showed similar performance trends observed in the case
of the moving user.

So far, we have described how much different choices of
visibility algorithms impact the system performance in terms

of search and retrieval quality and retrieval size. We also pro-
vided various decision policies that fit well for individual visi-
bility algorithms. Although all analyses presented in this study
were focused on the visibility determination of client/server
based networked virtual environments, our arguments and con-
clusions can be immediately applied to in many practical ar-
eas, where spatial attributes are necessary and can be trans-
formed into quantifiable values. Please note that our conclu-
sions may not be applicable for some attributes that can not be
easily transformed to a value such as interest, attraction. If a
system adopts these qualitative attributes and intentionally as-
sociates them with a distance, we expect our analytical con-
clusions to still reveal intrinsic performance properties of the
system and to suggest the optimal configuration scenario.
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Appendix A. Lemma 2

Proof To derive ℓr2
r1 (v), we assume C1 and C2 be centered at

O1(0, 0) and at O2(v, 0). The spatial relations between C1 and
C2 are classified in two cases: O2 is inside C1 and O2 is outside
C1.
Case (1): O2 is inside C1 - i.e., v < r1

• If r1 < r2 − v, every point in C1 will be spatially covered
by C2. Thus, it returns one.

• If r2 − v ≤ r1 ≤ r2 + v, the two circles will intersect. The
ratio of the arc length of C1 intersecting with C2 to its
circumference length is derived from the lemma 1.

• Otherwise (r1 > r2 + v), there would exist no intersection
point between the two circles.

Case (2): O2 is outside C1

• If r1 < v− r2, the two circles will be disjoint. In this case,
there exist no points on C1 that also lie inside C2.

• If d − r2 ≤ r1 ≤ v + r2, the two circles intersect.

• Otherwise (r1 > v + r2), C1 would cover C2.

The derivation of ℜr1
r2 (v) is also similarly proved, assum-

ing C1 and C2 be centered at O1(−v, 0) and at O2(0, 0). The
arc length of C2 outside C1, if existing, is computed from 2πθ,
where an intersection point on C2 that is expressed as (r2 cos θ, r2 sin θ)
also lies on C1, thus, satisfying (r2 cos θ + d)2 + (r2 sin θ)2 = r2

1.
Especially, if two circles are disjoint when r1 < v − r2, every
point on C2 is located outside C1 as well. In such situation, the
functionℜr1

r2 (v) returns one.
From the above cases, the lemma is correct.
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