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ABSTRACT
Streaming media servers and digital continuous media recorders
require the scheduling of I/O requests to disk drives in real time.
There are two accepted paradigms to achieve this: deterministic or
statistical. The deterministic approach must assume larger bounds
on such disk parameters as the seek time, the rotational latency
and the transfer rate, to guarantee the timely service of I/O re-
quests. The statistical approach generally allows higher utilization
of resources, in exchange for a residual probability of missed I/O
request deadlines. We propose a novel statistical admission con-
trol algorithm called TRAC based on a comprehensive three ran-
dom variable (3RV) model to support both reading and writing of
multiple variable bit rate media streams on current generation disk
drives. Its major distinctions from previous work include (1) a very
realistic disk model which considers multi-zoning of disks, seek
and rotational latency profiles, and unequal reading and writing
data rate limits, (2) a dynamic bandwidth sharing mechanism be-
tween reading and writing, and (3) support for random placement
of data blocks. We evaluate the TRAC algorithm through an exten-
sive numerical analysis and real device measurements. The results
show that it achieves a much more realistic resource utilization (up
to 38% higher) as compared with the best, previously proposed al-
gorithm based on a single random variable (1RV) model. Most
impressive, in all the experiments the difference between the re-
sults generated by TRAC and the actual disk device measurements
match closely.
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1. INTRODUCTION
Magnetic disk drives are increasingly being used in many dig-

ital media repositories that traditionally have been the domain of
tape storage. Streaming media servers that handle digital audio and
video content are one example, “digital hub” devices in the living
room (e.g., TiVo) are another, and finally TV studio and film pro-
duction equipment are a third. Disk drives are very cost effective
and the continued increase in storage space per unit exceeds even
Moore’s Law. There are two generally accepted paradigms to as-
sign data blocks to the magnetic disk drives that form the storage
system: in a round-robin sequence [2], or in a random manner [12].
Traditionally, the round-robin placement utilizes a cycle-based ap-
proach to scheduling of resources to guarantee the service quality,
while the random placement utilizes a deadline-driven approach.
The latter provides a number of advantages such as support for
multiple or variable delivery rates with a single storage data block
size, easy support for interactive applications, and support for data
reorganization during storage system scaling. All these features
may be supported with cycle-based scheduling, however, it results
in a complex implementation and – most importantly – many of
the disk parameters must be assumed with their worst case values.
Therefore, deterministic guarantees are obtained at the expense of
efficiency.

Deadline-driven scheduling can be configured to be both very
efficient and to incur a very low probability of disruptions. The
most important task is to limit the number of streams to achieve a
user or application defined, low probability for missed deadlines.
This task is performed by the admission control algorithm and it is
therefore crucial in the overall systems design [11, 10, 4].

In this paper we propose a novel statistical admission control
algorithm called TRAC (Three Random variable Admission Con-
trol) that models a much more comprehensive set of features of real
time storage and retrieval than previous work. Our approach targets
multi-stream architectures as opposed to personal video recorders
(PVR, e.g., TiVo or ReplayTV) which are restricted to one record-
ing and one playback stream. In such a setting disk bandwidth
resources are plentiful, especially if the video is compressed to a
few Mb/s. Therefore, admission control procedures are not usually
necessary. This situation will change in the future when a PVR unit
may manage multiple video and audio streams via FireWire, USB
and wireless connections. Our admission control procedure is de-
signed for these resource constrained and other large-scale, multi-
stream systems [21]. Specifically, our TRAC algorithm enables:

i Support for variable bit rate (VBR) streams (Fig. 1a illus-
trates the variability of a sample MPEG-2 movie).

ii Support for concurrent reading and writing of streams. The
distinguishing issue for a mixed workload is that disk drives
generally provide less write than read bandwidth (see Fig. 1b).
Therefore, the combined available bandwidth is a function of
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Fig. 1a: The consumption rate of a movie encoded with
a VBR MPEG-2 algorithm (“Saving Private Ryan”).

Fig. 1b: The read and write transfer rate profile of a
Seagate Cheetah X15 disk drive.

Figure 1: Important modeling parameters that must be considered by the admission control algorithm.

the read/write mix. We propose a dynamic bandwidth shar-
ing mechanism as part of the admission control.

iii Support for multi-zoned disks. Fig. 1b illustrates that the disk
transfer rates of current generation drives is platter location
dependent. The outermost zone provides up to 30% more
bandwidth than the innermost one.

iv Modeling of the variable seek time and variable rotational
latency that is naturally part of every data block read and
write operation.

v Support for efficient random data placement [12].

To the best of our knowledge, no prior work has investigated
such a comprehensive set of parameters. We feel that an integrated
approach is essential when building large-scale, high performance
real time storage systems and the preliminary evaluation results of
the TRAC algorithm show that an increase in throughput of up to
38% may be achieved in retrieval only experiments.

The remainder of this paper is organized as follows. In Section 2
we review some of the related work. Section 3 describes our pro-
posed TRAC algorithm and in Section 4 we present the results of
our extensive performance evaluation through numerical analysis
and real measurements. Finally, Section 5 concludes the paper and
presents some future research directions of this work.

2. RELATED WORK
A number of studies have investigated admission control tech-

niques in multimedia server designs. Fig. 2 classifies these tech-
niques into two categories: measurement-based and parameter-
based. The parameter-based approach can be further divided into
deterministic and statistical algorithms.

Admission Control

Measurement-based 
Admission Control

Deterministic
Admission Control

Parameter-based 
Admission Control

Statistical
Admission Control

Figure 2: Taxonomy of different admission control algorithms.

With measurement-based algorithms [8, 1], the utilization of crit-
ical system resources is measured continually and the results are
used in the admission control module. Measurement-based algo-
rithms can only work online and cannot be used to offline config-
ure a system or estimate its capacity. Furthermore, it is difficult to
obtain an accurate estimation of dynamically changing system re-
sources. For example, the time window during which the load is
measured influences the result. A long time window smooths out
load fluctuations but may overlap with several streams being started
and stopped, while a short measurement interval may over or un-
derestimate the current load. Deterministic admission control [13,
11, 10, 4] aims to provide guaranteed service, however it must as-
sume the worst case for some of the system parameters and hence
often under-utilizes available resources.

Statistical admission control has been studied in a number of pa-
pers [19, 3, 7, 14]. [19] exploits the variation in disk access times
to media blocks as well as the VBR client load to provide statistical
service guarantees for each client. Note that in [19], the distribution
function for disk service time is obtained through exhaustive empir-
ical measurements. [3] introduces three ways to estimate the disk
overload probability while [7] proposes a probabilistic model that
includes caching effects in the admission control. [14] introduces
a stochastic model that considers VBR streams and the variable
transfer rates of multi-zone disks.

Recently, the effects of user interaction on admission control has
been studied [9, 5]. [9] proposed an optimization for the disk and
cache utilization while reserving disk bandwidth for streams that
are evicted from cache. [5] introduced a Continuous Time Markov
Chains (CTMCs) model to predict the varying resource demands
within an interactive session and incorporated it into the admission
control algorithm.

Most of the previously proposed statistical admission control al-
gorithms have adopted a very simple disk model. Only [14] con-
siders the variable transfer rate of multi-zone disks. It differs from
our TRAC algorithm in that (1) it assumes that all zones have the
same number of tracks, (2) it did not consider the variance of the
seek time, and (3) it is based on round-robin data placement and
round-based disk scheduling. Additionally, no previous study has
considered the difference in the disk transfer rate for reading and
writing.

3. THE TRAC ALGORITHM
To address the shortcomings of the previous approaches we in-

troduce a novel statistical admission control algorithm called TRAC.



Term Definition Units Term Definition Units

Bdisk Block size on disk MB δ Partition factor, the percentage of
Tsvr Server observation time interval second disk bandwidth allocated for reading
ξ The number of disks in the system n The number of concurrent streams
h The maximum disk rotational latency ms nrs The number of retrieving streams
Tseek(i) Disk seek time for client i during Tsvr ms nws The number of recording streams�
RDr Average disk bandwidth allocated MB/s D(i) The amount of data to read or MB

for reading during a Tsvr write for client i during Tsvr�
RDw Average disk bandwidth allocated MB/s piodisk Probability of missed deadline

for writing during a Tsvr by reading or writing
RDr Average disk read bandwidth during Tsvr MB/s preq The threshold of probability of missed deadline,

(no bandwidth allocation for writing) it is the worse situation that client can endure.
RDw Average disk write bandwidth during Tsvr MB/s εW RBS Percentage of disk bandwidth reserved for writing

(no bandwidth allocation for reading) εRRBS Percentage of disk bandwidth reserved for reading
RDio Average combined disk bandwidth during a Tsvr MB/s µi Mean value of random variable D(i) MB
RDr Maximum disk read bandwidth during Tsvr MB/s σi Standard deviation of random variable D(i) MB

(no bandwidth allocation for writing) m The number of seeks during a Tsvr

RDw Maximum disk write bandwidth during Tsvr MB/s tseek(j) Seek time for disk access j, where j is an ms
(no bandwidth allocation for reading) index for each disk access during a Tsvr

RDr(j) Disk read bandwidth for disk access j MB/s µtseek
(j) Mean value of random variable tseek(j) ms

(no bandwidth allocation for writing) σtseek
(j) Standard deviation of random variable tseek(j) ms

where j is an index for each disk Sj Seek distance for disk access j during a Tsvr

access during a Tsvr Uj Rotational latency for disk access j during a Tsvr ms
rDr Current used disk read bandwidth MB/s β Relationship factor between RDr and RDw

rDw Current used disk write bandwidth MB/s tseek The average disk seek time during Tsvr ms
βk Ratio between write and µtseek

Mean value of random variable tseek ms
read bandwidth for zone k σtseek

Standard deviation of random variable tseek ms
α Mixed-load factor, the percentage a1, b1, a2, b2, r Disk seek time modeling parameters

of reading load in the system w, vi, ki Disk transfer rate modeling parameters

Table 1: List of terms used repeatedly in this study and their respective definitions.

We start by describing the algorithm in a single disk environment
and then extend it to a multi-disk environment in Section 3.3. Ta-
ble 1 lists all the parameters and their definitions used in this paper.

3.1 Three Random Variable (3RV) Model
Consider the following scenario. The system is servicing n vari-

able bit rate clients using deadline-driven scheduling and data blocks
are allocated to a disk using a random placement policy. The server
activity is observed periodically, during a time interval Tsvr. Hence,
our model is characterized by three random variables: (1) D(i) de-
notes the amount of data to be retrieved or recorded for client i dur-
ing observation window Tsvr, (2) RDr denotes the average disk
read bandwidth during Tsvr with no bandwidth allocation to writ-
ing, and (3) tseek denotes the average disk seek time during each
observation time interval Tsvr .

Let Tseek(i) denote the disk seek time for client i during Tsvr
1.

Let nrs and nws denote the number of retrieval and recording streams
served respectively, i.e., n = nrs + nws. Also,

�
RDw represents

the average disk bandwidth (in MB/s) allocated for writing dur-
ing Tsvr , while

�
RDr represents the average bandwidth for reading.

With such a mixed load of both retrieving and recording clients, the
average combined disk bandwidth RDio is constrained by RDio =�
RDr +

�
RDw . Consequently, the maximum amount of data that can

be read and written during each interval Tsvr can be expressed by
RDio×

�
Tsvr − � nrs+nws

i=1 Tseek(i) � . Furthermore, if � n
i=1 D(i)

represents the total read and write bandwidth requirement during
Tsvr from all streams n, then the probability of missed deadlines,
piodisk, can be computed by Eq. 1.

piodisk =

P

�
n�

i=1

D(i) > � RDio × � Tsvr −
n�

i=1

Tseek(i) 	
	�� (1)

Note that a missed deadline of a disk access does not necessarily
cause a hiccup for the affected stream because data buffering may

1Tseek(i) includes rotational latency as well.

hide the delay. However, we consider the worst case scenario for
our computations.

Recall that � n
i=1 Tseek(i) denotes the total seek time spent for

all n clients during Tsvr. Let tseek(j) denote the seek time for
disk access j, where j is an index for each disk access during Tsvr .
Thus, the total seek time can be computed as follows

n�
i=1

Tseek(i) =
m�

j=1

tseek(j) = m × tseek (2)

where m denotes the number of seeks and tseek is the average seek
time, both during Tsvr . Because every seek operation is followed
by a data block read or write, m can also be expressed by m =
 n

i=1 D(i)

Bdisk
, where Bdisk is the block size. With the appropriate

substitutions we arrive at our final expression for the probability
of over-committing the disk bandwidth, which may translate into
missed I/O deadlines.

piodisk = P �� n�
i=1

D(i) > �� RDio × Tsvr

1 + tseek×RDio

Bdisk ����� ≤ preq (3)

Before we can proceed to evaluate Eq. 3 we need to focus our atten-
tion on the random variable RDio because of its interesting proper-
ties.

3.1.1 Dynamic Disk Bandwidth Sharing
Fig. 1b shows the measured disk transfer rate for reading and

writing with a modern multi-zone disk drive. Let RDr denote the
maximum disk read bandwidth without any bandwidth allocation
for writing. Conversely, RDw denotes the maximum disk write
bandwidth. Let RDr denote the average disk read bandwidth dur-
ing Tsvr. Similarly, RDw denotes the average disk write band-
width. We observe that RDr is much higher than RDw and con-
clude that 1 MB/s of read bandwidth is not interchangeable with 1
MB/s of write bandwidth. Fig. 3 illustrates how the average com-
bined bandwidth RDio changes depending on the mix of read ver-
sus write allocation. For our further discussion we introduce a par-



tition factor δ that defines the percentage of the disk bandwidth
allocated for reading.

x= DrR x δ
y= DwR x (1 − δ)
z= DwR + (      -      )DwRDrR xδ =x+y

DioR

0 1

x

δ

y

z

DwR

DrR

DwR

DrR

DioR = DrR + DwR

= DrR
DwR=

= DioR

Write B/W Read B/W

Figure 3: Relationships between the average read bandwidth
RDr, the average write bandwidth RDw , the average combined
bandwidth RDio and the disk bandwidth partition factor δ.

We can formulate the disk bandwidth sharing problem of how
to effectively partition the disk bandwidth for reading and writing
while maximizing resource utilization. We identify the following
desirable Design Goals for the admission control algorithm:

DG1: Share the total disk bandwidth between read and write re-
quests.

DG2: Dynamically allocate the available disk bandwidth to read or
write requests on demand.

DG3: Support multiple bandwidth sharing policies (see definitions
below).

WRBS
(Write-Reservation-based
    Bandwidth Sharing)

RRBS
(Read-Reservation-based
    Bandwidth Sharing)

NRBS
(Non-Reservation-based
   Bandwidth Sharing)

RBS
(Reservation-based 
 Bandwidth Sharing)

BS
(Bandwidth Sharing)

Figure 4: Taxonomy of different bandwidth sharing policies.

We introduce three bandwidth sharing policies, illustrated in Fig. 4,
with the following properties:

DEFINITION 3.1.: The Non-Reservation-based Bandwidth Shar-
ing (NRBS) policy is defined as: disk reading and writing requests
are served with no preference, i.e., no bandwidth reservation for
either reading or writing exists.

DEFINITION 3.2.: The Reservation-based Bandwidth Sharing
(RBS) policy is defined as: a fraction of the disk bandwidth is
reserved for disk reading or writing. When disk bandwidth is re-
served for writing, it is termed Write-Reservation-based Bandwidth
Sharing policy (WRBS). When disk bandwidth is reserved for read-
ing, it is termed Read-Reservation-based Bandwidth Sharing policy
(RRBS).

Fig. 3 illustrates all the possible configurations to partition the
disk bandwidth: as δ moves from 0 to 1, more bandwidth is allo-
cated for reading and RDio varies from RDw to RDr. Thus, RDio

can be expressed as:

RDio = δRDr + (1 − δ)RDw (4)

As suggested in Fig. 1b, RDr and RDw are two random vari-
ables. We model the relationship between the average read and

the average write bandwidth with the parameter β = RDw

RDr
, which

can be obtained experimentally from disk profiling (see Section 4).
For multi-zone disks, the ratio between write and read bandwidth
will differ from zone to zone. Let βk denote the ratio between
write and read bandwidth for zone k. For example, for a Sea-
gate Cheetah X15 disk, β0 = 0.668, β1 = 0.679, and β2 =
0.673 (see Table 2). For this disk model, βk varies about 13%
(βk ∈ [0.668, 0.757]) across all zones. We can prove that β ∈
[βkmin

, βkmax ] = [0.668, 0.757] (see [20] for proof details), where
βkmin

and βkmax are the minimum and maximum values among
all βk respectively, and k ∈ [1, w] and w is the total number of
zones. It is generally true that β does not change much. Based on

the strong law of large numbers, limn→∞
RDw

RDr
=

µ
RDw

µ
RDr

To simplify our model, we use the limit value as β in our further
calculations (see Section 3.2.1). Therefore, Eq. 4 can be rewritten
as:

RDio = δRDr + (1 − δ)βRDr (5)

To satisfy DG1 and DG2, the partition factor δ must be dynam-
ically adjusted according to the system conditions, i.e., the ratio
between the read and write load. This behavior is modeled by the
mixed-load factor α

α =
rDr

rDr + rDw

β

(6)

where rDr and rDw denote the current disk read and write band-
width, respectively. For example, with α = 1 only reading clients
exist in the system. On the other hand, α = 0 implies only record-
ing clients are in the system. Next, we must compute δ under disk
read load rDr and write load rDw using different bandwidth shar-
ing policies, assuming that rDr + rDw > 0. We conjecture the
following theorem.

THEOREM 3.3.: To satisfy the design goals DG1, DG2, and
DG3, δ = α = rDr

rDr+
rDw

β

.

We have omitted the proof here; for details see [20].
Different bandwidth sharing policies might be adopted for dif-

ferent applications. We first focus on NRBS to simplify the discus-
sion. Based on Theorem 3.3 and Eq. 5, the disk bandwidth with a
mixed-load factor α can be expressed as

RDio = αRDr + (1 − α)βRDr (7)

This equation considers two extreme cases as well: (1) when there
is only read load, i.e., α = 1, RDio = RDr, and (2) when there
is only write load, i.e., α = 0, RDio = βRDr = RDw . Based on
Eq. 7, Eq. 3 can be further generalized to

piodisk

= P

� � n
i=1 D(i) > � (αRDr+(1−α)βRDr)×Tsvr

1+
tseek×(αRDr+(1−α)βRDr )

Bdisk

	 �
≤ preq

(8)

where α can be approximated with Eq. 9, in which µi denotes the
mean value of random variable D(i).

α ≈
� nrs

i=1 µi� nrs

i=1 µi +

 nws

i=1
µi

β

(9)

3.1.2 Probability Evaluation
We now have all the tools necessary to evaluate the probability

of a possible disk bandwidth overcommitment. Let X , Y and Z

denote � n
i=1 D(i), tseek and RDr , respectively. The probability



piodisk in Eq. 8 can then be evaluated as follows

piodisk = P [(X, Y, Z) ∈ <]

=

�����
<

fXY Z(x, y, z)dxdydz
(10)

where

< = � (X, Y, Z) | X > � (αZ + (1 − α)βZ) × Tsvr

1 + Y ×(αZ+(1−α)βZ)
Bdisk

	��
(11)

and fXY Z(x, y, z) is the joint probability density function (pdf) of
X ,Y ,Z. Fig. 5 shows the integration region < of Eq. 11 with
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Figure 5: Example integration region < for Tsvr = 1 second,
Bdisk = 1 MB, α = 0.5, and β = 0.8.

Tsvr = 1 second, Bdisk = 1 MB, α = 0.5, and β = 0.8. Note
that this figure only shows a small portion of the 3D space, where
0 < X < 80 MB/s, 0 < Y < 14 ms and 0 < Z < 70 MB/s,
which covers the operation parameters for most modern disk drives.
Since the three random variables � n

i=1 D(i), tseek and RDr are
independent, we obtain

fXY Z(x, y, z) = fX(x)fY (y)fZ(z) (12)

where fX (x),fY (y) and fZ(z) are the pdf of X ,Y and Z, respec-
tively. Next, we will present an overview of how to derive fX(x),
fY (y), and fZ(z), and then continue with the actual admission
control procedure.

3.1.3 Determination of fX(x): pdf of � n
i=1 D(i)

Recall that D(i) denotes the amount of data that client i reads
or writes during Tsvr. Since D(i) is only dependent on the stream
bandwidth characteristics of each client, D(1) · · ·D(n) are inde-
pendent random variables. According to the central limit theo-
rem, � n

i=1 D(i) approaches a normal distribution [15] with mean� n
i=1 µi and variance � n

i=1 σ2
i , where µi and σ2

i denote the mean
value and variance of D(i), respectively2. Therefore, we obtain the
pdf of � n

i=1 D(i) as:

fX(x) =
1�

2π � n
i=1 σ2

i

e
−

[x− � n
i=1 µi]

2

2× � n
i=1

σ2
i (13)

2It is relatively easy to obtain µi and σ2
i for a stream that is already

stored on the server. For a new stream to be recorded–especially
a live event–we have to rely on estimates. However, since such
live streams usually use encoders or compressors at the source, it
is often possible to obtain good estimates for µi and σ2

i from the
configuration parameters of the corresponding encoder and com-
pressor.

3.1.4 Determination of fY (y): pdf of tseek

From Eq. 2 we obtained tseek =

 m

j=1 tseek(j)

m
, which sug-

gests that tseek is dependent on m random variables tseek(j), with
j ∈ [1, m]. Due to the random data placement, these m random
variables are independently and identically distributed with mean
value µtseek

(j) and variance σ2
tseek

(j). Assuming m > 30, by the
central limit theorem tseek also has a normal distribution with mean

µtseek
(j) and variance

σ2
tseek

(j)

m
. Recall that m =


 n
i=1 D(i)

Bdisk
,

since � n
i=1 D(i) has a normal distribution and Bdisk is a constant;

furthermore m is normally distributed with mean

 n

i=1 µi

Bdisk
and vari-

ance

 n

i=1 σ2
i

B2
disk

. To simplify the model, we approximate m with its

mean value in later derivations. Thus, we obtain the pdf of tseek

as:

fY (y) ≈
1�

2πσ2
tseek

(j)
e
−
� n

i=1 µi
2Bdisk � y−µtseek

(j)

σtseek
(j) 	 2 (14)

3.1.4.1 Determination of µtseek
(j) and σtseek

(j).
Let Uj denote the rotational latency for disk access j and let Sj

denote the percentage value (between 0 and 100) of the total disk
storage capacity. We consider the rotational latency part of the seek
time tseek(j). We express the relationship among tseek(j), Sj and
Uj through disk profiling and modeling [17] as

tseek(j) = � a1 + b1

�
Sj + Uj if 0 ≤ Sj ≤ r

a2 + b2Sj + Uj if r < Sj ≤ 100
(15)

where a1, b1, a2, b2 and r are the disk seek modeling parame-
ters. Because of the random data placement, both Sj and Uj fol-
low uniform distributions with pdfs fSj (s) = 1

100
(s ∈ [0, 100])

and fUj (u) = 1
h

(u ∈ [0, h]), where h denotes the maximum rota-
tional latency. Then, we can derive the pdf of tseek(j) and compute
µtseek

(j) and σtseek
(j) (extensive details are contained in [20]).

Figure 6(a) shows the seek time profile of a Seagate Cheetah X15
disk, which has the following parameters: a1 = 1, b1 = 0.6, a2 =
2.1, b2 = 0.05, r = 5, and h = 4 ms. Fig. 6(b) shows a good
match of the derived pdf of tseek(j) with the empirically measured
relative frequency histogram. Using the pdf of tseek(j), we obtain
µtseek

(j) = 6.62 ms, σtseek
(j) = 1.85 ms.

3.1.5 Determination of fZ(z): pdf of RDr

Let RDr(j) denote the disk read bandwidth for disk access j
during Tsvr. Then, the average read bandwidth RDr can be com-

puted as RDr =

 m

j=1 RDr(j)

m
, where these m random variables

RDr(j) are independently and identically distributed with mean
value µRDr (j) and variance σ2

RDr
(j). Following similar reason-

ing as in Section 3.1.4, RDr also approaches a normal distribution
with pdf

fZ(z) ≈
1�

2πσ2
RDr

(j)
e
−
� n

i=1 µi
2Bdisk � z−µRDr

(j)

σRDr
(j) 	 2 (16)

Next, we will describe how to obtain µRDr (j) and σRDr (j).

3.1.5.1 Determination of µRDr (j) and σRDr (j).
Most magnetic disk drives feature variable transfer rates due to

a technique called zone-bit recording (ZBR), which increases the
amount of data being stored on a track as a function of its distance
from the disk spindle. We model the variable zone transfer rates
with RDr(j). Let L denote the starting location of each disk access
during Tsvr. L can be quantified using the percentage value of the



0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25 30

R
es

po
ns

e 
T

im
e 

(u
s)

Disk Capacity (GB)

Seek Time

avg

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12

R
el

at
iv

e 
F

re
qu

en
cy

 (
fo

r 
20

00
0 

ra
nd

om
 a

cc
es

s)

Disk seek time (ms)

Theoretical Computation
Empirical measurement

Fig. 6a: Seek time profile Fig. 6b: Probability density function
(Note: rotational latency is not included) ftseek(j)(t) of tseek(j)

Figure 6: Determination of µtseek
(j) and σtseek

(j) for a Seagate Cheetah X15 disk drive.

total disk capacity, i.e., L ∈ [0, 100]. From the disk transfer rate
profile (see Fig. 1b), the relationship between RDr(j) and L is
modeled as

RDr(j) = ���
��

v1 if 0 ≤ L ≤ k1 (L ∈ Zone 1 )
...

...
vw if kw−1 < L ≤ kw (L ∈ Zone w )

(17)

where w is the number of zones, and vi and ki model the multi-
zone characteristics, where i ∈ [1, w], v1 > · · · > vw , 0 <

k1 < · · · < kw = 100, and [0, k1], [k1, k2], · · · , [ki−1, ki], · · · ,
[kw−1, kw] represent zones 1, 2, · · · , i, · · · , w, respectively. These
w, vi and ki are termed disk transfer rate modeling parameters.
Because of the random data placement, L is uniformly distributed
with pdf fL(l) = 1

100
(l ∈ [0, 100]). Consequently, with the intro-

duction of Dirac delta functions [18] we can derive the pdf fRDr (r)
(see [20] for details) as shown in Eq. 18.

fRDr (r) = � w
i=1

ki−ki−1

100
δ(r − vi) (18)

Using the pdf of RDr(j), we can obtain µRDr (j) and σRDr (j).
For example, for a Seagate Cheetah X15 disk, µRDr (j) = 52.26
MB/s and σRDr (j) = 5.33 MB/s. The final step is to apply
µRDr (j) and σRDr (j) to Eq. 16 resulting in the pdf for RDr.

We have now obtained all the necessary components to evaluate
piodisk, the probability of cover-committing the disk bandwidth.

3.2 Admission Control Procedure with TRAC
After having presented the models to calculate the probability for

missed deadlines, we will now outline how to incorporate them into
a complete admission control procedure. The different bandwidth
sharing policies will all be supported.

3.2.1 Admission Control with the NRBS Policy
Fig. 7 shows the admission control procedure as a flow chart.

It can be divided into two components: the disk modeling mod-
ule (steps 1 through 7) and the admission decision module (steps
8 through 15). The disk modeling component provides the param-
eters that describe the disk characteristics. It needs to be evalu-
ated only when new disks are introduced into the system. Steps 1
and 2 model the maximum rotational latency h and the disk seek
profile parameters a1, b1, a2, b2, r necessary for Eq. 15 [17]. With
the model of Section 3.1.4.1 we obtain µtseek

(j) and σtseek
(j)

in step 3. Step 4 determines the optimal disk block size Bdisk.
At step 5, the disk transfer rate is profiled and the results produce
the RDr modeling parameters w, v1, . . . , vw and k1, . . . , kw (see

Eq. 17). The mean and variance of RDr(j) is computed as de-
scribed in Section 3.1.5.1 (step 6). Next, we obtain the fractional

Zone Size Read Transfer Write Transfer βk
a Start End

# (MB) Rate (MB/s) Rate (MB/s) (MB) (MB)

0 12,000 57.5 38.4 0.668 0 12,288
1 3,500 55.4 37.6 0.679 12,289 15,872
2 3,000 54.7 36.8 0.673 15,873 18,944
3 4,000 52.7 36.2 0.687 18,945 23,040
4 3,000 50.6 35.3 0.698 23,041 26,112
5 2,500 48.1 34.5 0.717 26,113 28,672
6 3,000 45.6 33.1 0.726 28,673 31,744
7 2,500 43.6 32.2 0.739 31,745 34,304
8 2,500 41.9 31.7 0.757 34,305 36,864

aRatio between write and read data transfer rate of a zone.

Table 2: Zoning information of a Seagate Cheetah X15 (model
ST336752LC) disk.

factor β between RDw and RDr in step 7. To illustrate, assume the
disk transfer rate profile of a Seagate Cheetah X15 disk as shown
in Fig. 1b. Table 2 lists the βk value for each of the disk’s zones.
For the Cheetah X15 disk drive βk varies slightly between 0.668
and 0.757 (see Table 2). Recall that β is also bounded by the same
range as βk . Follow a similar derivation in section 3.1.5, we can
obtain µRDw

with µRDw
= µRDw (j), where µRDw (j) is the disk

write bandwidth for disk access j during Tsvr with no bandwidth
allocation for reading. To simplify the model, we approximate β

by its limit
µ

RDw

µ
RDr

. For example, the value for the Cheetah X15 is

µβ = 0.690337. Note that these disk modeling procedures only
need to be evaluated once for each disk drive. This could either be
done offline (before the system is started) or online (when a new
disk is introduced into a streaming server while it is running).

The admission decision module, on the other hand, is evaluated
for every new stream request. It comprises of steps 8 through 15
shown in Fig. 7. At step 8, a new client request is received. If the
request is for recording a stream, then estimates of the mean µi and
variance σ2

i of the new VBR stream need to be provided. These val-
ues will be stored in a repository if the stream is admitted. Hence,
for a retrieval stream request, µi and σ2

i are simply retrieved from
the internal database. Step 9 implements the different bandwidth
sharing policies. It is a pass-through in case of NRBS. At step 10,
mix-load factor α is updated according to Eq. 9. Next, the pdfs of
tseek , � n

i=1 D(i) and RDr are computed at steps 11, 12 and 13,
respectively, as outlined in Sections 3.1.4, 3.1.3 and 3.1.5. Note
that steps 10, 11, 12 and 13 make use of the current session status
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Figure 7: The admission control procedure with the three random variable model. It supports three different bandwidth sharing
policies (step 9).

information. Finally, the disk overload probability piodisk is com-
puted via Eq. 10 (see Section 3.1). The admission decision is made
in step 14 by comparing the probability piodisk with the user pro-
vided threshold preq . If piodisk > preq , then the stream request is
rejected. Otherwise, the client request is admitted and its informa-
tion is added to the internal database.

3.2.2 Admission Control with Preferred Reading or
Writing: RBS Policy

Step 9 in Fig. 7 can be used to give preferential treatment to
either retrieval or recording requests. We term these Reservation
Based Sharing (RBS) policies (see Definition 3.2 for details). With
Write-RBS (WRBS), εWRBS denotes the fraction of a disk’s R/W
capacity that must be reserved for writing. In other words, the max-
imum read load should not exceed 1 − εWRBS . Hence, at step 9
the current system read load plus the new stream are compared with
this limit. The evaluation can be approximated by read load

total read capacity ≈
 nrs
i=1 µi

µRDr

where µRDr is the mean value of the random variable

RDr(j) (see Section 3.1.5.1) and µi (i ∈ [1, nrs]) denote the mean
value for each VBR retrieval stream. If the threshold is not ex-
ceeded then the stream is further evaluated equivalently to the non-
reservation NRBS policy. Otherwise, the request is rejected.

Analogous, with Read-RBS (RRBS), εRRBS denotes the por-
tion of a disk’s R/W capacity reserved for reading, which means
the maximum writing load should not exceed the upper bound 1 −
εRRBS . Therefore, the fraction of the write load is evaluated and
compared with this limit. Like in the WRBS, the evaluation can be

approximated by writing load/β

total reading capacity ≈

 nws

i=1 µi/β

µRDr

where µRDr

is the mean value of the random variable RDr(j) and µi (i ∈
[1, nws]) denote the mean value for each VBR recording stream.

3.3 Disk Load Modeling for Multiple Homo-
geneous Disks

In the previous sections we assumed that only one disk existed
in the system. However, the extension of our model for multi-
ple disks is straightforward. If we denote the number of disks in
the system with ξ then the R/W resource requirement to support
n streams is scaled by a factor of 1

ξ
on average for each individ-

ual disk. As stated previously, � n
i=1 D(i) denotes the total R/W

resource requirements during Tsvr . Thus, the average amount of
data to be stored to or retrieved from each disk during Tsvr can be
computed as λavg =


 n
i=1 D(i)

ξ
. Assuming a random data place-

ment across the ξ disks, the R/W resource requirement λi for disk

i during Tsvr can be approximated with λi ≈ λavg =

 n

j=1 D(j)

ξ
,

where i ∈ [1, ξ]. Recall that � n
i=1 D(i) follows a normal distribu-

tion (see Section 3.1.3) and since ξ is constant, λi also approaches
a normal distribution with mean value µλi

=

 n

i=1 µi

ξ
and variance

σ2
λi

=

 n

i=1 σ2
i

ξ2 . Consequently, following analogous reasoning as
in the single disk case, the admission control criteria is modified to:

piodisk =

P

� 
 n
i=1 D(i)

ξ
> � (αRDr+(1−α)βRDr)×Tsvr

1+
tseek×(αRDr+(1−α)βRDr)

Bdisk

	 �
≤ preq

(19)

Note that the probability density functions need to be updated
to reflect the decreased mean and variance values for the load on
each disk. Furthermore, the number of seek operations will also
be approximately evenly distributed across all disks. The detailed
analysis is contained in [20].

4. PERFORMANCE EVALUATION
To evaluate the effectiveness of our TRAC algorithm we per-

formed extensive comparisons between our analytical models and
an actual system implementation. Additionally, we compared a
previously proposed, single random variable admission control al-
gorithm [3, 19] with our results. We termed this baseline algorithm
1RV-AC since it only considers the disk workload variability. There
exists an approach that considers both the variability of the disk
service time and the workload [19]. However, since the distribution
function for the service time is obtained through exhaustive empiri-
cal measurements (and therefore difficult to reproduce), we felt that
this method does not lend itself to a good analytical comparison.
We expect that its performance would fall somewhere in between
the 1RV-AC and TRAC algorithms. The performance measure used
was the probability for missed deadlines piodisk. This probability
directly translates into how many streams can be supported with a
given miss-threshold.
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Figure 8: Experimental system setup.

The hardware platform used for our experiments was a Dell Pow-
erEdge 1650 server with a Pentium III 1 GHz CPU, 256 MB of
main memory and running RedHat Linux 7.0. This configuration
can at the present time be considered midrange. We wanted to en-
sure that our measured results would be representative of a reason-
able hardware configuration. Fig. 8 illustrates the structure of our
experimental setup. Its five components are: a WorkLoad Genera-
tor, a Movie Trace Library, a Disk Access Scheduler, a Measure &
Report module and a Disk. Note that we did not run a full fledged
streaming server on our test system to reduce the number of param-
eters that would influence the results. As such, the results represent
the best case scenario and other system bottlenecks – if present –
might reduce the performance. The WorkLoad Generator produces
stream requests based on a Poisson process with mean inter-arrival
time of λ = 5 seconds. Each admitted stream produces data block
requests with associated read/write deadlines according to movie
bandwidth traces from the Movie Trace Library. The movie blocks
are randomly placed onto disks and block requests are scheduled
based on the deadline assigned to each block. Hence, the block
with the earliest deadline is accessed first. The block requests are
forward to the Disk by the Disk Access Scheduler at the set times.
The Measure & Report module monitors the disk system perfor-
mance and generates the result output. In this report, both the num-
ber of missed deadline requests and the total number of disk block
requests are collected. Furthermore, the ratio between these two
numbers, which represents the fraction of the missed deadline re-
quests, is interpreted as the probability of missed deadlines piodisk.

The WorkLoad Generator has several configurable parameters:
the mean inter-arrival time λ, the number of retrieval streams nrs

and the number of recording streams nws . We start with single
media type experiments. Hence, the relationship between nrs, nws

and the mixed-load factor α can be expressed as α = nrs

nrs+ nws
β

.

Table 3 summarizes the parameters used in the experiments and
analysis and also lists the three movie traces: the DVD movie
“Twister”, the DVD movie “Saving Private Ryan” and the VCD
movie “Charlie’s Angels.” The rate profile of “Saving Private Ryan”
is shown in Fig. 1a as an example. The disk is a Seagate Cheetah
X15 (Model ST336752LC). Fig. 6a shows the measured seek pro-
file for the X15, while Fig. 1b illustrates the data transfer rate pro-
file for both reading and writing, with reading being significantly
faster than writing. Recall that βk denotes the ratio between the
writing and reading rate for zone k and Table 2 shows that this ra-
tio is not constant, but varies between 0.668 and 0.757. We selected

Parameters Configurations

Test movie “Twister” MPEG-2 video, AC-3 audio
Average bandwidth 698594 Bytes/sec
Length 50 minutes
Throughput std. dev. 140456.8

Test movie “Saving Private Ryan” MPEG-2 video, AC-3 audio
Average bandwidth 757258 Bytes/sec
Length 50 minutes
Throughput std. dev. 169743.6

Test movie “Charlie’s Angels” MPEG-1 video, Stereo audio
Average bandwidth 189129 Bytes/sec
Length 70 minutes
Throughput std. dev. 56044.1

Disk Model Seagate Cheetah X15
(Model ST336752LC)

Mixed-load factor α 1.0 (retrieval only experiments)
0.0 (recording only experiments)
0.4094 (retrieval and recording
mixed experiments)

Relationship factor β 0.6934
(between RDr and RDw)
Mean inter-arrival time λ 5 seconds
of streaming request
Server observation window Tsvr 1 second
Disk block size Bdisk 1.0 MB
Number of disks (ξ) 1, 2, 4, 8, 16, . . . , 1024

Table 3: Parameters used in the experiments and analysis.

a preq = 1% threshold for missed deadlines and the resulting max-
imum number of streams supported with different configurations is
summarized in Table 4. Note that in all the experiments the disk
read and write cache are turned on and hence their effects are in-
cluded in the results.

4.1.2 Retrieval Only Experiments
To enable only retrieval streams in the system we set nws = 0

and the mixed-load factor α = 1. Fig. 9(a) shows the measure-
ment and theoretical results for the DVD movie “Twister.” The
y-axis shows the probability for missed deadlines of all block re-
quests. When the number of streams n ≤ 55, then the probability is
very small (< 1%). Above this threshold, the probability increases
sharply and reaches 1 for n = 62. The analytical results based
on our 3RV model follow the measurements very closely, except
that the 1% transition is one stream higher at 55. The miss prob-
ability of the 1RV model is also shown and its transition point is
39. Consequently, not only does our 3RV model result in a 38%
improvement over the simpler model (for preq = 1%), but it also
tracks the physical disk performance much more accurately.

The results for the VCD movie “Charlie’s Angels” are shown
in Fig. 9(c). Because of the lower bandwidth requirement of this
video, a much higher number of streams (150 resp. 200) can be
supported. The improvement of 3RV over 1RV is similar to the
“Twister” case and we have omitted the graphs for “Saving Private
Ryan” because the results were comparable.

4.1.3 Recording Only Experiments
Next we performed recording only experiments with nrs = 0

and the mixed-load factor α = 0. Note that there is no comparison
with any other technique, because to the best of our knowledge no
prior work exists that investigated these issues.

Figs. 9(b) and (d) show the miss probabilities for our recording
experiments. Analogous to the retrieval case, the 3RV curve very
closely matches the measured values. Since the disk write band-
width is significantly lower than the read band width (see Fig. 1(b)),
the transition point for, say “Twister,” is n = 40 instead of n = 55
in the stream retrieval experiment.



Parameters Analysis Measurements
Mixed-load Factor Movie Name nmax3rv

a nmaxtrue
b Errorc

α 3RV Model Measurements
1.0 “Twister” 54 55 1.82%

(Retrieving Only) “Saving Private Ryan” 49 51 3.92%
“Charlie’s Angels” 202 225 10.22%

0.0 “Twister” 40 40 0%
(Recording Only) “Saving Private Ryan” 36 38 5.26%

“Charlie’s Angels” 150 171 12.28%
0.4094 “Twister” 46 46 0%

(Mix of Retrieving & “Saving Private Ryan” 42 44 4.55%
Recording) “Charlie’s Angels” 172 194 11.34%

“Charlie’s Angels” and “Saving Private Ryan” 66 70 5.71%

anmax3rv is the maximum number of supportable streams computed by the 3RV Model.
bnmaxtrue is the maximum number of supportable streams obtained via measurements.
cThe error is computed as

nmaxtrue −nmax3rv

nmaxtrue
× 100%.

Table 4: Experimental results for different mixed-load factors α and different movie types, assuming preq = 1%.

4.1.4 Mix of Retrieval and Recording
A realistic workload for a large scale streaming media system is

a mix of retrieval and recording load. As an example, we chose
an equal number of retrieval and recording streams for our exper-
iments (any other combination is also possible), i.e., nrs = nws

and thus the mixed-load factor α = 0.4094 = nrs

nrs+ nws
β

.

Fig. 11(a) shows an example graph for the movie “Twister” (the
other media types produced analogous results). As expected, the
1% transition point at 46 streams lies between the pure retrieval
(54) and recording (40) values. (See also Table 4 for summary
information.)

As a final verification of the 3RV model, we performed an ad-
ditional mixed workload experiment. However, we not only mixed
retrieval and recording streams (α = 0.4094), but also two differ-
ent media types (the DVD movie “Saving Private Ryan” and the
VCD movie “Charlie’s Angels”). Fig. 11(b) shows the experimen-
tal results and once again, the miss probability computed by 3RV
model closely matches the measured results.

4.2 Missed Deadline Probability Analysis for
Multi-Disk System

We evaluated the TRAC algorithm through numerical analysis
for a multi-disk storage systems, with the number of disks ξ rang-
ing from 2 to 1024. We set α equal to 1.0 and chose the movie
“Twister” as the candidate media type. The maximum number of
supported streams for both the TRAC and 1RV-AC algorithms were
computed for a user acceptable missed deadline probability preq of
0.01. Table 5 summarizes the results. As expected, the benefits
of the TRAC algorithm increase linearly with the number of disks.
We have not included measurement results from disk arrays for the
following reason. With only a few disks, the number of streams ad-
mitted is expected to scale linearly. However, with current genera-
tion, high-performance disks other parameters start to influence the
results of disk arrays very quickly. For example, the Cheetah X15
disk used in our experiments has a read transfer rate in excess of 55
MB/s. Hence, the device interconnect starts to become a bottleneck
(e.g, SCSI buses top out at 320 MB/s, but more importantly a reg-
ular PCI bus can only sustain 133 MB/s). Consequently, to obtain
accurate results one needs to either test the disk array using ma-
chines that have faster, but less common I/O interfaces (e.g., PCI-X
or PCI-Express [16]), or incorporate a complete system model into
the admission control procedure. We are working on the latter ap-
proach as part of our future research.

Parameters The number of supportable streams
number of disks TRAC algorithm 1RV-AC algorithm Improvement

1 54 39 38.46%
2 110 81 35.8%
4 222 165 34.55%
8 445 324 37.35%
16 893 660 35.3%
32 1789 1337 33.81%
64 3582 2694 32.96%

128 7167 5460 31.26%
256 14334 10940 31.02%
512 28674 21905 30.9%
1024 57367 43858 30.8%

Table 5: The total number of supportable streams with a miss
probability threshold of preq = 0.01 for both the TRAC and
the 1RV-AC algorithms (Cheetah X15 disk).

4.3 Computational Complexity Analysis

4.3.1 Theoretical Analysis
The admission control algorithm must be executed for each new

stream arrival. Therefore, for practical purposes its computational
complexity should be low. The key component that dominates the
complexity is the calculation of piodisk, because it involves the
multi-dimensional integration of a continuous function. Our goal
is to find the minimum computational complexity of an approxima-
tion attaining a given level of error ε, denoted as ε-approximation.
We assume that the approximation of the evaluation is based on
an average case, and hence the expected error is at most ε and
the computational complexity is the minimum expected cost. It
has been shown that quasi-Monte Carlo algorithms are optimal for
such averages [6]. Let compavg−det−unit(ε) denote the minimum
cost to compute the integration with the domain of a d-dimensional

unit cube, then compavg−det−unit(ε) = Θ(ε−1[logε−1]
d−1
2 ) [6].

Consequently, let compavg−det(ε) denote the minimum cost to
compute the integration with domain < as defined in Eq. 11 (and
illustrated in Fig. 5). Let D, T and R denote the range of the
random variables � n

i=1 D(i), tseek and RDr respectively. Then
compavg−det(ε) can be derived as follows:

comp
avg−det(ε) =

�
Θ(DTRε−1[logε−1]

3
2 ) 3RV model

Θ(Dε−1) 1RV model
(20)

Eq. 20 shows that the computational complexity depends on the in-
tegration region and the level of error ε. Consequently, the TRAC
algorithm has a higher computational complexity than the conven-
tional 1RV-AC algorithm, based on a single random variable.
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Figure 9: Retrieval or recording only experimental results.

4.3.2 Empirical Measurement
To verify the feasibility of integrating either the TRAC and 1RV-

AC into a real system where the admission control procedure must
be executed in real time, we implemented both models using the
Plain Monte-Carlo integration method provided by GNU Scientific
Library (GSL 1.3). Experiments were performed on a machine with
an Intel P4 Xeon 2.0 GHz processor and 512 MB of memory.

The plain Monte-Carlo method samples points randomly from
the integration region to estimate the integral and its error3. The ac-
curacy of Monte-Carlo method depends upon the number of sam-
ples that are taken (i.e., number of library calls made). A higher
number of calls results in more accuracy, but more time is spent for
processing.
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Figure 10: Comparison of the execution times for the TRAC
and 1RV-AC algorithms.

3The error estimate should be taken as a guide rather than a strict
error bound as it might be underestimated.

Fig. 10 compares the execution times of the TRAC and 1RV-AC
algorithms. In both cases, the execution time increases linearly as a
function of the number of samples. For the 1RV-AC algorithm, the
execution time varies from less than 1 ms with 500 samples to 40
ms with 50,000 samples. For TRAC, the execution time is approxi-
mately 2.5 times higher than for 1RV-AC with the same number of
samples. Fig. 12 shows the estimated integration error for the 3RV
and 1RV model, respectively. For the same number of samples, the
1RV model usually generates a more accurate results than the 3RV
model, which is intuitively clear, because more samples are needed
to generate the same level of accuracy for higher dimensional in-
tegration. Fortunately, with 10,000 samples, we can obtain the re-
sults in 20 ms with approximately 5% error for the 3RV model.
Hence, the TRAC algorithm is well suited for execution in a real
time streaming media server.

5. CONCLUSIONS
We have presented a novel admission control algorithm called

TRAC that considers a more realistic disk model and a dynamic
disk bandwidth sharing scheme for both the retrieval and recording
of streams. Our extensive measurement and analysis shows that the
proposed algorithm can greatly increase the number of supportable
streams at the minor expense of higher computational complex-
ity. Hence, the disk bandwidth resources are used much more effi-
ciently. We plan to implement the TRAC algorithm in our current
project that aims to build a prototype Gigabit stream recorder [21].
We will evaluate its performance in conjunction with other compo-
nents of the system, such as the buffer management, in a multi-node
multi-disk environment.
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Fig. 11(a): “Twister” (retrieval and recording).
Fig. 11(b): A mix of “Saving Private Ryan” and “Char-
lie’s Angels” (retrieval and recording).

Figure 11: Mixed workload recording and retrieval experiments.
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Figure 12: Estimated integration error for multidimensional Monte Carlo integration.
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