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Abstract: Clustering provides an effective mechanism for energy-efficient data delivery in 
wireless sensor networks. To reduce communication cost, most clustering algorithms rely on a 
sensor’s local properties in electing cluster heads. They often result in unsatisfactory cluster 
formations, which may cause the network to suffer from load imbalance or extra energy 
consumption. In this paper, we propose a novel Voting-based Clustering Algorithm (VCA) for 
energy-efficient data dissemination in wireless sensor networks. This new approach lets sensors 
vote for their neighbors to elect suitable cluster heads. VCA is completely distributed, location-
unaware and independent of network size and topology. It combines load balancing, energy and 
topology information together by using very simple voting mechanisms. Simulation results 
show that VCA can reduce the number of clusters by 5-25% and prolong the lifetime of a 
sensor network by 10-30% over that of existing energy-efficient clustering protocols. 

Keywords: Sensor network, Clustering, Cluster head, Voting, Energy-efficient, Data 
aggregation  
Categories: C.2.2, C.2.4 

1 Introduction  

Energy consumption is a critical issue in sensor networks. Even with the latest 
energy-efficient circuit design, limited battery power hinders the deployment of 
wireless sensor networks. To reduce energy consumption, energy-efficient data 
dissemination techniques are needed. According to [Ratnasamy, 01], there are three 
major data dissemination methods: data-centric storage, local storage and external 
storage. For data-centric or local storage, data are kept within the network and queries 
are forwarded to nodes that store the requested data. In this paper we study the 
external storage problem, in which data need to be forwarded to a single sink outside 
the network. The sink location is often determined before all sensors are placed and a 
mobile sink is uncommon with current technology.  

Clustering [Amis, 00, Bandyopadhyay, 03] is a useful approach to reduce energy 
dissipation in sensor networks. It is often coupled with data fusion [Hall, 92] to 
extend sensor lifetime. Each cluster elects one node as the cluster head. In Figure 1, 
for example, sensors are divided into 4 clusters. Nodes marked in solid circle serve as 
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the heads for clusters. Data collected from sensors are sent to the cluster head first, 
and then forwarded to the sink. Compared to the sink, a cluster head is closer to 
sensors within the same cluster. Cluster heads can fuse data from sensors to minimize 
the amount of data to be sent to the sink. This can greatly reduce the energy 
consumption of sensor networks. When the network size increases, clusters can be 
organized hierarchically to further reduce energy consumption. 

 

 

Figure 1. A sensor network with 4 clusters. 

A lot of clustering algorithms [Choi, 04, Kalpakis, 02] require location information 
in order to work. Sensors need to know their position acquired through equipment like 
GPS (Global Positioning System), which is not available in many environments. 
Energy efficiency and load balancing are other considerations of clustering 
algorithms. Because most clustering protocols are based on local properties, clusters 
generated by these protocols may be undesirable. For example, cluster sizes are not 
well balanced or cluster heads with low energy may have lots of nodes subscribing to 
them. In this paper, we introduce a voting-based clustering algorithm (VCA) for 
energy-efficient data dissemination in wireless sensor networks. This new algorithm 
is capable of combining load balancing, topology and energy information together. 
Furthermore, VCA does not make any assumptions about sensor location and network 
topology. It is fully distributed and energy-efficient.  

To evaluate the energy-efficiency of different clustering protocols, many studies 
use the network lifetime as criteria. The lifetime of a sensor network is often defined 
as the duration from the deployment of the network to the time when the first or the 
last sensor runs out of energy. We also calculate the network lifetime when 
comparing VCA with other clustering approaches. Simulation results show that our 
algorithm can generate a longer network lifetime than many traditional energy-
efficient clustering approaches.  

The paper is organized as follows. In Section 2, the related work is introduced. 
We present the communication model and challenges of distributed clustering 
algorithms in Section 3. Details of our VCA are introduced in Section 4. Section 5 
presents the performance of our VCA and simulation results are reported in Section 6. 
Finally, we summarize the contributions and provide suggestions for further research 
in Section 7. 
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2 Related Work  

Many clustering techniques for sensornets have been proposed in the past several 
years. Most of them can be classified into the following two categories: centralized or 
distributed. PEGASIS [Lindsey, 02], for example, is a centralized clustering 
algorithm. It uses a linear programming model to generate the optimal cluster 
formation for extending the lifetime of a sensor network. However, this requires 
sensors to have a global knowledge of the network. Spreading and collecting all 
sensors’ information across a large network is often costly and impractical. Therefore, 
distributed clustering protocols are more desirable for large networks. Examples of 
distributed clustering algorithms include LEACH [Heinzelman, 00], HEED [Younis, 
04], DCA [Basagni, 99] and WCA [Chatterjee, 02]. Because distributed clustering 
algorithms only have partial information of a network, clusters generated by these 
algorithms may not be optimal.  

LEACH [Heinzelman, 00] uses a simple probability-based mechanism in electing 
cluster heads. Each sensor has the same probability of becoming a cluster head after 
the network is deployed. Sensors that do not elect themselves as cluster heads choose 
the closest head to join. The original LEACH protocol assumes that any two nodes 
can communicate with each other directly, which is unrealistic for large networks 
since it might cause too much energy to transmit data between two remote nodes. 
HEED [Younis, 04] extends LEACH by incorporating communication range limits 
and cost information. In HEED, the clustering process is divided into a number of 
iterations. The initial probability for a sensor to become a cluster head is defined as 

min( , )× residual
prob min

max

eC
e

p , where eresidual and emax are the residual and the maximum 

energy of the node. In the next iteration, sensors that are not covered by any cluster 
head double their probability of becoming a cluster head. This procedure continues 
until all sensors are covered by at least one head. In the final stage, sensors join 
cluster heads that have the lowest cost within their range. The cost can be either the 
node degree or the residual energy of a cluster head. Both HEED and LEACH can 
finish their executions within a constant number of iterations.  To balance the energy 
consumption of all sensors, both protocols require re-clustering after a period of time 
(called round), which causes extra energy consumption.   

The Max-min clustering algorithm [Amis, 00] can generate d-hop clusters in O(d) 
time. Initially all sensors broadcast their node IDs to their neighbors. In the first d 
iterations, each sensor propagates the highest node ID they have heard to their 
neighbors. A node’s ID cannot be propagated to nodes that are more than d hops away 
from it. In the next d iterations, sensors begin to propagate the minimum node ID ever 
heard.  Each sensor then subscribes to the node whose ID was heard by it the last.  

The generic clustering algorithms [Basagni, 97, Lin, 97] associate each sensor with 
some weight. The weight is calculated from a sensor’s local properties, such as speed, 
node degree and residual energy. WCA and DCA are good examples of generic 
clustering. Initially, sensors broadcast their weight to their neighbors. Cluster heads 
are selected from those nodes that have the highest weight in their neighborhoods. 
However, defining a good weighing function for all sensors is difficult. A bad 
weighing function may cause a lot of ties during competition. 
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In [Choi, 04], the author introduced a two-phase clustering strategy. Initially, the 
network is partitioned into several clusters using traditional clustering protocols such 
as WCA. All sensors in the same cluster then send their location information to the 
cluster head and organize themselves into a chain. Data collected from all sensors are 
forwarded and fused along the chain. To reduce energy consumption, the length of 
every link along the chain is minimized.  

Most of the above clustering strategies are suited for stationary or quasi-stationary 
sensornets. For networks with moving sensors, an adaptive clustering technique by 
predicting future link availability was introduced in [McDonald, 99]. Because many 
distributed clustering approaches use sensors’ local properties in forming clusters, the 
cluster formations generated by these protocols might not be satisfactory. Some of the 
clustering approaches also need location information of all sensors, which is often 
infeasible due to size and energy limitations. 

3 Clustering in Sensor Networks 

3.1 Network Model 

Table 1 lists all the terms and definitions used in this study. All nodes in the network 
are quasi-stationary and location-unaware. To model energy dissipation, we assume a 
1/dn path loss so that n is dependant on d. In order to transmit k bits data over distance 
d, the power spent on the radio is . To receive a message of 
length k bits, the energy spent is

( , ) ( )n
T Tx amE k d k E E d= + p

Rx( )RE k kE= . In most studies, the relationship 
between ETx and ERx is simplified as Tx RxE E= . 

 
Term Definition Units 
ETx Energy dissipation rate to run the radio transmitter J/bit 
Eamp Energy dissipation rate at the transmit amplifier J/bit/mn 
ERx Energy dissipated to run the receiver circuitry J/bit 
d0 Threshold distance for Eamp  
N Total number of nodes  
vi The ith sensor (1≤ i ≤ N)   

dij Distance from sensor vi to sensor vj m 
R Communication range m 
ei Residual energy of sensor vi  J 
degreei Node degree (number of neighbors) of sensor vi  
S An [0,L]2 square area in which N sensors are dispersed m2 

SCH The set of nodes that are cluster heads  
SWD The set of nodes that withdrew from voting  
Snbr The set of neighboring nodes   

Table 1: List of terms used and their definitions. 

For all sensors in the network, we assume the following properties: 
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1) Sensors are homogeneous, they have the same communication range and 
energy consumption model. 

2) All nodes are quasi-stationary. 
3) Sensors are location unaware. 
4) Due to location-unawareness and mobility, sensors use a fixed power level 

for broadcasting, which is dependant on the communication range. 
5) Cluster heads can increase their transmission power so that they can 

communicate with the sink.  
Many studies use network lifetime as a criteria in evaluating the energy-efficiency 

of different clustering protocols. The sensor network lifetime is divided into a number 
of rounds. Each round is comprised of a clustering phase TCP and a network operation 
phase TNO [Younis, 04]. During the clustering phase, a sensor either elects itself as a 
cluster head or joins a cluster. To avoid interference, each cluster head generates a 
TDMA schedule so that nodes can send data at different time slots. During the 
network operation phase, data generated at each sensor are sent to its cluster head 
according to the TDMA schedule. A cluster head fuses the data and sends them to the 
sink. To save the energy spent on clustering, the network operation phase may consist 
of multiple TDMA frames. Cluster heads can operate in two power levels so that they 
can directly communicate with the sink. 

3.2 Problem Statement  

Since a cluster head is responsible for fusing the data from sensors subscribing to it, 
only one data packet needs to be delivered to the sink out of a cluster. Thus the more 
clusters are present, the more messages need to be delivered to the sink. If the sink is 
far away from sensors, minimizing the number of clusters reduces overall energy 
consumption. However, finding the optimal cluster heads to cover a sensornet is NP-
complete [Bollbas, 85]. Load balancing is another vital metric for distributed 
clustering algorithms. Sensors with high residual energy should have a higher 
opportunity of becoming cluster heads. Additionally, more sensors should subscribe 
to cluster heads with higher residual energy. However, many clustering algorithms try 
to balance the size of the clusters instead of the energy distribution. 

When electing cluster heads, most distributed clustering approaches are based on 
local properties, such as node ID or residual energy. In LEACH and HEED, for 
example, sensors elect themselves as cluster heads based on a pre-determined 
probability. For generic clustering protocols, a sensor’s weight is often calculated 
from its local properties. Due to the lack of information from neighbors, cluster 
formations generated by many distributed clustering algorithms are often 
unsatisfactory. Figure 2 shows a situation where undesirable results may be generated 
by most distributed clustering algorithms. 

In Figure 2, sensors A, B, C and D all have 1J residual energy and the same 
communication range. Nodes B, C, and D are within the communication range of A. 
However, B, C and D cannot communicate with each other directly. As shown in 
Figure 2(a), if we group A, B, C and D together and select node A as the cluster head, 
data fusion can be performed at A and only one piece of message needs to be 
delivered to the sink. However, when using LEACH or HEED, all sensors have the 
same probability of becoming a cluster head. Suppose node C becomes a cluster head. 
In that case, sensor A will subscribe to C and never elect itself as a cluster head.  
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Since B and D are outside the range of C, they will form two individual clusters later, 
as shown in Figure 2(b). Thus three clusters are created instead of one. As a result, 
three messages are sent to the sink and no data fusion can be performed for B and D. 
This greatly increases the overall energy consumption of the network. 

 

A 

B 

C

D 

 

A

B

C 

D

 
             (a) A network of 4 nodes             (b) an undesirable cluster formation 

Figure 2: A clustering problem of traditional clustering approaches. 

For weight-based clustering algorithms (such as WCA or DCA), the same problem 
occurs if the residual energy or the node ID is chosen as the weight for each sensor. 
Using the node degree as weight can solve the problem of Figure 2. However, for a 
large sensor network, many sensors may have the same degree. This causes a lot of 
ties when sensors are competing for cluster heads. Because cluster heads are among 
the high-degree nodes, they consume more energy and die quickly. After those high-
degree nodes die, the remaining sensors are more likely to be separated apart. 
Additionally, sensors with extremely low energy may become cluster heads as long as 
they have high degrees. Using a complicated weighing function makes the meaning of 
the weight ambiguous and it is also hard to find suitable parameters. In order to solve 
the above problems of traditional clustering approaches, we introduce a voting based 
clustering algorithm in the next section.  

4 Sensor Voting 

Though a sensor has multiple neighbors, it may have different preferences of which 
neighbor is the most suitable cluster head for it. In order to represent such differences, 
we introduce a voting-based clustering algorithm (VCA). Similar to other distributed 
clustering algorithms, VCA does not guarantee an optimal cluster formation. 
However, it can improve cluster formations by incorporating information from 
neighboring nodes. VCA requires re-clustering after a period of time. This prevents 
the network from sticking to a few nodes as cluster heads and draining their energy 
quickly.  
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4.1 Vote Calculation 

The heuristic behind sensor voting is that a sensor’s importance should be reflected 
from all its neighbors (including itself) instead of from its local properties alone. Each 
sensor calculates the suitability that one of its neighbors (including itself) becomes its 
cluster head and casts a vote on that neighbor. At the same time, sensors collect votes 
from their neighbors and calculate the total vote received. The more votes a sensor 
accumulates, the more important it is in the whole network. During the clustering 
phase, sensors compete with each other based on the total votes each has received. 
Because sensors are location-unaware, topology and residual energy are the two 
primary factors in electing cluster heads. To be fair and to balance the workload, the 
following two rules are used to calculate the vote a sensor casts on its neighbors 
(including the sensor itself):  

R1) The sum of the votes a node gives to all its neighbors (including itself) is 1.0. 
R2) A neighbor with high residual energy should get more votes than a neighbor 
with low residual energy.  

Rule R1 takes topology information into consideration. Since the total vote a 
sensor holds is 1.0, rule R1 has the following implications: If a sensor has more 
neighbors, each neighbor receives a smaller vote from that sensor. For a high-degree 
node, all its neighbors are candidate cluster heads for it. Therefore, an individual 
neighbor becomes less important to a high-degree node. On the contrary, sensors with 
more neighbors tend to collect higher votes since there are more voters for them. Thus 
cluster heads are likely to be those high-degree nodes. Electing high-degree nodes as 
cluster heads can save energy dissipation by increasing the number of messages to be 
fused together.  

Rule R2 tries to balance the workload among all sensors. Because cluster heads 
consume more energy than other sensors, they should be selected from nodes with 
high residual energy. Based on rules R1 and R2, the following strategy is used to 
divide a sensor’s vote among its neighbors (including itself). For a sensor vi, the vote 
it casts on another sensor vj is: 

,

( , )

0 ,

≤

⎧
≤⎪

∑⎪⎪= ⎨
⎪
⎪

>⎪⎩

ik

k
d R

j
ij

i j

ij

e

e
d R

v v v

d R

     (1) 

The total vote of sensor vi  is the sum of the votes from all its neighbors. 
              (2) ∑

≤
=

Rd
iji

ij

vvvvvote ),()(

In Figure 2, for example, we have v(A,B) = v(A,C) = v(A,D) = v(A,A) = 0.25 and 
v(C,A) = v(B,A) = v(D,A) = 0.5. Thus vote(A) = 1.75 and vote(B) = vote(C) = vote(D) 
= 0.75. Sensor A becomes a cluster head since it holds the highest vote. After A 
becomes a cluster head, B, C and D will subscribe to it and only one cluster is created. 

Observation 1:  If the network is fully connected (all sensors can communicate with 
each other), the sensor with the highest residual energy becomes the cluster head.  
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When the network is fully connected, all sensors cast the same vote of i

i

e
e∑

 on 

sensor vi. As a result, the higher residual energy a sensor has the higher vote it 
receives.  Since high energy nodes are more likely to become cluster heads, VCA can 
balance the energy distribution across a sensor network by consuming the power of 
high energy nodes first.  

Theorem 1:  Suppose N sensors are randomly dispersed and each sensor’s residual 
energy is uniformly distributed between 0 and 1J.  For a sensor vi with residual energy 
e and node degree d, the expected vote that it casts on itself is given by: 

1

0

0

( 1) ( ) sgn( )
{ ( , ) | , }

2( )( 1)!

d k dd
k

i i i i

d
e u k u

k
k

E v v v e e degree d du
u e d

−

=

⎛ ⎞
− − −⎜ ⎟

⎝ ⎠= = =
+ −

∑

∫  (3) 

Proof:  Since a sensor’s energy is independent of others’, we can use d independent 
variables X1,X2…Xd to denote the energy distribution of the d neighbors of sensor vi. 
Each Xi is a uniform variate on the interval [0,1]. The distribution for the sum of d 
uniform variates [Renyi, 70] is given by: 

1

1
...

0

1( ) ( 1) ( ) sgn( )
2( 1)!d

d k d
X X

k

d
P u u k u k

kd
−
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=
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∑ −  

According to Equation (1), the vote sensor vi casts on itself is ( , )i i
ev v v

e u
=

+
, where u 

is the sum of the energy of vi’s neighbors. Therefore the expected vote vi casts on 
itself is given by 

1 ...

0

1

0

0

{ ( , ) | , } ( )

( 1) ( ) sgn( )

2( )( 1)!

n

d

i i i i X X

d k dd
k
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d
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−

=
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+

⎛ ⎞
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∑

∫
∫
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▋ 
 

According to rule R1, the sum of the vote vi casts on itself and its neighbors is 1. 
By Theorem 1, the expected vote sensor vi casts on all its neighbors is 

1

0

0

( 1) ( ) sgn( )
1

2( )( 1)!

d k dd
k

d
e u k u

k
du

u e d

−

=

⎛ ⎞
− − −⎜ ⎟

⎝ ⎠−
+ −

∑

∫
k

. Because each sensor is randomly 

dispersed over the field and has the same energy distribution, the expected vote each 
of vi’s neighbors receives from vi should be equal.  

Corollary 1:  If all sensors are randomly dispersed with their residual energy 
uniformly distributed between 0 and 1J, the expected vote that a sensor vi with 
residual energy e and node degree d casts to one of its neighbors vj is: 
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Suppose all sensors are randomly dispersed over an S=[0, L]2 (L>>R) square area. 
Then, for a given sensor, the probability that another sensor lies within its clusters 
radius is 2 2( /R Lπ . Thus we have: 
 
Corollary 2: If N sensors are randomly dispersed over a [0, L]2 (L>>R) square area 
and their residual energy is uniformly distributed between 0 and 1J, the expected vote 
that a sensor vi with residual energy e gives to itself is:  

1
2 2

1
2 2
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Theorem 1 and Corollaries 1 and 2 provide useful theoretical analysis for future 

research. Also, they are helpful for vote calculation when part of the network 
information is unavailable. For example, if a sensor missed the opportunity to listen to 
its neighbors’ energy information before the voting phase, it can use Theorem 1 and 
Corollary 1 to approximate the vote it should cast on itself and its neighbors. 

4.2 Load Balancing 

To balance the workload among cluster heads, we implemented two different 
strategies when a sensor is within the communication range of multiple cluster heads. 
The first strategy is for a node to join the cluster head with the minimum node degree. 
This strategy tries to balance the size of each cluster. However, a high-energy cluster 
head may have few neighbors subscribing to it while a low-energy head may have lots 
of sensors subscribing to it. Therefore, this strategy may not be fair for all the cluster 
heads. 

Note that the energy consumption rate of a cluster head depends on the number of 
neighbors that subscribe to it. To balance the energy distribution, more sensors should 
subscribe to a high-energy cluster head.  We define a fitness function to represent 
such properties of a cluster head. The fitness of a sensor vi is defined as:  

( ) i
i

i

efitness v
degree

=       (4) 

If the residual energy is the same, cluster heads with many neighbors have a smaller 
fitness than those with few neighbors. Our second load balancing strategy is to choose 
the cluster head with the highest fitness value within a sensor’s communication range. 
This strategy balances the energy consumption among cluster heads.  

According to Equation (4), sensors tend to subscribe to low-degree cluster heads. 
On the other hand, high-degree nodes are more likely to become cluster heads since 
more sensors vote for them. These two arguments do not conflict with each other 
because cluster head subscription is determined after cluster heads are elected. After 
electing high-degree nodes as cluster heads, sensors tend to subscribe to the cluster 
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head that has the lowest degree in its vicinity. Choosing high-degree nodes as cluster 
heads can reduce the number of clusters in the network while subscribing to low-
degree cluster heads can balance the energy distribution over different clusters.  

4.3 VCA: Voting-based Clustering Algorithm 

To calculate the vote of each neighbor, a sensor needs to know the residual energy of 
all its neighbors. We assume that sensor energy changes slowly over time. Since 
sensors are quasi-stationary, they need to send heartbeat messages regularly to update 
all their neighbors. Residual energy information can be attached to these heartbeat 
messages to reduce communication overhead.  

We assume that all sensors are synchronized. After receiving a residual energy 
message, a sensor needs to update its vote to all neighbors. Only one message is 
needed to broadcast votes to all neighbors. Note that a small residual energy change 
of a neighbor does not change the votes significantly. A sensor does not need to re-
broadcast its vote if the difference between its new vote and previous vote is within a 
certain threshold. In our experiment, we set this threshold to 5%. The vote 
information can also be attached to the heartbeat message to lower the communication 
cost. In Figure 3, t1, t2, t3 are the timeout periods for a sensor to enter the next stage of 
clustering. We set them to 200 milliseconds in our experiment.  

Figure 3 shows the procedure of our VCA algorithm. A sensor is called covered if 
there is one cluster head within its communication range. Similarly, a sensor is called 
uncovered if there is no cluster head within its neighborhood. During the initial stage, 
each sensor broadcasts the total vote it has received from its neighbors. Note that we 
use fitness as the load balancing strategy in Figure 3. To use the node degree for load 
balancing, lines 24-25 should be changed accordingly to find the cluster head with the 
minimum node degree.  

The clustering stage is composed of a series of iterations. In each iteration, if a 
sensor finds that its vote is the highest among all uncovered neighbors, it elects itself 
as a cluster head. Fitness, node degree and identifier are used to break ties if there are 
any. The remaining sensors in that cluster head’s neighborhood withdraw themselves 
from the election and will never become a cluster head in the following iterations. 
This guarantees that no two cluster heads are adjacent to each other.  

Observation 2:  No two cluster heads are within each other’s range after VCA 
completes.  

When a sensor becomes a cluster head, it sends out a CH (cluster head) 
advertisement to all its neighbors. The remaining sensors wait for t2 seconds to check 
whether there are any cluster heads within their range. If a sensor finds that it was 
covered by a cluster head, it withdraws from the election by broadcasting a 
WITHDRAW message. Sensors withdraw from the election may still listen to CH 
advertisements to find out other cluster heads in their vicinity. All sensors will wait 
for t3 seconds to collect these WITHDRAW messages. After each iteration, uncovered 
sensors may form a similar topology as shown in Figure 2. To isolate them from those 
that have already been covered, an uncovered sensor re-calculates its total vote by 
ignoring the votes from its neighbors that have sent the WITHDRAW messages. If 
there is any change in its total vote, it needs to re-broadcast the new total vote. 
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Sensors that are still uncovered collect these vote update messages and use the new 
vote in competing with each other.  
 
Procedure Init  
begin 
1. Snbr ← {v| v is within my communication range} 
2. SCH  ← φ , SWD  ← φ, Suncovered←Snbr,  ∑

∈
←

nbrj Sv
j nodeIDvvecurrentvot ),(

3. broadcast currentvote and fitness to Snbr  
end  
 
procedure VCA  
begin 
1. while (cluster_head=φ ) do 
2. if (SCH =φ ) then  
3.  ∑

∈
←

eredunj Sv
j nodeIDvvnewvote

cov

),(

4. if newvote≠currentvote then 
5.  currentvote=newvote 
6.      broadcast vote_update(nodeID, newvote) 
7. end if  
8.   collect v_updates from neighbors in t1 sec  
9.    if currentvote = max{vote(v) | v∈ Suncovered} and I win tie-breaks then  
10.  CH(nodeID) ← true, Cluster_head←nodeID 
11.  send a CH advertisement and return 
12. end if 
13. end if 
14.   collect incoming CH advertisements in t2 sec 
15.  SCH ← SCH ∪{v| CH overheard from v}  
16.  if SCH ≠ φ  then 
17.  broadcast a WITHDRAW packet  
18. end if 
19.  collect incoming WITHDRAW in t3 sec 
20.  SWD ←SWD ∪{v | WITHDRAW heard from v}, Suncovered←{v | v∈Snbr and v∉SCH  

and v∉SWD} 
21. if  then φ≠CHS
22.  head ← highest_fitness(SCH);  
23.  if  fitness(head) ≥ max{ fitness(u) | u∈Suncovered} then 
24. cluster_head ← head, join_cluster(cluster_head); return; 
25. end if 
26. end if 
27. end while 
end 

 

Figure 3. Pseudo-code of VCA. 
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As indicated in the pseudo-code, a sensor finishes its clustering process in either of 
the following two states: 

1. It becomes a cluster head. 
2. It is covered by a cluster head and all neighbors that have higher fitness or 

smaller node degree (depending on load balancing strategy) than that cluster 
head withdraw from the election. 

Situation 2 implies that a sensor always joins the cluster head that has the highest 
fitness (or minimum node degree, depending on the load balancing strategy in Section 
4.2) within its communication range.  Combined with our discussion in Section 4.1, 
VCA can integrate load balancing, energy and topology information together by using 
simple voting mechanisms. 

A special case occurs when sensors are aligned into a chain. As shown in Figure 4, 
sensors v1, v2, ... , vn form a chain with increasing node identifiers. Suppose they all 
have the same amount of residual energy. Consequently, v3 ... vn-2 all receive a total 
vote of 1.0 and they have the same fitness values and node degree. To break the tie in 
their total vote, each of them needs to wait until a neighbor that has a smaller 
identifier or higher vote becomes a cluster head. Because v2 and vn-1 receive a total 
vote of 1.17, they are elected as cluster heads in the first iteration. After v2 and vn-1 
become cluster heads, v1, v3, vn-2 and vn withdraw themselves from the voting process. 
In the next iteration, v4 updates its vote by ignoring the vote from v3.   As a result, 
node v5 elects itself as a cluster head because it has a higher vote than v4 and its node 
identifier is smaller than that of v6. The above process continues and the resulting 
cluster heads are v2, v5, v8…vn-1. A total of n/3 iterations are needed to cluster all 
sensors. It can be easily shown that our algorithm can generate the minimum number 
of clusters in this case. 

…… 
v1 v2 v3 vn-1 vn

 

Figure 4. Clustering sensors that are aligned into a chain 

 
Theorem 2: Assume sensors are dispersed in an area S=[0, L]2, the time complexity 

of VCA is }),(min{ 2

2

R
LNO .  

Proof  In each iteration, at least one sensor finds that its total vote is the largest 
among all uncovered sensors. So at most N iterations are needed before all sensors 
decide their roles. According to Observation 2, no two cluster heads are within each 
other’s range. So the maximum number of cluster heads in the network is bounded by 

 and the time complexity of VCA is bounded by .▋ 2 2( / )O L R 2 2(min{ , / })O N L R

Theorem 3:  The message complexity of VCA is . )(NO
Proof  Each sensor sends out one message during the initialization stage and when it 
becomes/joins a cluster head. During the clustering procedure, the only situation in 
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which a sensor needs to broadcast a message is when its total vote changes. This 
happens when some of its neighbors become covered in the previous iteration. In 
Figure 5, for example, sensor C becomes a cluster head and sensor A is still not 
covered by any cluster head. If sensor B is within the communication range of C, 
sensor A needs to re-calculate its vote by ignoring the vote from B.  

Since sensor A is not covered by C, we have 2R>d(A,C)>R. Thus when a sensor 
re-broadcast its vote, there must be a cluster head within the shaded region in Figure 
5. According to Observation 2, no two cluster heads are within each other’s range. 
Thus the number of cluster heads within the shaded area in Figure 5 cannot exceed a 
fixed upper bound C.  Thus the number of messages each sensor send is O(1) and 
O(N) is the total message complexity. ▋ 

 
 

A 

B

C 

R

2R

 

Figure 5. Non-neighboring cluster heads around a sensor. 

After forming the clusters, cluster heads can communicate with each other to form 
multi-hop clusters.  Accoding to [Younis, 04], as long as the inter-cluster transmission 
range Rt for cluster heads satisfies cRt 26≥ , where  for some a>0, any 
two cluster heads in neighboring areas can communicate with each other.  Details of 
how to derive a and c can be found in [Younis, 04]. 

LaLNc ln22 =

Theorem 4:  VCA can form multi-hop clusters if the proper inter-cluster transmission 
range is set. We omit the proof since it was given in [Younis, 04]. 

5 Analytical Performance Evaluation 

To evaluate the performance of VCA, we compared it with HEED and a generic 
weight-based clustering algorithm (GCA). Unlike VCA, HEED and GCA rely on 
local properties in clustering sensors. GCA functions similarly to VCA except for the 
voting stage. It associates each sensor with some weight. In each iteration, if a sensor 
finds that its weight is higher than those of its uncovered neighbors, it elects itself as a 
cluster head. Because sensors are location unaware, we use residual energy as weight 
in GCA. For HEED, Cprob and pmin are initialized to 0.05 and 0.0005 respectively and 
the node degree is chosen as the cost. A sensor joins the cluster head with the 
minimum node degree if there are multiple heads around it.  
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           (c) average clusterhead degree          (b) ratio of average clusterhead  degree  

    of VCA     of HEED and GCA to that of VCA 

Figure 6. Comparison of number of clusters and clusterhead degree as a function of 
the radius. 

We conducted a total of 500 independent experiments. For each experiment, 1000 
sensors were randomly dispersed into an area of 2000×2000m2. Each sensor was 
given a random energy between 0 and 1J. Because changing all nodes’ 
communication range has a similar effect as changing the node density, our 
experiments shows the results with different communication range settings for all the 
sensors.  Similar results can be obtained by changing the number of nodes in the 
network. 

Figures 6(a, b) show the average number of clusters generated by VCA compared 
to those generated by HEED and GCA. Both HEED and GCA generate more clusters 
than our voting-based clustering algorithm. When the communication range is small, 
a large number of clusters is required to cover all the sensors. Most of the cluster 
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heads have few neighbors around it, as shown in Figure 6(c). When the 
communication range increases, the number of clusters required to cover all sensors 
drops and the average node degree of cluster heads increases. 

 According to our discussion in Section 4.1, nodes with more neighbors tend to 
receive a higher vote. Therefore, it is very likely that cluster heads have higher degree 
in VCA. Because high-degree nodes play an important role in connecting all sensors, 
selecting them as cluster heads can boost the effect of data fusion in saving energy. In 
Figures 6(c, d), the average degree of cluster heads is higher in VCA than those in the 
other two clustering algorithms. As a result, VCA can reduce the number of clusters. 
As shown in Figures 6(a, b), HEED generates 20-25% more clusters than VCA. This 
may cause extra energy consumption since each cluster head needs to communicate 
with the remote sink. 

25 100 175 250 325 400

2.0

2.5

3.0

3.5

4.0

4.5

N
um

be
r o

f i
te

ra
tio

ns

Communication range (m)

 VCA
 GCA

 

Figure 7. Average number of iterations performed. 

Figure 7 shows the average number of iterations needed for the clustering 
procedure. HEED uses a fixed number of iterations depending on the initial 
probability that a sensor becomes a cluster head. Therefore, we only compare VCA 
with GCA since they work similarly. In VCA, sensors that are not covered after each 
iteration need to recalculate their vote. This may cause minor oscillations of choosing 
which node is a cluster head, especially when the network is denser. Since increasing 
the communication range has a similar effect as making the network denser, as shown 
in Figure 7, the difference of the number of iterations between VCA and GCA 
increases as the communication range increases. However, both algorithms need 2 to 
5 iterations to finish, which is very efficient. 

Figure 8(a) shows the average residual energy of cluster heads. Cluster heads 
consume more energy than other sensors and therefore they should have higher 
residual energy. GCA has the highest average residual energy for cluster heads. Since 
we use residual energy as weight in GCA, cluster heads are always chosen from 
sensors with high residual energy. VCA can achieve comparable average head energy 
to GCA. This is due to the fact that nodes with higher residual energy are more likely 
to get higher votes. For HEED, sensors with low residual energy can still become 
cluster heads with some probability. As a result, HEED has the lowest average 
residual energy of cluster heads among all three clustering algorithms. 
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  (a)Average cluster head residual energy       (b) Average number of cluster heads                         
                                                                        neighboring to a node(including itself) 
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            (c) Percentage of sensors in                  (d) Standard deviation of number 
                    single-node clusters                                   of nodes per cluster                                       

Figure 8. Average cluster properties. 

For each node, we compared the average number of cluster heads neighboring to 
it in Figure 8(b). If there is more than one cluster head around a sensor, the sensor 
may need to negotiate with all of them to avoid transmission interference. Therefore, 
it may cause extra energy consumption for that sensor. Because VCA can reduce the 
number of cluster heads in the network, most nodes are covered by only one cluster 
head.  On the other hand, HEED tends to disperse cluster heads randomly. As a result, 
it is possible that a node is covered by more than one cluster head. 

Figure 8(c) shows the percentage of sensors in single-node clusters. Single-node 
clusters are not a desirable feature in sensor networks. For VCA, we tried two load 
balancing strategies as mentioned in Section 4.2. When using the maximum fitness for 
load balancing, the percentage of sensors in single-node clusters is higher than when 
using the minimum node degree. This is due to the fact that using fitness does not try 
to balance the size of the clusters. Instead, it tries to balance the energy distribution in 
a sensor network. As shown in Figure 8(c), when using the minimum node degree for 
load balancing, VCA has the lowest single-node percentage among all 3 algorithms. 
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Figure 8(d) shows the standard deviation of the number of nodes per cluster. 
Similarly to the single-node situation, VCA-min degree results in a smaller standard 
deviation than VCA-fitness since it tries to balance the size of clusters. For HEED, 
each sensor has some probability of becoming a cluster head, and the cluster heads are 
distributed randomly over the network. This makes HEED achieve a respectable 
balance of cluster sizes. Because GCA has no balance control over the cluster size, it 
has the highest standard deviation among all three algorithms. 
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            (c) Average cluster fitness                  (d) Standard deviation of cluster fitness 

Figure 9. Average cluster fitness. 

Residual cluster head energy may not be proportional to the size of a cluster. For 
example, a high-energy cluster head may have few neighbors subscribing to it while a 
low-energy head may have lots of sensors subscribing to it. Therefore, using cluster 
size and residual energy separately cannot accurately reflect the fairness of energy 
distribution over different clusters. To solve this problem, we introduce a new metric 
called actual fitness for clusters. The actual fitness of a cluster C is defined as:  

( ) = residual energy of the cluster head of Cactualfitness C
number of nodes in C

  (5) 

Unlike the fitness of a sensor, the actual fitness of a cluster reflects the relationship 
between the cluster head energy and the cluster size, rather than the cluster head’s 
degree. Figure 9(a) shows the average cluster fitness resulting from different 
clustering algorithms. In Figure 9(a), GCA has the highest actual fitness. This is 
because in Figure 8(a), GCA has the highest average cluster head residual energy. 
However, a high actual fitness value does not mean that the energy distribution is fair. 
Figure 9(b) shows the standard deviation of actual cluster fitness. As indicated by 
Figure 9(b), there is a big difference between the actual fitness of different clusters 
generated by GCA. Therefore, energy is not fairly distributed over all clusters. HEED 
has the smallest standard deviation of cluster fitness. This is due to the fact that the 
average cluster head energy of HEED is much lower than that of VCA and GCA. 
VCA-fitness tries to increase the actual fitness of all clusters. However, since cluster 
sizes are not well balanced, the standard deviation of cluster fitness of VCA-fitness is 
slightly higher than that of VCA-min degree. 
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6 Simulation Results 

Table 2 lists all the simulation settings. Because clustering consumes energy, it should 
not be executed frequently. To reduce clustering costs, the network operation phase is 
set to 10 TDMA frames each round. We use a one-hop cluster setting in our 
simulation. Data gathered from sensors are sent to the cluster heads, which fuse data 
and send them to the sink. Because sensors are location unaware, we set their 
transmission range identical to the communication range. A cluster head is capable of 
increasing its transmission power so that it can communicate with the sink. We 
conducted 100 independent simulations and calculated the average lifetime of the 
network. Our radio model is similar to that of [Younis, 04], in which ETx= ERx =50 
nJ/bit, Eamp=100 pJ/bit/m2 (n=2) when d<d0 or 0.0013pJ/bit/m4 (n=4) when d>d0, 
where d0=75m is the threshold distance. For each simulation setting, we conducted 
100 independent simulations and calculated the average lifetime of the network. 

 
Parameter Value 
S [0, 150]2 
Sink location (75,200) 
Communication range 20 m 
Data packet 250 byte 
Clustering packet 30 byte  
WITHDRAW packet 10 byte 
Network operation phase 10 TDMA frames 
Energy for data fusion 5nJ/bit/signal 
Initial energy 2J 
Threshold distance(d0) 75m 
ETx 50nJ/bit 
Eamp 10 pJ/bit/m2 or 0.0013pJ/bit/m4 

Table 2: Simulation settings. 

To analyze the performance of VCA, we compared it with HEED and GCA. 
HEED is a state-of-the-art energy-efficient protocol for extending the network 
lifetime. Similar to VCA, HEED can generate well-distributed cluster heads and 
achieve load balancing to a certain degree. The original GCA algorithm does not 
require re-clustering after a period of time. As a result, cluster heads will quickly 
deplete their energy. To improve the performance of GCA, we let sensors re-elect 
their cluster heads as they do in HEED and VCA. Cluster heads are chosen from the 
sensors that have the maximum residual energy in its vicinity. 

Figure 10(a) shows the number of rounds until the first sensor depletes its energy. 
Because VCA generates fewer clusters, it can save a portion of the energy used to 
communicate between cluster heads and the sink. As shown in Figure 10(a), VCA-
fitness works better than VCA-min degree, especially when the network becomes 
denser. This is due to the fact that VCA-fitness tries to balance the energy over the 
network instead of the cluster size. By using VCA-min degree, a cluster head with 
low residual energy may have a large number of sensors subscribing to it. This 
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shortens the lifetime of a particular set of sensors. When the network becomes denser, 
this situation is more likely to happen. 
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            (a) when the first node dies              (b) when the last node dies 

Figure 10. Network lifetime as a function of number of nodes. 

 
As shown in Figure 10(a), VCA can generate a longer lifetime than HEED in 

most configurations. However, the lifetime of VCA-min degree is close to that of 
HEED when the number of nodes increases to 550. Additionally, GCA outperforms 
VCA when node density increases. When the network becomes denser, each sensor 
receives more vote updates and WITHDRAW messages from its neighbors during the 
clustering phase. Sending and receiving these messages consumes energy. However, 
HEED and GCA are not severely affected by network density. For HEED, only 
cluster heads broadcast messages during the clustering phase. For GCA, each node 
only needs to broadcast its weight once. As a result, VCA works most effectively 
when the network is sparse.  

Figure 10(b)  shows the number of rounds when the last sensor depletes its energy. 
VCA works much better than HEED and GCA in this case. However, unlike in Figure 
10(a), the last sensor dies much later in VCA-min degree than in VCA-fitness. 
Because VCA-fitness tries to balance the energy of all nodes, as indicated in Figure 
11, all sensors are likely to die at a similar time. On the other hand, in VCA-min 
degree, some sensors may have high residual energy and die much later than others. 
This results in a much longer time until the last sensor in the network dies. As shown 
in Figures 10(a, b), VCA can outperform HEED by 5-30% in terms of network 
lifetime. In GCA, nodes with the highest residual energy are always chosen to be 
cluster heads. Because sensors recluster themselves after each round and cluster heads 
consumes more energy, these cluster heads will soon be replaced by others. As a 
result, sensors will rorate their role as cluster heads in GCA.  As shown in Figure 11, 
sensors tend to die at a similar time. Therefore, the last node dies much earlier in 
GCA. 

When fixing the number of sensors to 500, Figure 11 shows the average number 
of sensors alive as a function of time when continuously running these clustering 
protocols. VCA works much better than HEED and GCA. Most sensors in VCA die 
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later than those in HEED in GCA. Because VCA-fitness tries to balance the energy of 
all sensors, there is not a big gap between two consecutive deaths of sensors. On the 
other hand, for VCA-min degree, 20% of the nodes die later than other nodes as 
shown in Figure 11.  
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Figure 11. Number of sensors alive when running the protocol continuously for a 

500-node network. 

Figure 12 shows the network lifetime when the network operation phase is set to 
20 TDMA frames.  Compared to the settings in Table 2, each cluster head sends more 
messages to the sink during each round. Consequently, cluster heads consume about 
twice the amount of energy in each round.  As shown in Figure 12, the network 
lifetime is almost half of that of Figure 10. Because only one clustering is performed 
during each round, the amount of energy spent on clustering is largely reduced when 
the network operation phase is prolonged.  

As shown in Figure 12, changing the network operation time yields similar curves 
as those shown in Figure 10. However, unlike in Figure 10(b), the last sensor in 
Figure 12(b) dies a little later in HEED than in VCA-fitness. When the network 
operation time increases, the energy requirement for a sensor to become a cluster head 
also rises. Sensors with low residual energy can no longer become a cluster head since 
their energy cannot last for a round. VCA-fitness tries to balance the energy of all 
sensors. As a result, when the energy requirement rises, almost all sensors cannot 
become cluster heads at the same time. However, for HEED, some high energy nodes 
may not be chosen as cluster heads during the initial rounds and can survive for a long 
period of time. As a result, the last sensor in HEED may die a little later than that in 
VCA-fitness as the network operation time increases. 
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            (a) when the first node dies              (b) when the last node dies 

Figure 12. Network lifetime when the network operation time is increased to 20 
TDMA frames 

To study the performance of VCA when nodes are mobile, we conducted a number 
of simulations with the same settings shown in Table 2. We choose the random 
waypoint mobility model[Camp, 02] to model node movement. For simplicity, we 
assume that all sensors do not move during the network operation phase. As a result, 
node movement does not interfere with the fusion and transmission of data packet in 
each round. For each node, we set its maximum speed to 3m/round. We conducted 
100 independant simulations for each node density setting and calculated the average 
network lifetime. Figure 13 shows the simulation results. 
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            (a) when the first node dies              (b) when the last node dies 

Figure 13. Network lifetime when sensors are mobile 

Compared to Figure 10, the first sensor dies much later while the last sensor dies 
much earlier when sensors become mobile. Also, energy distribution can be easily 
balanced due to node mobility. For example, a high energy sensor can move to an 
area where low energy sensors concentrate. As a result, node mobility can greatly 
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balance the energy consumption among all sensors. Since VCA can balance the 
energy distribution across a sensornet to some extent, it can benefit greatly from node 
mobility. As shown in Figure 13, VCA performs much better than HEED and GCA 
when nodes become mobile. It can out perform HEED by 8-40% in terms of the 
lifetime when the first node dies, or 2-9% in terms of the lifetime when the last node 
dies. 

7 Conclusions 

We introduced a voting-based clustering algorithm for maximizing the lifetime of 
quasi-stationary sensor networks. The algorithm is energy-efficient, location 
unaware, and fully distributed. Additionally, we introduced two load balancing 
strategies, one that balances the size of each cluster while the other balances the 
energy distribution over the network. Simulation results show that our algorithm can 
reduce the number of clusters by 5-20% and prolong the lifetime of a sensor network 
by 5-30% over HEED.    

Because of its limited functionality, a cluster head cannot have too many sensors 
subscribed to it. We plan to investigate a degree limit on cluster heads, where the 
number of sensors subscribing to a cluster head cannot exceed a certain limit. 
Additionally, our current simulation concentrates on the one-hop cluster 
performance. It will be extended to energy-efficient data dissemination in multi-hop 
clusters.  
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