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ABSTRACT

Increasingly geographic properties are being associated with
videos, especially those captured from mobile cameras. The
meta data from camera-attached sensors can be used to
model the coverage area of the scene as a spatial object
such that videos can be organized, indexed and searched
based on their field of views (FOV). The most accurate
representation of an FOV is through the geometric shape
of a circular sector. However, spatial search and indexing
methods are traditionally optimized for rectilinear shapes
because of their simplicity. Established methods often use
an approximation shape, such as a minimum bounding rect-
angle (MBR), to efficiently filter a large archive for possi-
bly matching candidates. A second, refinement step is then
applied to perform the time-consuming, precise matching
function. MBR estimation has been successful for general
spatial overlap queries, however it provides limited flexibil-
ity for georeferenced video search. In this study we propose
a novel vector-based model for FOV estimation which pro-
vides a more versatile basis for georeferenced video search
while providing competitive performance for the filter step.
We demonstrate how the vector model can provide a unified
method to perform traditional overlap queries while also en-
abling searches that, for example, concentrate on the vicinity
of the camera’s position or harness its view direction. To the
best of our knowledge no comparable technique exists today.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Query process-
ing ; H.2.4 [Database Management]: Systems—Multime-
dia databases; C.4 [Performance of Systems]: Modeling
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General Terms

Algorithms, Measurement, Performance

Keywords

Video search, georeferencing, meta-data, GPS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM MMsys’10, February 22–23, 2010, Phoenix, Arizona, USA.
Copyright 2010 ACM 978-1-60558-914-5/10/02 ...$10.00.

1. INTRODUCTION
Advances in sensor technologies allow video clips to be

tagged with geographic properties, such as camera locations
from GPS and camera directions from digital compasses,
while being collected. Importantly, such meta-data can be
attached to the video streams automatically, hence allowing
for the consistent annotation of large amounts of collected
video contents and thus enabling various criteria for versa-
tile video search. The captured geographic meta-data have
a significant potential to aid in the indexing and searching
of georeferenced video data at the high semantic level pre-
ferred by humans. However, there has been little research
on utilizing such meta-data for the systematic indexing and
searching of video data.

Some video data are naturally tied to geographic loca-
tions. For example, video streams from traffic monitoring
may not have much meaning without their associated lo-
cation information. Thus, associated applications typically
let a user specify location information to retrieve the traffic
video related to a point or region. In anticipation of fu-
ture applications, more and more still images are automat-
ically tagged with geographic data as high-end devices are
equipped with various sensors. Example cameras include
the Sony GPS-CS1, the Nikon D90 with GPS; the Ricoh
SE-3 and the Solmeta DP with GPS plus compass. Many
smartphones are now equipped with a camera, GPS and ac-
celerometer. Recent camcorders with a built-in GPS receiver
(e.g., Sony HDR-XR520V) allow automatic geo-tagging for
both still images and videos. The resulting fused video plus
sensor data streams can provide an effective means to index
and search videos, especially for large archives that handle
an extensive amount of video data.

One class of video search techniques has naturally focused
on identifying objects within the captured content through
sophisticated extraction methods at the signal level or min-
ing associated textual meta-data description. Even now, the
geo-tagging data are mostly used for organizing or group-
ing images based on location information in a simple and
straightforward way. Furthermore, most videos captured
are not panoramic and as a result the viewing direction
becomes very important for human perception, and conse-
quently for video searching. GPS data only identifies object
locations and therefore it is imperative to investigate the
natural concepts of a human viewing direction and a view
point. For example, we may be interested in videos that
show a building only from a specific angle. The question
arises whether a video database search can accommodate
such human friendly concepts, i.e., whether it is possible



to index the video data based on the human viewable space
and therefore to enable the retrieval of more meaningful and
recognizable scene results for user queries.

The collection and fusion of multiple sensor streams such
as the camera location, the field-of-view (FOV), the direc-
tion, etc., can provide a comprehensive model of the view-
able scene. For example, one may model the viewable scene
area (i.e., FOV) of video segments or frames using a pie-
shaped geometric contour, i.e., a pure spatial object, thus
transforming the video search problem into a spatial data
selection problem. The objective then is to index the spatial
objects and to search videos based on the geographic prop-
erties of videos. Beyond the importance of the geographic
information where a video is taken, there are other obvi-
ous advantages in exploiting the spatial properties of video
because the operation of a camera is fundamentally related
to geometry. When a user wants to find images of an ob-
ject captured from a certain viewpoint and from a certain
distance, these semantics can be interpreted as geometric
relations between the camera and the object such as the
Euclidean distance between them and the directional vector
from the camera to the object. Thus, more meaningful and
recognizable results may be achieved by using spatial queries
on georeferenced videos.

In this study we propose a new vector-based approxima-
tion model for efficient indexing and searching of georef-
erenced video based on an FOV model. The FOV model
represents a viewable scene of images as a circular sector
using the tagged camera location, the direction, the angle,
and the maximum viewable distance as illustrated in Fig-
ure 2. As we will show, this model provides a more versatile
basis for georeferenced video search while providing compet-
itive performance. We demonstrate how the vector model
can provide a unified method to perform traditional overlap
queries while also enabling searches that, for example, con-
centrate on the vicinity of the camera’s position or take into
account its view direction. To the best of our knowledge no
comparable technique exists today.

2. RELATEDWORK
Associating GPS coordinates with digital media (images

and videos) has become an active area of research [15]. There
has been significant research on organizing and browsing
personal photos according to location and time. Toyama et
al. [18] introduced a meta-data powered image search and
built a database, also known as World Wide Media eXchange
(WWMX), which indexes photographs using location coor-
dinates (latitude/longitude) and time. A number of addi-
tional techniques in this direction have been proposed [12,
14]. There are also several commercial web sites [1, 2] that
allow the upload and navigation of georeferenced photos. All
these techniques use only the camera geo-coordinates as the
reference location in describing images. We instead rely on
the field-of-view of the camera to describe the scene. More
related to our work, Ephstein et al. [6] proposed to relate
images with their view frustum (viewable scene) and used
a scene-centric ranking to generate a hierarchical organiza-
tion of images. Several additional methods are proposed for
organizing [16, 9] and browsing [7, 17] images based on cam-
era location, direction and additional meta-data. Although
these research work are similar to ours in using the cam-
era field-of-view to describe the viewable scene, their main
contribution is on image browsing and grouping of similar
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Figure 1: Illustration of filter-refinement steps.

images together. Some approaches [17, 10] use location and
other meta-data, as well as tags associated with images, and
the images’ visual features to generate representative candi-
dates within image clusters. Geo-location is often used as
a filtering step. Some techniques [6, 16] solely use camera
location and orientation in retrieving the “typical views” of
important objects. However then the emphasis is on the
segmentation of image scenes and organizing photos based
on image scene similarity. Our work describes a more broad
scenario that considers mobile cameras capturing geo-tagged
videos and the associated view frustum, which is dynami-
cally changing over time.

There exist only a few systems that associate videos with
their corresponding geo-location. Liu et al. [11] presented
a sensor enhanced video annotation system (referred to as
SEVA) which enables searching videos for the appearance of
particular objects. SEVA serves as a good example to show
how a sensor rich, controlled environment can support inter-
esting applications. However it does not propose a broadly
applicable approach to geo-spatially annotate videos for ef-
fective video search. Our prior work [3] investigated these
issues and proposed a viewable scene model to describe the
video content but did not address the search issues.

3. MODELING FOV USING VECTOR

3.1 Motivation
When a large collection of videos is stored in a database,

the cost of processing spatial queries may be significant be-
cause of the computational complexity of the operations in-
volved. Therefore, such queries are typically executed in
two steps: a filter step followed by a refinement step [13, 5]
(Figure 1). The idea behind the filter step is to approximate
the large number of complex spatial shapes (n1 objects in
Figure 1) with simpler outlines (e.g., a minimum bounding
rectangle, MBR [4]) so that a large number of unrelated
objects can be dismissed very quickly based on their simpli-
fied shapes. The resulting candidate set (n2 objects) is then
further processed during the refinement step to determine
the exact results (n3 objects) based on the exact geometric
shapes. The rationale of the two step process is that the fil-
ter step is computationally far cheaper than the refinement
step due to the simple approximations. Overall, the cost of
spatial queries is determined by the efficiency of the filter
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Figure 2: FOV representation in different spaces.

step (many objects, but simple shapes) and the complexity
of the refinement step (few objects with complex shapes).

Additionally, in video search applications, the refinement
step can be very expensive due to the nature of the pro-
cessing. Depending on the application, various computer
vision and content-based extraction techniques may be ap-
plied before presenting the search results. For example,
some occlusions may need to be detected based on local ge-
ographic information such as the location and size of build-
ings. Some specific shapes or colors of objects might be
analyzed for more accurate results, or the quality of images
such as brightness and focus may be considered in determin-
ing the relevance ranking of results. Such extra processing is
in general performed during refinement on a per frame ba-
sis, therefore significantly increases the time and execution
cost of the refinement step. It is thus critical to minimize
the amount of refinement processing for large scale video
searches. This, in turn, motivates the use of effective and
efficient filtering algorithms which minimize the number of
frames that need to be considered in the refinement step.

In traditional spatial data processing, MBR approxima-
tions are very effective for the filter step. However, with a
bounding rectangle some key properties that are useful in
video search applications may be lost. For example, MBRs
retain no notion of directionality. This study advocates a
new vector approximation that provides similar efficiency
and low processing cost as MBR-based methods, but ad-
ditionally provides better support for the type of searches
that a video database may encounter. Thus, the main fo-
cus of the paper is to provide a novel filter step called the
vector model as a more efficient and effective filter step for
the large scale georeferenced video search applications and
to provide its comparison to a conventional filter step using
MBRs. An identical refinement step will be assumed for a
fair comparison between the vector and MBR model.

In the following sections we will introduce our vector model
and illustrate that it is both competitive with MBR-based
methods where applicable, but also extends to cases that
MBRs cannot handle.

3.2 Vector Model
A camera positioned at a given point p in geo-space cap-

tures a scene whose covered area is referred to as camera
field-of-view (FOV, also called a viewable scene). The meta-
data related to the geographic properties of a camera and
its captured scenes are as follows: 1) the camera position
p consists of the latitude, longitude coordinates read from
a positioning device (e.g., GPS), 2) the camera direction α
is obtained based on the orientation angle (0◦ ≤ α < 360◦)
provided by a digital compass, 3) the maximum visible dis-

tance from p is R at which objects in the image can be
recognized by observers [3] – since no camera can capture
meaningful images at an indefinite distance, R is bounded by
M which is the maximum distance set by an application –,
and 4) the camera view angle θ describes the angular extent
of the scene imaged by the camera. The angle θ is calcu-
lated based on the camera and lens properties for the current
zoom level [8]. The above geo-properties are captured from
a sensor-equipped camera while video is recorded.

Based on the availability of the sensor input data, the
FOV of a video frame forms an area of circular sector shape
(or pie-slice shape) in 2D geo-space as shown in Figure 2.
Then, an FOV can be represented as a tuple <T, p, θ,V>,
with T as the real time when the frame was captured, a
position p, an angle θ, and a center vector V. The magnitude
of V is the viewable distance from p, i.e., R and the direction
of V is α.

For indexing purposes, we propose a vector estimation
model that represents an FOV using only the camera posi-
tion p and the center vector V. When we project the FOV
onto the x and y axis, a point p is divided into px and py,
and V is divided into VX and VY along the x and y axis,
respectively. Then, an FOV denoted by a point and vector
can be represented by a quadruple <px, py, VX , VY >; this
can be interpreted as a point in four dimensional space.

In mathematics, space transformation is an approach to
simplify the study of multidimensional problems by reducing
them to lower dimensions or by converting them into some
other multidimensional space. Using a space transformation,
an FOV <px, py, VX , VY > can be divided and represented
in two 2D subspaces, i.e., px − VX and py − VY . Then, an
FOV can be represented as two points, each in its own 2D
space. For example, Figure 2 shows the mapping between an
FOV represented by p1 and V1 in geo-space and two points
in two transformed spaces without loss of information. To
define the vector direction, let any vector heading towards
the right (East in the northern hemisphere) on the x axis
have a positive VX value, and a negative VX value for the
other direction (West). Similarly, any vector heading up
(North) on the y axis has a positive VY value, and a negative
VY value for the other direction (South). Using the proposed
model, any single FOV can be represented as a point in a
p − V space. As a result, the problem of searching for FOV
areas in the original space can be converted to the problem
of finding FOV points in the transformed subspace.

Note that the actual FOV is an area represented by a
circular sector, so representing an area using a single vector
is incomplete. More precisely, the FOV can be considered
as a collection of vectors starting from p to all the points on
the arc. To simplify the discussion for now we use only one
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Figure 3: Illustration of filter step in point query processing.
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Figure 4: Example of filtering in point query.

center vector to represent an area as described above. We
will relax this simplifying assumption in Section 5.

4. QUERY PROCESSING
When we represent video content as a series of FOVs

which have a specific shape, FOVs can be considered as spa-
tial objects. The problem of video search is then transformed
into finding spatial objects in a database. This section de-
scribes how the filter step can be performed by using the
proposed vector model for some typical spatial query types.

4.1 Point Query
The assumed query is, “For a given query point q < x, y >

in 2D geo-space, find all video frames that overlap with q.”
The filter step can be performed in p−V space by identifying
all possible points of FOVs that have a potential to overlap
with the query point.

Recall that the maximum magnitude of any vector is lim-
ited to M , and hence any vector outside of a circle centered
at the query point q with a radius M cannot reach q in geo-
space; see Figure 3 for an illustration. Only vectors starting
inside the circle (including the circumference of the circle)
have the possibility to cross or meet q. Because a query
point is not a vector, it is mapped only to the p axis. First,
let us consider only the x components of all vectors. In
px −VX space, the possible vectors that can cross (or touch)
qx should be in the range [qx − M, qx + M ]. That is, any
vector at px is first filtered out if |px − qx| > M . Next,
even though a vector is within the circle, it cannot reach
qx if its magnitude is too small. Thus, |px − qx| ≤ |VX |
must be satisfied for VX to reach qx. At the same time the
vector direction should be towards qx. For example, when
px > qx, any vector with a positive VX value cannot meet
qx. Hence, in p − V spaces as shown in Figure 3, all points

(i.e., all vectors) outside of the shaded isosceles right trian-
gle areas will be excluded in the filter step. For example,
vector V1 in geo-space is represented as a point v1 in p − V
space. Now consider all vectors starting from a point on the
circumference of the circle towards the center with the max-
imum magnitude M . All such vectors moving from V1 to
V4 in a clockwise direction map to the diagonal line starting
from v1 to v4 in p− V space. The same can be observed for
the y components of vectors, i.e., the same shape appears
in py − VY space. The resulting vectors from the filter step
should be included in the shaded areas of both px −VX and
py − VY space. Formally, a vector at p that satisfies the
following conditions can be selected in the filter step:

|p − q| ≤ M
px − qx ≤ −VX if px > qx

py − qy ≤ −VY if py > qy

qx − px ≤ VX if qx > px

qx − py ≤ VY if qy > py

any VX if qx = px

any VY if qy = py

(1)

Figure 4 shows five examples of FOVs and their mapping
between x − y space and p − V spaces. The starting points
of all five vectors are within the circle. However, not all of
them pass the filter step. The starting points of three vec-
tors, V1, V2, and V4, are located inside the circle but their
vector direction and/or magnitude do not meet the neces-
sary conditions so they are filtered out. For example, V1x

is heading in the opposite direction even though its magni-
tude is large enough. Thus, v1x is outside of the triangle
shape search space. Similarly, V4x is heading in the wrong
direction so v4x is outside of the search space. V5 is directly
heading towards q and both V5x and V5y have a large enough
magnitude to reach q. Thus, both v5x and v5y are inside the
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Figure 5: Illustration of the filter step in point query with bounded distance r.
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Figure 6: Illustration of filter step in directional point query with angle β.

search space, which means the vector should be included in
the filter result. V3 is considered a false positive in the filter
result because it satisfies the conditions but actually does
not cover q. It will be pruned out in the refinement step.

4.2 Point Query with Bounded Distance
Unlike with a general spatial query, video search may en-

force application specific search parameters. For example,
one might want to retrieve only frames where a certain small
object at a specific location appears within a video scene,
but with a given minimum size for better visual perception.
Usually, when the camera is close to the query object, the
object appears larger in the frame. Thus, we can devise a
search with a range restriction for the distance of the camera
locations from the query point such as “For a given query
point q < x, y > in 2D geo-space, find all video frames that
overlap with q and that were taken within the distance r
from q.” Because of the distance requirement r, the position
of the camera in an FOV cannot be located outside of the
circle centered at q with radius r, where r < M . Thus, the
search space can be reduced as shown in Figure 5.

4.3 Directional Point Query
The camera view direction can be an important factor

for the image perception by an observer. Consider the case
where a video search application would like to exploit the
collected camera directions for querying. An example search
is, “For a given query point q < x, y > in geo-space, find all
video frames taken with the camera pointing in the North-
west direction and overlapping with q.” The view direction
can be defined as a line of sight from the camera to the query
point (i.e., an object or place pictured in the frame). The
line of sight can be defined using an angle at the camera loca-
tion similar to the camera direction α. Note that the camera

orientation is always pointing to the center of an FOV scene
while the view direction can point to any locations or objects
within the scene. A digital compass mounted on a camera
will report the camera direction primarily using bearings. A
bearing is a horizontal angle measured clockwise from North
(either magnetic North or true North) to a specific direction.
When we use bearing as the view direction angle (say β), the
Northwest direction is equivalent to 315 degrees (Figure 6).
An important observation is that all FOVs that cover the
query point have their starting points along the same line
of sight in order to point towards the requested direction.
Thus, the filter step needs to narrow the search to the vec-
tors that satisfy the following conditions: 1) their starting
points are on the line of sight, 2) their vector directions are
heading towards q, and 3) their vector magnitudes are long
enough to reach q.

For a given view direction angle β, we can calculate the
maximum possible displacement of a vector starting point
from the query point. Because the largest magnitude of
any vector is M , the maximum displacement between the
query point and the starting point of any possible overlap-
ping vector is −M sinβ on the x axis and −M cos β on the
y axis (note that the sign is naturally decided by β, e.g.,
sin 315◦ = −0.71 and cos 315◦ = 0.71). In other words, as
shown in Figure 6, any vector starting at a point greater than
qx + (−M sinβ) on the x axis or less than qy + (−M cos β)
on the y axis cannot touch or cross the query point with
the given angle β. Thus, the search area for such vectors
can be reduced as illustrated in Figure 6. To meet the view
direction request (say, 315◦ line of sight), no vector with a
positive VX value can reach q. Therefore, in the filter step
the entire search space (i.e., the triangle shape) on the pos-
itive VX side is excluded in the px − VX space. Similarly,
no vector with a negative VY value can reach q, so the en-



 

 

 

 

x 

y 

q 

q� q� - M 

q� 

q�+M 

-M 

�orth 

px 

q� 

β 

q�-Msinβ 

q� 

M 

py 

q�-Msinβ 

�� 

M 

    rsinβ 

r 

q�-Mcosβ 

q�-rcosβ 

q�-rsinβ 

q�-rsinβ 

    Msinβ 

q�-M 

q�+Mcosβ 

q�+rscosβ 

    rcosβ ��     Mcosβ 

Figure 7: Illustration of filter step in directional point query with β and r.
 

 

x 

q 

x� 

x� −M 

x� 

x� +M 

x� 

x�-M 

x�+M 

M 

px 

x� 

-M 0 

y� 

y�-M 

y�+M 

+M -M 

py 

y� 

�	 �
 

y� 

y� 

y� +� 

y� −� 

Figure 8: Illustration of filter step in range query.

tire search space (the triangle shape) on the negative VY

side is excluded in the px − VY space. Next, the size of the
remaining search space is reduced because the range of pos-
sible VX and VY values is now [0, M sinβ] and [0, M cos β],
respectively.

Using only a single specific view direction value may not
be practical in video search because a slight variation in
view directions does not significantly alter the human visual
perception. Therefore, it will be more meaningful when the
query is given with a certain range of directions such as β±ǫ,
e.g, 315◦ ± 10◦. The extension can be straightforward and
it will increase the search area in the p − V space.

4.4 Directional Point Query with BoundedDis-
tance

This type of query is a hybrid of the previous types. For
a very specific search, the user might specify the query po-
sition, the view direction from the camera, and the distance
between the location of the query and the camera. An ex-
ample query is, “For a given query point q < x, y > in
geo-space, find all video frames heading in the Northwest
direction, overlapping with q and taken within the distance
r from q.” The objective of this query is to find frames in
which small objects (e.g., a 6 meter-high statue) at the query
point appear large in the viewable scenes. Another example
query is, “For a given query point q < x, y > in geo-space,
find all video frames heading in the Northwest direction that
overlap with q and that were taken farther than the distance
r from q.” Now the intention is to find frames where large
objects (e.g., a 6 story-tall building) at the query point ap-
pear prominently in the frames. For the former case, the
positions of cameras are bounded by −r sinβ from qx on the
px axis and −r cos β from qy on the py axis, respectively.
At the same time, the vector is bounded by r sinβ on the

VX axis and r cos β on the VY axis, respectively. Therefore,
the grid patterned triangle area in Figure 7 represents the
search space. For the latter case, the positions of cameras
are bounded within [−r sinβ,−M sinβ] on the px axis and
[−r cos β,−M cos β] on the py axis, respectively. Further-
more, the vector is bounded within [r sinβ,M sinβ] on the
VX axis and [r cos β, M cos β] on the VY axis, respectively.
Therefore, the shaded triangle area in Figure 7 represents
the search space.

4.5 Rectangular Range Query
The assumed query is, “For a given rectangular query

range in geo-space, find all the video frames that overlap
with this region.” Assume that the rectangular query region
q is a collection of points (the rectangular shaded area with
a grid pattern in Figure 8). When we apply the same space
transformation, all points in the query region can be repre-
sented as a line interval on the px and py axes. First, when
any vector’s starting point falls inside the query region, the
vector clearly overlaps with q so it should be included in the
result of the filter step. Next, when we assume that any
location along the perimeter of q is an independent query
point as in Section 4.1, the starting points of vectors that
can reach the query point is bounded by a circle with radius
M . Drawing circles along all the points on the perimeter
forms the shaded region in Figure 8. It follows that any
vector with its starting point outside of the shaded region
cannot reach any point in q. Only vectors starting inside
the region have a possibility to cross q.

The search area in the p − V spaces can be defined as
shown in Figure 8. Again, any vector in the resulting set
should be found in both search areas in the px − VX and
py − VY spaces. When px and py of a vector fall inside
the mid-rectangles (grid pattern), p is inside q so the vector
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Figure 10: Overestimation constant δ.

automatically overlaps with q regardless of its direction or
magnitude. However, when p is located outside of q, the
vector’s direction and magnitude should be considered to
determine the overlap.

5. IMPLEMENTATION
So far, we assumed that an FOV is represented by a single

center vector. However, in reality, an FOV is a collection
of vectors with the following properties: 1) they all start
from the same point, 2) they have the same magnitude |V|,
and 3) they have different directions to points along the arc
of a circular sector. In this paper we define an FOV using
<T, p, θ, V >, where V is the center vector of a FOV (i.e., VC

in Figure 9). VC consists of a compass bearing α as direc-
tion and the visible distance R as magnitude. When only a
single vector VC represents the entire area of an FOV, there
is a limitation in retrieving all the objects covered by the
FOV. Because VCX and VCY are used to represent the FOV
in p − V spaces as described in Section 3, this approach
underestimates the coverage of the FOV. In Figure 9, the
rectangle with the grid pattern represents the estimation of
the FOV in the filter step using VC . Only query points inside
the rectangle are selected during the filter step. The black
dots overlap with the actual FOV so they represent the true
query results. The white dots overlap with the estimation
of the FOV but they are not actually overlapping with the
FOV. The single vector model cannot exclude these points
during the filter step, thus they become false positives. The
problem is that the white rectangles are filtered out even
though they are actually inside the FOV. They are com-
pletely missed during the search.

Alternatively, one can use two vectors to represent an

FOV, the leftmost and the rightmost vector (VL and VR).
Both have the same magnitude but different directions (their
calculation from the collected data VC is straightforward).
When we use VL and VR to estimate the FOV, the estima-
tion area is extended by δx and δy along the x and y axis,
respectively (grid rectangle plus shaded areas in Figure 9).
This approach can encompass the black dots, the white dots,
and the white rectangles, which means that it is not missing
any query points within the FOV. However, the number of
false positives may also increase due to the bigger estima-
tion area. The triangular points in the figure become false
positives which are filtered out in the single vector model.
Note that the two-vector model now has an identical estima-
tion size compared with the MBR model. The more serious
problem is that the two-vector model makes the use of p−V
space as search region more complex because we cannot use
a simple point query in p−V space. This is because an FOV
is represented by a line interval bounded by the two vectors,
as seen in Figure 9. The exact boundary is related to the
camera direction α, the angle θ, and the visible distance R.

This problem can be resolved when we introduce an over-
estimation constant δ in defining the search area in p − V
space. The overestimation constant is a generalization of
errors in using a single vector model, i.e., δx and δy. As
shown in Figure 10, a single vector V1 represents an FOV,
F1. This vector covers the query point in the middle of an
FOV and so it can be searched without any problem using
the triangular shaped search space as originally described in
Section 4.1. However, the other vector V2, representing F2,
cannot be included in the search space. Because the query
point is located at the leftmost corner of F2, v2y covers qy

but v2x falls outside of the triangle. V2 is not considered as
overlapping so F2 is missed. However, if the search space is



extended by δ along the V axis (the parallelogram-shaped
shaded area), v2x becomes included in the search space and
V2 can be selected in the filter step. Note that, in Figure 10,
δ is applied in one direction because the other direction al-
ready reaches the maximal value of M . The next question
is how to define the overestimation constant δ.

The overestimation constant can be determined by the
tolerable error between the magnitude of the center vector
and the leftmost (or rightmost) vector as explained above.
Assuming a regular camera (non-panoramic), the camera
angle θ can be 180◦ in the worst case, which results in the
maximum difference M . This maximum value, i.e., δ =
M , significantly increases the search area in p − V space.
As θ becomes smaller, the extended search area decreases.
The range of the overestimation constant is 0 ≤ δ ≤ M .
However, note that normal camera lenses generally cover
between 25◦ to 60◦ and wide angle lenses cover between 60◦

to 100◦. Only ultra wide angle lenses capture up to 180◦.
An interesting observation on the overestimation constant

is that it can be an important parameter of georeferenced
video search. First, the angle θ is related to the zoom level
of the camera and the visible distance R. For a certain angle
θ, the overestimation constant is limited to M sin(θ/2) for
100% coverage. In our experiments, the widest measured
angle was 60◦ and the maximum visible distance was 259
meters. In this case the worst overestimation constant will
be 259 × sin(60/2) = 129.5 meters. Another important ob-
servation in video search is that small objects which cannot
be easily perceived by humans may be sometimes ignored
even though they actually appear in FOVs. For example,
if an object appears in the far left corner of an FOV and
occupies only a very small portion of the frame, users may
not be interested in such results. Moreover, if an object is
located very far from the camera location (i.e., near the arc
in our proposed model), it might be blocked by some nearer
objects. Different applications (or users) might require dif-
ferent levels of accuracy in search results. So the overestima-
tion constant provides a tradeoff between the performance
and the accuracy of video search. Note that a smaller overes-
timation constant finds FOVs where the query point appears
in the center part of the frames and effectively discriminates
against other frames where the query point appears towards
the far left or far right side of the frames.

6. EXPERIMENTAL EVALUATION

6.1 Data Collection and Methodology
To collect real georeferenced video data, we have con-

structed a prototype system which includes a camera, a 3D
compass and a GPS receiver. We used the JVC JY-HD10U
camera with a frame size of approximately one megapixel
(1280×720 pixels at a data rate of 30 frames per second).
It produces MPEG-2 HD video streams at a rate of slightly
more than 20 Mb/s and video output is available in real time
from the built-in FireWire (IEEE 1394) port. To obtain the
orientation of the camera, we employed the OS5000-US Solid
State Tilt Compensated 3 Axis Digital Compass, which pro-
vides precise tilt compensated headings with roll and pitch
data. To acquire the camera location, the Pharos iGPS-500
GPS receiver has been used. A program was developed to
acquire, process, and record the georeferences along with
the MPEG-2 HD video streams. The system can process
MPEG-2 video in real-time (without decoding the stream)

and each video frame is associated with its viewable scene
information. In all of our experiments, an FOV was con-
structed every second, i.e., one FOV per 30 frames of video.

We mounted the recording system setup on a vehicle and
captured video driving along streets at different speeds (max.
25 MPH). During video capture, we frequently changed the
camera view direction. The recorded videos covered a 5.5
kilometer by 4.6 kilometer region quite uniformly. However,
for a few popular locations we shot several videos, each view-
ing the same location from different directions. The total
captured data includes 134 video clips, ranging from 60 to
240 seconds in duration. Each second, an FOV was col-
lected, resulting in 10,652 FOVs in total. We generated
1,000 point queries which were randomly distributed within
the region. Figure 11.(a) shows the distribution of the cam-
era positions of 10,652 FOVs and the 1,000 query points.
For each query, we searched the georeferenced meta-data to
find the FOVs that overlap with that query.

For all experiments we constructed a local MySQL database
that stored all the FOV meta-data and their approximations
(both MBRs and vectors). We used MySQL Server 5.1 in-
stalled on a 2.33 GHz Intel Core2 Duo Windows PC. For
each query type described in Section 4 with the MBR and
the vector approximation, we created a MySQL user defined
function (UDF) to search through the FOVs in the database.
We also implemented a UDF for the refinement step which
returns the actual overlap instances between a query and an
FOV. We used the Universal Traverse Mercator coordinates
for all comparisons.

For the evaluation of the search results with different ap-
proaches, we computed the recall and precision metrics for
the filter step. The recall is defined as the number of overlap-
ping FOVs found in the filter step by an approach over the
actual number of overlapping FOVs. Note that the actual
number of overlapping FOVs is obtained after the refine-
ment step from the exact geometric calculation using the
circular sectors. The precision is defined as the number of
actually overlapping FOVs found over the total number of
FOVs returned in the filter step.

6.2 Comparison
We set the distance M to the maximum viewable distance

among all recorded R values of FOVs, so M equaled 259 me-
ters. The widest camera angle recorded was 60◦. Thus, in all
experiments we set the maximum overestimation constant to
sin 30◦ × 259, i.e., 0.5M .
Point query: After executing 1,000 random point queries
with 10,652 FOVs in the database, the number of actual
overlap instances between a query point and an FOV was
17,203. This number was obtained and verified by geometric
computation after the refinement step, i.e., it represents the
ground truth. The point query results from the MySQL im-
plementation are summarized in Table 1 and Figure 11.(b).
The MBR approach returned 30,491 potentially overlapping
FOVs in the filter step and found all 17,203 actually over-
lapping FOVs at the refinement step. The vector model was
applied with varying δ values. As expected, with the max-
imum overestimation constant δ = 0.5M the vector model
showed almost identical results to those of the MBR model
(the size of the approximation is slightly bigger than with an
MBR). However, when we decreased the value of δ, the vec-
tor model returned a smaller number of actually overlapping
FOVs as well as a smaller number of potentially overlapping
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Figure 11: Summary of experimental results.

FOVs at the filter step. This is because the vector model is
discriminating more against overlapping objects at the side
of scenes as the value of δ decreases. Figure 12 provides
an example of how different approaches perform the filter
step. The MBR for the 42nd FOV of video 61 overlapped
with 7 query points while only 6 points actually overlapped
with the FOV. The vector model found different numbers of
query points as δ varied. As shown in Figure 12.(a), query
points A, B, and G were located closer to the center vec-
tor of the FOV , so they were found in all approaches, even
when δ = 0.0M . However, D and F were very far from the
center vector so they were only found when δ became larger.
The vector model with a reduced δ found a smaller number
of FOVs. The query points closer to the sides (i.e., those
that may not be well perceived by humans) were effectively
excluded. Overall, when δ grows the recall increases and the
precision decreases.

We measured the time to execute 1,000 point queries with
MySQL using various approaches. The bottom row of Ta-

ble 1 shows the total amount of time in seconds reported by
MySQL. On average, the vector models took 14-19% more
time than the MBR model. We did not use indexes in the
search so the results reflected the computational time for
table scans. In reality, indexes such as B-trees or R-trees
are used for a more efficient spatial search for a larger set of
data and the execution time of the filter step depends on the
performance of the indexes. Note that the reported time is
for the filter step since the refinement step was implemented
as a separate program with the results from MySQL. The
focus of this study is not on the speedup of the filter step
itself but on the overall query processing, and the effective-
ness of the filter step to support versatile search using the
characteristics of video. Even though the execution time
of the vector-based filter step is a little longer than that of
the MBR-based one, the number of selected objects from the
vector model can be far smaller than that of the MBR model
as shown in Tables 1, 2 and 3, which results in a significant
speed up on the overall query processing by minimizing the



Table 1: Detailed results of point query.
MBR Vector (with different overestimation constant)

0.5M 0.4M 0.3M 0.2M 0.1M 0.0M

FOVs returned 30491 32535 28302 23843 19268 14762 10360
FOVs actually matched 17203 17197 16620 15390 13686 11488 8493

Recall 1.00 1.00 0.966 0.895 0.796 0.668 0.494
Precision 0.564 0.529 0.587 0.645 0.710 0.778 0.820

Exec. time of 1000 queries (sec) 8.5 10.5 10.5 10.0 10.0 9.7 9.7

(a) Query points on map

Label Query ID MBR Actual Vector (with different overestimation constant)
0.0M 0.1M 0.2M 0.3M 0.4M 0.5M

A 63 X X X X X X X X

B 185 X X X X X X X X

C 317 X X – – X X X X

D 394 X X – – – – – X

E 465 X – – – – – – X

F 740 X X – – – – X X

G 761 X X X X X X X X

X: found, –: not found

(b) Query point overlaps using different approaches

Figure 12: Query points overlapped with an FOV (video 61, FOV 42).

workload of time-consuming refinement step.
Point query with bounding distance r: Figure 11.(e)
shows the results of point queries with a bounding distance
r between the camera position and the query point. When
r was 50 meters the number of matching FOVs for 1,000
queries was 649. Note that 50m is approximately one fifth of
the maximum viewable distance, which means that overlap-
ping query points should be contained in 1/25 of the original
FOV size. Thus, the number of overlap instances is greatly
reduced. The MBR model returned the same 30,491 FOVs
but, for example, the vector model with δ = 0.5M returned
only 1,908 (a 94% reduction) with 1.0 recall. As δ decreased
the recall diminished as well and the precision increased.
This trend is analogous to the one observed on the results
of point queries without a bounding distance. We repeated
the same experiments while varying r from 50m to 200m.
The results all exhibited the same trend as shown in Fig-
ures 11.(c) and 11.(d).

Figure 13 illustrates the effects of the r value on the search.
When we searched for query point F (the Pizza Hut building
in the scenes) without r (i.e., r = M), both frames shown in
Figures 13.(a) and (c) were returned because they contain
the query point. However, the building appears very small
(and is difficult to be recognized by humans) in Figure 13.(c)
since it was located far from the camera. Note that the same
building is easily recognizable in (a) when the camera was
closer to the object. We can effectively exclude (c) using
an appropriate r value. Figures 13.(b) and (d) show the
alternative satellite images of (a) and (c), respectively.
Directional point query: Using the same 1,000 query
points, we searched for all FOVs that overlap with the query
points while varying the viewing direction from the camera
to the query point. We used a ±5◦ error margin with the
viewing direction in all experiments. Table 2 shows the re-
sults of point queries with a 45◦ viewing direction. The MBR
approach has no information about the direction in its es-
timation so it resulted in the same number of 30,491 FOVs
which must be processed in the refinement step. When the
overestimation constant is not too small (δ ≥ 0.3M), the

vector model resulted in an approximately 90% reduction
in the number of selected FOVs in the filter step compared
to the MBR method, while providing a recall value of over
0.9. Significantly – as shown in Figure 12 – the missing
FOVs mostly contained query points at the far sides of the
viewable scene area. For different viewing directions, similar
results were observed.

Table 2: Results of directional point query with 45◦±
5◦. The actual number of matched FOVs were 402.

MBR Vector
0.5M 0.3M 0.1M

FOVs returned 30491 3858 2972 720
FOVs actually matched 402 389 381 134

Recall 1.000 0.968 0.948 0.333
Precision 0.013 0.101 0.128 0.186

Directional point query with bounding distance r:
Table 3 shows the results of a very specific point query
case, i.e., one that considers both the viewing direction and
bounding distance. The vector model effectively excludes
non-overlapping FOVs in the filter step. For example, with
a 45◦ viewing direction and r = 50m there were only 13
overlapping instances, which is a very small number with
respect to the 1,000 queries and 10,652 FOVs. The vector
model returned 374 FOVs, including the matched 13. Note
that the MBR model returned 30,491 FOVs. We repeated
the same experiments while varying δ and observed that the
vector model provided the best balance between recall and
precision with a value of δ = 0.3M .

Table 3: Results of directional point query with r.
45◦ ± 5◦ viewing direction and δ = 0.3M .

Vector
r=50 r=100 r=150 r=200

FOVs returned 374 1006 2124 2972
FOVs actually matched 13 93 151 264

Recall 1.000 1.000 1.000 1.000
Precision 0.035 0.092 0.071 0.089
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Figure 13: Impacts of bounding distance in video search.

Range query: We generated 1,000 random queries with
an identical query region size of 100m by 100m, but differ-
ent locations. For each range query, we checked the overlap
between the query area and the FOVs. Figure 11.(f) sum-
marizes the results, which show a similar trend as observed
with point queries. The vector model with δ = 0.5M pro-
vided almost perfect recall, namely 0.998, with a slightly
higher number of FOVs returned in the filter step. As δ
diminishes the recall decreases and the precision increases.
The chances for overlap between a given query range and
any FOV increases as the size of the query range becomes
larger. When we increased the query size to 300m by 300m,
the recall of all approaches (even with δ = 0.0M) became
1.0. At the same time, as the size of an approximation be-
comes larger, the number of false positives rises. When the
size of the query range becomes smaller, the results approach
those of the point queries in Table 1.

6.3 Illustration of Directional Query Results:
A Real-world Example

We developed a web-based search system to demonstrate
the feasibility and applicability of our concept of georefer-
enced video search (http://eiger.ddns.comp.nus.edu.sg/geo/ ).
The search engine currently supports both directional and
non-directional spatial range queries. A map-based query
interface allows users to visually draw the query region and
indicate the direction. The results of a query contain a
list of the overlapping video segments. For each returned
video segment, we display the corresponding FOVs on the
map, and during video playback we highlight the FOV re-
gion whose timecode is closest to the current video frame.

In Figure 14 we illustrate an example of a directional
query applied to our real-world georeferenced video data.
We would like to retrieve the video segments that over-
lap with the given rectangular region while the camera was
pointing in the North direction. Figure 14.(a) shows the
video segments returned from the filter step using the MBR
model. Recall that the MBR model retains no notion of di-
rectionality. Figure 14.(b) shows the results of the filter step
using the vector model with input direction 0◦ (i.e., North)
and δ = 0.3M . Figures 14.(c) and (d) show the results from
the refinement step with error margins ±5◦ and ±25◦ with
respect to the given direction 0◦, respectively. Note that
we applied the refinement step on the output of MBR-based
filter step shown in Figure 14.(a).

Using the MBR model the filter step returns videos with
an aggregated duration of 775 seconds whereas the vector
model based filter step returns only 98 seconds of videos.
The refinement steps shown in Figures 14.(c) and (d) return
9 seconds and 65 seconds long videos for viewing directions
0◦ ± 5◦ and 0◦ ± 25◦, respectively.

The Figures 14.(a) through (d) also display the FOV visu-
alizations for the corresponding video segments on the map.
Note that a red FOV represents the frame currently being
played in the video. As described in Section 3.1, the vector
model is introduced as a fast filter step to quickly dismiss the
unrelated videos and video segments. Figure 14 illustrates
an example query where the vector model successfully elim-
inates most of the unrelated video segments, minimizing the
amount of refinement processing.

7. CONCLUSIONS
In this study we proposed a novel vector-based estimation

model of a camera viewable scene area. Our experimental re-
sults show that the vector model can be used in various ways
to enhance the effectiveness of a search filter step so that the
expensive and complex refinement step can be performed
with far fewer potentially overlapping FOVs. The vector
model successfully supports new geospatial video query fea-
tures such as a directional point query with a given view-
ing direction from camera to object and a point query with
a bounded distance between camera and object. We also
demonstrated an immediate applicability of our proposed
model to a common database by collecting real video data,
implementing an actual database and queries using MySQL,
and performing extensive experiments with the database.

So far we have focused on understanding the feasibility of
new query features in georeferenced video search using the
proposed model. We did not investigate query optimization
issues that can impact the performance of the filter step,
such as the most appropriate indexing structure. We are in-
vestigating query optimization as part of our ongoing work.
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